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Abstract

This paper provides a new approach to a utility function, by deriving it from deeper

first principles. Using a minimum set of cognitive tools, one can evaluate choice op-

tions and their expectations using solely information from one’s past and present en-

vironments. The adaptive evaluation procedure results in one’s utility function being

isomorphic to a perceived rank of its magnitude within a reference set, and thus pro-

vides a mechanism for one’s apparent attitudes towards risk to be shaped entirely by

one’s experiences, memory, and cognitive imperfections. This conceptually simple, but

powerful, framework provides support for neoclassical utility theory as a special case,

but also rationalizes reference-dependence and social comparisons. Cognitive imperfec-

tions have unexpected effects on choice under uncertainty and economic welfare. The

proposed parsimonious model links recent developments in economics, psychology, and

neuroscience, and shows that environmental context, memory, and cognitive processes

may interact in non-trivial and economically relevant ways.
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1 Introduction

How big is an apple? How high is a salary? How intense is an experience? How young is

a person? How frequent is a name? How long is a piece of string? How can one tell?

Consider Robinson Crusoe on a desert island. One day, a coconut falls off a tree. How

happy would be Crusoe with that coconut? Undoubtedly, that would depend on the size of

the coconut. And whether Crusoe would be content with the coconut in his hands rather

than reaching for another coconut on the tree, would also depend - at least in part - on

the sizes of the two coconuts. Yet he has no measuring tape, no scales, no other modern

measuring devices. Similarly, our prehistoric ancestors, as well as all living organisms, have

been making such economically relevant decisions, and thus must have been able to evaluate

the magnitudes of their choice options, - all in the absence of the modern measurement

technology. So, how would Nature enable individuals to make magnitude evaluations, and

what is the relationship of such magnitude evaluations to a utility function?

The concept of a utility function is fundamental to economics and behavioral sciences, yet

the process of utility acquisition is still not well understood. The present paper undertakes

a novel approach to a concept of a utility function. Simply put, before one can construct

a utility function (), one needs to evaluate, or measure, the size of . I thus explore the

process and tools by which a given magnitude  can be evaluated. Following Robson [2001,

2002], I assume that, rather than endowing living organisms with all necessary information,

Nature provides the living organisms with “tools” that enable one to extract information

from one’s environment and experience. In order for such tools to be adapted to deal with

more evolutionarily recent tasks, the candidate cognitive tools have to be independent of the

nature of the measurement.

I identify two well-documented domain-independent cognitive tools and, using a parsi-

monious mathematical model, show that one can evaluate a magnitude of an item entirely

using ordinal comparisons which, by means of a frequency (proportion) tool, are keyed into

a universal cardinal scale. By calculating how frequently a given object “wins” a pairwise

ordinal “tournament” against all other objects in the reference set, one can map an arbitrary

set of modalities (such as quantities, sizes, weights, durations, luminosities, and so on) onto

the interval [0 1]. Such process of evaluation by ordinal rank was advanced informally by

psychologists Stewart, Chater and Brown [2006].

The resultant adaptive evaluation, which is the expected outcome of pairwise compar-

isons, is a non-decreasing function of a magnitude, and thus rationalizes “relatively more

is better” preferences defined on a reference set. Once the reference set changes, so does

the adaptive utility. Specifically, a given magnitude is evaluated higher if the reference set

is positively rather than negatively skewed, leading to a possibility of non-reflexivity, non-

transitivity, and preference reversal (as Tversky and Kahneman [1991] pointed out, such

“preference anomalies” are a common consequence of a change in a “reference state”). The
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model of adaptive evaluation thus provides a new approach to the concept of utility function,

by deriving it from deeper first principles, and providing the mechanism which allows one to

construct reference-dependent utility, and to explain how one’s apparent attitudes towards

risk could be shaped entirely by one’s experiences, memory, and cognitive imperfections.

Using this conceptually simple, but powerful, framework, I show that a (neoclassical)

context-independent utility function may arise as a special case of adaptive evaluation pro-

cedure when one evaluates a magnitude relatively to a remembered sample and one has a

long memory. In contrast, if one’s memory is bounded, context effects may arise. One thus

would expect the context effects to be less pronounced when an agent faces familiar objects

(e.g. orange juice) rather than when one faces relatively unfamiliar objects (e.g. caviar).

Consistently with the principle of efficient use of information, the reference sample can

be used two ways - both to evaluate magnitudes and, similarly to the case-based decision

theory of Gilboa and Schmeidler [1995, 2003], to estimate probabilities in a frequentist way.

As every context can be seen as a gamble which involves a random draw of a single element,

one can derive an adaptive equivalent of expected utility, or context evaluation, which is an

expected evaluation of a random element drawn from a given context.

I show the fundamental property of adaptive evaluation, namely that if an agent relies

solely on the information from a single environment, and has a perfect frequency tool, he

is indifferent among the contexts (or the gambles the contexts provide) if and only if the

imperfections of his ordinal tool satisfy certain conditions. That is, once the conditions on

the ordinal tool are satisfied, an individual would be equally happy with any gamble as

long as he can only keep a single reference set in his memory at a time, but remembers his

evaluations of each entire context. Yet despite this indifference across contexts, his choice

between a contextual gamble and its expected magnitude with certainty will be different

across contexts. Specifically, an agent may exhibit risk aversion (i.e. choose the expected

magnitude rather than a gamble) whenever the expected magnitude exceeds the median (as

typically happens in positively skewed distributions), and vice versa.

The exposure to other environments tends to have a spill-over effect on one’s expected

evaluation. Thus, one’s evaluation of a random environment will decrease (or increase)

whenever, in addition, one is exposed to an alternative environment which is stochastically

better (worse), and, just as the expected utility theory predicts, a first order stochastically

higher gamble would be chosen. In general, under the assumptions of perfect cognitive tools

and memory, the cases when the theory of adaptive magnitude evaluation and the expected

utility theory generate different predictions tend to involve empirically uncommon contextual

distributions.

It is documented that the two cognitive tools employed here are subject to cognitive lim-

itations and thus may lead to informational inaccuracies. To accommodate such perceptual

errors for a continuous distribution case, I employ a convolution/scale mixture technique

whereby an adaptive evaluation can be expressed as either a sum or a product of two in-
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dependent random variables, namely the reference magnitude and the outcome of pairwise

comparison tournament. The adaptive magnitude evaluation with perfect cognitive tools

provides a useful benchmark, as it is equal to the “veridical” (true) rank in the distribu-

tion of reference magnitudes, and thus is optimal in the sense of Robson [2001], minimizing

mistakes in binary choices.

The convolution model allows one to explore of the effects of imperfections in cognitive

tools on magnitude evaluation. An imperfect magnitude evaluation is only partially affected

by the veridical rank, thus obscuring the empirical relationship between the environment and

one’s evaluation function. One particularly notable result states that when the reference

context is uniform on (0 1), an arbitrary form of multiplicatively imperfect ordinal tool

would result in adaptive evaluation exhibiting non-increasing marginal evaluation. Such

cognitive distortion of the mental line would lead to apparent risk aversion in an environment

where risk neutrality would have been optimal in a sense of Robson [2001]. The continuous

case model also highlights that the intuitively plausible results tend to be associated with

ordinal comparison tools which exhibit upward comparison inaccuracies (rather than “fair”

judgments or downward inaccuracies).

Despite the asocial nature of cognitive processes, the procedure allows for built-in so-

cial comparisons. Since all economically relevant magnitudes (such as income, consumption,

etc.) are attributable to individuals who possess them, the relevant magnitude evaluations

necessarily involve interpersonal comparisons. Yet cognitive imperfections may prevent in-

dividuals from assessing their possessions accurately. Specifically, when individuals make

more inaccurate ordinal comparisons when comparing their possessions to those “above”

them, than to those “below” them, their evaluations of own possessions are higher than

“true” evaluation, leading to greater satisfaction with their possessions. In the presence

of such “upward inaccuracy” bias, equality and economic growth may be associated with

greater welfare. Yet the result may reverse if the bias exhibits instead “downward inac-

curacy”. In contrast, if the ordinal tool is “fair” (or symmetric), economic processes such

as economic growth and income redistribution may surprisingly be welfare neutral. That

implies that when adaptive evaluation is optimal in a sense of Robson [2001], social welfare

would be independent of economic growth and redistribution. Furthermore, as judgment of

own skill relatively to the others involves interpersonal comparisons, the proposed evaluation

model allows one to relate individual difficulties in making upward ordinal comparisons with

the observed patterns of overconfidence in relative skill judgment.

2 Adaptive Magnitude Evaluation: Discrete Case

Consider Robinson Crusoe on a desert island. There is a single coconut tree on the island,

and Crusoe can see coconuts in a variety of sizes on that tree. One day, a coconut falls off

the tree. How could Crusoe evaluate the size of this coconut? Clearly, if the coconut is the
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smallest one among the ones he can see, it is the least valuable. If instead it is the largest

one, it is the most valuable. If it is neither smallest nor largest, its evaluation is in-between.

This paper argues that only two primitive tools are sufficient to “measure” a magnitude

against a reference set. One such primitive tool - ordinal comparisons - enables one to tell

whether a magnitude is larger, smaller, or equal to another magnitude. Brannon [2002] found

that 9-11 months old human infants are able to discriminate between small arrays of objects,

while Feigenson, Carey and Spelke [2002] suggested that human infants develop abilities to

discriminate continuous variables (such as areas, sizes, densities) even earlier, while Xu [2003]

reported that large numerosities are discriminated differently from the smaller ones. Walsh

[2003] further suggested that time, space and numbers involve similar neural mechanisms.

The other primitive tool is frequency (proportion) estimation. Hasher and Zacks [1979,

1984] suggested that humans update frequencies-of-occurrence automatically and accurately,

while Hintzman [1988] proposed amodel of retrospective updating of frequency-of-occurrence.

Since human children and some animals are equipped with a mental system for counting (Gal-

listel and Gelman [1992]), natural frequencies can be stored in a numerical format (Jonides

and Jones [1992]). Gigerenzer and Hoffrage [1995] and Cosmides and Tooby [1996] further

argued that natural frequency format is computationally simple, and thus is evolutionary

advantageous way to calculate probabilities (proportions).

I thus hypothesize that Crusoe can construct an evaluation function using only two

cognitive tools: first, by conducting pairwise comparison “tournaments” between the target

coconut and each of the coconuts which he can see on the tree, and second, by evaluating the

target magnitude by the frequency, or proportion of pairwise comparison tournaments the

target coconut “wins”. As the adaptive evaluation procedure is context-dependent, Crusoe’s

evaluation is based on the size distribution of coconuts on his island, and will change if he

were on another island. For example, Crusoe would be less happier with a 3 inch coconut on

an island A where a typical coconut is 5 inch radius rather than on another island B where

a typical coconut is 2 inch radius - simply because coconuts smaller than 3 inch are more

frequent on island B. Thus it is possible to find a banana such that Crusoe will be happy to

trade the 3-inch coconut for this banana on island A, but on island B he would be happy to

trade this banana back for the 3-inch coconut - an apparent preference reversal.

2.1 Adaptive Evaluation Algorithm

Consider an environment  consisting of magnitudes of (potentially) observable objects (e.g.

sizes of physical goods such as coconuts, houses, cars, incomes, and so on, or magnitudes of

a characteristic such as height, beauty, intelligence, etc.), with veridical (true) distribution

 :  → [0 1]. An individual observes a context  , which is a sample of  observa-

tions, independently and identically drawn from set  with distribution  . This context 
constitutes the individual’s reference set.
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The individual is endowed with two cognitive tools. The ordinal comparison tool Â≺ allows
him to compare any two magnitudes  and  in his reference set  , whether  is perceived

to be “smaller” or “bigger” than  - i.e. either  ≺  or  Â . Whenever the individual

perceives that neither  ≺  nor  Â ,  and  are perceived to be similar, or  ∼ .1 In that

case,  is judged to be “smaller” with probability  ∈ [0 1], and “larger” with probability
1− . The ordinal comparison tool may be imperfect in a sense that two veridically (truly)

distinct magnitudes may appear to be indistinguishable. However, a magnitude evaluation

with perfect ordinal tool will serve as a useful benchmark throughout the paper.

Definition 1 The ordinal comparison tool Â≺ is perfect if only veridically equal magnitudes
are perceived to be similar, i.e.  ∼ ⇔  =  for any  .

Definition 2 The ordinal comparison tool Â≺ involves fair (symmetric) judgment if, for every
, a similar magnitude has an equal chance to be judged larger or smaller, or  = 1

2
.

The frequency tool # allows the individual to estimate natural frequencies (counts) of

items with particular attributes, and estimate relative frequencies (proportions) of those

attributes within a (sub)population. The frequency (proportion) may be imperfect as an

individual may make mistakes in frequency counts and proportion estimations. However, for

most part of the paper, it will be assumed that the frequency (proportion) tool is perfect.

Definition 3 The frequency (proportion) tool # is perfect if estimates of natural and relative

frequencies-of-occurrence are accurate, i.e. for two sets of objects with particular attributes

 ⊆  with cardinalities  ≤  , the natural frequency estimates are # ( ∈ ) = 

and # ( ∈ ) =  , and the relative frequency estimate is 

.

Using these two cognitive tools, the individual evaluates an arbitrary target magnitude

 ∈  relatively to the reference set  using the following algorithm.

Adaptive Evaluation Algorithm: Suppose an individual faces a reference set (or context)

 and is endowed with ordinal comparison tool Â≺ and perfect frequency (proportion) tool
# . Then the evaluation of the target magnitude  can be constructed as follows:2

Step 1 Using the ordinal comparison tool Â≺, compare the “target” magnitude  to every mag-
nitude  in the reference set  , and divide the reference set  into two subsets:

set ̂≺() = ≺ ∪ ≺∼ (containing magnitudes which are perceived to be smaller

1The ordinal comparison tool Â≺ can be thought as a perceptual semiorder in a sense of Luce [1956].
2One can modify the above proportion-based algorithm into a natural frequencies-based version, with the

magnitude evaluation being “normalized” by the cardinality of the reference set #∈ .
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and those which are are perceived to be similar but judged to be smaller) and set

̂Â() = Â ∪ Â∼ (containing magnitudes which are perceived to be larger and
those which are are perceived to be similar but judged to be larger).3

Step 2 Using the perfect frequency (proportion) tool # , evaluate the target magnitude  rel-

atively to the reference set  by estimating how often every  ∈  is judged to be

smaller, i.e.

̂ () =
≺ +≺

∼
∈

(1)

Following the above algorithm, the individual evaluates an arbitrary magnitude  rela-

tively to the reference set  by the perceived proportion of reference magnitudes which he

judges to be smaller (or no larger) than , or by its perceived rank in a perceived reference

distribution ̂ () = (¹̂), or a probability that magnitude  is judged to be less
than an arbitrary other reference magnitude .4

The set of judged-to-be-smaller magnitudes ≺̂() = ≺ ∪ ≺∼ includes a subset ≺∼
containing reference magnitudes  which are similar to  but are randomly judged to be

smaller with probability  ∈ [0 1]. Thus, for each magnitude , its realized evaluation

̂ () is generated by a binomial process with parameters ∼ and . If the individual

evaluates magnitude  many times using the above algorithm with perfect frequency tool,

on average, the proportion  of similar reference magnitudes would be judged to be smaller.

Let the adaptive evaluation of magnitude  be the expected outcome of pairwise comparison,

or the expected realized evaluation of this magnitude:

 () = ̂ () =
≺


+ 
≺

∼


(2)

The realized evaluation ̂ can thus be decomposed into its expectation, given by the

adaptive evaluation  , and a random noise variable :

̂ =  + 

Following the random utility models pioneered by Thurstone [1927], the rest of the paper

will concentrate on the adaptive evaluation  as a candidate for a utility function.

2.2 Magnitude Evaluation with Perfect Cognitive Tools

The case when both cognitive tools are perfect provides a useful benchmark as well as clarifies

the relationship of the present model to the previous literature. When both tools are perfect,

3Most results would not change if the target magnitude  were excluded from the reference set  , except

those involving stochastically ordered contexts require equally-sized reference sets.
4Note that, by construction, the perceived distribution ̂ does not allow for “ties” so that ̂ () =

(¹̂) equals to ̂− () = (≺̂).

6



the realized evaluation can be written as

̂ () =
 + ̂

=



so the adaptive evaluation (which is expectation of realized evaluation) can be written as

 () = ̂  () =



+ 

=


= () + (1− )− () (3)

where () = ( ≤ ) is the empirical distribution of magnitudes in context  , and

− () = (  ), for   ∈  . Thus, when both tools are perfect, the perceived rank

(and thus adaptive evaluation) of magnitude  in reference set  is given by ̂ () =

() + (1− )− ().

Example 1 Consider a reference set  = {10 11 12 12 18 18 18 18 19 20} with  = 10,

and suppose both cognitive tools are perfect, Then, for any  ∈ [0 1], the realized evaluations
and adaptive evaluations of each magnitude are:

̂(10) ∈
©
0
10
; 1
10

ª ⇒  (10) =


10
̂(18) ∈

©
4
10
; 5
10
; 6
10
; 7
10
; 8
10

ª ⇒  (18) =
4+4

10

̂(11) ∈
©
1
10
; 2
10

ª ⇒  (11) =
1+

10
̂(19) ∈

©
8
10
; 9
10

ª ⇒  (19) =
8+

10

̂(12) ∈
©
2
10
; 3
10
; 4
10

ª ⇒  (12) =
2+2

10
̂(20) ∈

©
9
10
; 10
10

ª ⇒  (20) =
9+

10

Note that the adaptive evaluation function  () is non-decreasing in magnitude . The

next result follows from Tversky and Kahneman [1991], who considered complete and tran-

sitive “relatively more is better” preference structure º with reference state  .

Proposition 1 Complete and transitive “relatively more is better” preference structure º

is rationalizable by the adaptive evaluation  () as defined in (3).

The following result specifies the conditions resulting in the adaptive evaluation to be a

veridical (true) empirical rank (), and to be optimal in a sense of Robson [2001].

Definition 4 An evaluation function () is optimal in a sense of Robson [2001] if it is

equal to the veridical (true) distribution  () of magnitudes in the environment , so that

a chance of mistaken choice of a smaller magnitude in a binary choice is minimized.

Proposition 2 Suppose both cognitive tools are perfect. In addition, suppose that all refer-

ence magnitudes  which are similar to  are judged to be smaller with certainty, i.e.  = 1

for all  and . Then

() the realized evaluation ̂ is equal to adaptive evaluation  (), and both are isomorphic
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to the empirical distribution function ();

() as the reference set  becomes large, it approaches in the limit to the environment , so

that the adaptive evaluation  () converges uniformly to the veridical (true) distribution

 () and thus to the Robson-optimal evaluation  ().

Proof: By definition, the ordinal rank of  in  is given by the empirical distribution

function () =
≤


=
+=


, or, () is the frequency of magnitudes in  that

do not exceed . By assumption of perfect tools and  = 1 for all  and , ̂+
∼ = =,

so that  () = ̂ () =
+=


=

≤


= (). As all observations in  are i.i.d.

draws from  (), the rest follows from Glivenko-Cantelli Theorem (e.g. Durrett [1996]). As

Robson [2001] and Netzer [2009] showed, a mistake of choosing a smaller magnitude from

a set of two draws from an environment  () is minimized when the evaluation (utility)

function equals to  ().

Thus, if all similar magnitudes are judged to be smaller, then the adaptive evaluation 
is isomorphic to an empirical distribution, or cumulative density function. The isomorphism

of a utility function and a cumulative density function was first noticed by Van Praag [1968],

and further explored by Kapteyn [1985 and references therein]. Gilboa and Schmeidler [2003]

extended the case-based decision theory to represent “at least as likely” binary relation

with ranking alternatives by their empirical frequencies. Stewart, Chater and Brown [2006]

suggested informally that one can evaluate attribute values (such as money amounts, time,

or probability) by their ordinal rank in a distribution of a sample from memory.

2.3 Adaptive Evaluation with Ordinal Imperfections

Among the advantages of the adaptive evaluation model is a potential to clarify the role of

cognitive imperfections on adaptive magnitude evaluation. Specifically, cognitive imperfec-

tions distort one’s mental line and lead to magnitude evaluation to be suboptimal in a sense

of Robson [2001].

As psychologists discovered in the XIX century, subjects tend not to notice the difference

between two magnitudes if this difference is less than a certain threshold, and such minimum

noticeable difference is proportional to the stimulus level. This observation, widely known

as Weber-Fechner psychophysical law of just noticeable differences (e.g. Link [1992]) is the

psychologist’s counterpart to the law of diminishing marginal utility. For example, most

people would notice the difference between having one dollar bill and two dollar bills in

one’s wallet, but would hardly notice the difference between having 67 and 68 dollar bills.

In fact, Dehaene, Dupoux and Mehler [1990] found that when comparing two-digit Arabic

numerals, such as 64 and 65, subjects made more than 10% mistakes, but such mistakes

drop dramatically once the numerals are far apart. This phenomenon was recently found

on the brain level, as Nieder and Miller [2003] found that the representation of numerosities
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is “compressed” in a monkey brain, prompting Dehaene [2003] to advance an argument in

support of a logarithmic mental number line to represent the Weber-Fechner law.5 Such

findings open up a possibility that the ordinal comparison tool may be imperfect in the

sense that any two magnitudes which belong to an interval of doubt are perceived to be

similar.

Consider a veridical distribution  on context  with  elements, and suppose that  is

discrete, with  “bins” B  = 1      ranked in the ascending order of their veridical (true)
magnitudes, i.e. for any  ∈ B and  ∈ B,  Q  ⇔  Q . Denote the number of elements

in bin B as , and the total number of elements which belong to the smallest  bins as

Σ =
P

=1, so that context  consisting of  bins contains Σ =
P

=1  elements

in total. Thus,  () = ( ≤ ) = Σ
Σ
is the value of cumulative magnitude distribution

in context  corresponding to magnitude in bin , and  = max ∈ B1 ∪    ∪ B.
Assume a perfect frequency tool. Let the individual’s ability to tell apart the magnitudes

 and  to depend only on the veridical (true) magnitudes  and , and not on the context .

That is, for some , there exist ≥0 such that such that for all  ∈ B and all  ∈ B− with
 = {0 · · ·  }, the elements of +1 bins are indistinguishable, or  ∼ . If =0, the ordinal

tool is perfect. Otherwise, with   0, an imperfect ordinal tool results in the perceived

distribution ̂ to be a coarsening of the veridical distribution  , by “fusing” +1 veridical

bins B  = −      into a perceived bin B̂−: with Σ̂−: =
P

=− elements. Thus,

an adaptive evaluation of each element  belonging to the “fused” bin B̂−: is

(−)= · · ·=() =
Σ−−1 + Σ̂−:

Σ

=  () + (1−) (−−1) (4)

(Note, if both cognitive tools are perfect,  = 0, so that  () =  () + (1 − ) ( − 1).)
If the extremes of the veridical magnitude range appear to have similar magnitudes, lowest

magnitudes will tend to be overvalued and highest magnitude will tend to be undervalued.

Proposition 3 Suppose the frequency tool is perfect. Consider context  with  magnitude

bins described by veridical distribution  (). If an imperfect ordinal tool results in “fusing”

the lowest   1 bins, then the lowest magnitude  is overvalued relatively to the Robson-

optimal evaluation  (), and if ordinal tool results in “fusing” the highest   0 bins,

then the highest magnitude  is undervalued relatively to  ().

Proof: Since  belongs to the lowest bin B1, its adaptive evaluation is:

(1) =  () + (1− ) (1) =  (1) + ( ()−  (1))   (1)

5Dehaene, Izard, Spelke, and Pica [2008] found that education has a “linearizing” effect on the mental

number scale, as in Amazonian indigenous cultures the mental number line is found to be logarithmic, while

in the Western societies it was found to be closer to the linear.
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Since  belongs to the highest bin B , its adaptive evaluation is:
() =  () + (1− ) ( − ) =  ()− (1− )( ()−  ( − ))   ()

Furthermore, as the example below shows, the stochastic nature of ordinal imperfections

may result in smaller magnitudes having higher realized evaluations than larger magnitudes,

with a possibility of apparent preference anomalies even for the same reference set.

Example 2 Suppose that frequency tool is perfect. Consider an imperfect ordinal compar-

ison tool resulting in any two magnitudes  and  perceived to be similar whenever the

“veridical” magnitude difference does not exceed 2, (i.e. | −  |≤ 2). Thus, in the context
 from the Example 1, the individual perceives 10 ∼ 11 ∼ 12 and 18 ∼ 19 ∼ 20, with context
 perceived to be 0 = {11 11 11 11 19 19 19 19 19 19}, resulting in

̂0() ∈
½
0

10
;
1

10
;
2

10
;
3

10
;
4

10

¾
for  ∈ {10 11 12}

̂0() ∈
½
4

10
;
5

10
;
6

10
;
7

10
;
8

10
;
9

10
;
10

10

¾
for  ∈ {18 19 20}

Thus it is possible that the realized evaluation ̂ can be non-monotone in magnitude, for

example, ̂0(12)  ̂0(11)  ̂0(10)  ̂0(100)  ̂0(99)  ̂0(98). However, the adaptive

evaluations non-decreasing in magnitude:

0(10) = 0(11) = 0(12) =
4

10

0(18) = 0(19) = 0(20) =
4 + 6

10

Here, relatively to the “true” evaluation of Example 1, ordinal imperfections lead to over-

valuing “small” magnitudes (10 and 11) and undervaluing “large” ones (19 and 20).

2.4 Adaptive Evaluation across Different Contexts

Would Robinson Crusoe’s evaluations of coconuts change if there existed more than one

coconut tree on his desert island? That depends on how much Crusoe remembers about the

other trees on the island. It thus would be natural to distinguish Crusoe’s “local” reference

set which he would form if he were unaware or amnesiac, and his “global” reference set if all

coconuts on all trees were part of his reference set. One would thus expect that his evaluation

relatively to such “global” reference set would typically be different from evaluation relatively

to just one “local” tree.

As Tversky and Kahneman [1991] pointed out, a “reference shift”, or change in a reference

state, often results in apparent preference anomalies. Thus, when the environment  changes,
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so does the reference set  , with the adaptive evaluation 


(), exhibiting non-reflexivity,

non-transitivity and preference reversals when the choices are compared across different

reference states.

Example 3 Suppose the frequency tool is perfect. Consider a set  = {10 11 12 12 12 18 18 18 19 20}
with  = 10. If the ordinal tool is perfect, the realized magnitude evaluations are:

̂(10) ∈
©
0
10
; 1
10

ª ⇒  (10) =


10
̂(18) ∈

©
5
10
; 6
10
; 7
10
; 8
10

ª ⇒  (18) =
5+3

10

̂(11) ∈
©
1
10
; 2
10

ª ⇒  (11) =
1+

10
̂(19) ∈

©
8
10
; 9
10

ª ⇒  (19) =
8+

10

̂(12) ∈
©
2
10
; 3
10
; 4
10
; 5
10

ª ⇒  (12) =
2+3

10
̂(20) ∈

©
9
10
; 10
10

ª ⇒  (20) =
9+

10

Suppose instead the ordinal tool is imperfect as in the Example 2, resulting in the context 

to be perceived as 0 = {11 11 11 11 11 19 19 19 19 19} and thus

̂0() ∈
½
0

10
;
1

10
;
2

10
;
3

10
;
4

10
;
5

10

¾
for  ∈ {10 11 12}

̂0() ∈
½
5

10
;
6

10
;
7

10
;
8

10
;
9

10
;
10

10

¾
for  ∈ {18 19 20}

so that the adaptive evaluations are:

0(10) = 0(11) = 0(12) =
5

10

0(18) = 0(19) = 0(20) =
5 + 5

10

Note that set  is stochastically smaller than set  in the Example 1, and, similarly, the

perceived set 0 is stochastically smaller than perceived set 0 in the Example 2. Since large
magnitudes are more frequent in set  than in set , all elements of stochastically smaller

set  are evaluated no lower than in set  - regardless of the properties of the ordinal tool.

Thus, the same absolute magnitude may have different adaptive evaluations in different

contexts. Moreover, the adaptive evaluation exhibits well-documented context effect, namely,

if one reference context stochastically dominates another (as in the Example 1), then all

magnitudes in the stochastically lower context have adaptive evaluations which are no lower.

Proposition 4 Suppose the frequency tool is perfect. If  º , then () ≤ ().

Proof: Define the indiscriminability bins B on the union of the two contexts  ∪  (with

some bins being possibly empty in one context but not in both), and let  be the largest

number of bins across both contexts.  º  implies that () ≤ () for any

 = 1      . Then, for every  ∈ B, the difference in evaluations across the two contexts is
()− () = ()− () = (()− ()) + (1− )((−  − 1)− (−  − 1)) ≤ 0

11



This systematic effect of a change in the reference set on subjects’ evaluations has been

documented in a number of psychological studies, including Parducci [1963, 1965], Stewart

[2009], Olivola and Sagara [2009], Wood, Brown, and Maltby [2011], Ungemach, Stewart,

and Reimers [2011], Stewart, Reimers, and Harris [2011].

Next, it would be of interest to compare one’s “local” and “global” adaptive evaluations.

Consider two sets  and , containing  and  items, respectively. The adaptive

evaluation ∪() with perfect frequency tool relatively to a combined context  ∪ is

∪() = ()


 +
+ ()



 +
(5)

or one can write is as ∪() to denote ∪() for any  ∈ B:

∪() =
()

 + ()


 +

Corollary 1 Suppose the frequency tool is perfect. If  º , then () ≤ ∪() ≤
().

In other words, one’s adaptive evaluation of each magnitude is increased if stochasti-

cally dominated set is added to one’s reference set. And vice versa, adding a stochastically

dominant set to one’s reference set decreases one’s magnitude evaluations.

Example 4 Suppose the frequency tool is perfect. Given the contexts  and  of Examples 1

and 3, construct ∪ = {10 10 11 11 12 12 12 12 12 18 18 18 18 18 18 18 19 19 20 20}
with ∪ = 20. With perfect ordinal tool, the adaptive evaluations of each magnitude rela-
tively to the “global” reference set are:

∪(10) =
2

20
∪(11) =

2+2

20
∪(12) =

4+5

20

∪(18) =
9+5

20
∪(19) =

16+2

20
∪(20) =

18+2

20

so that  º  results in () ≤ ∪() ≤ (). Observe that if the ordinal imper-

fection is as in the Example 2, the perceived “global” reference context 0 ∪0 will consist of
9 “small” items (with 10 ∼ 11 ∼ 12) and 11 “large” items (with 18 ∼ 19 ∼ 20), so that

0∪0(10) = 0∪0(11) = 0∪0(12) =
9

20

0∪0(18) = 0∪0(19) = 0∪0(20) =
9 + 11

20

Note that the nature of the ordinal tool does not affect the comparative statics, as elements

belonging to stochastically smaller context are evaluated no lower.

Such behavior is well documented, e.g. in Parducci [1968], students judged poisoning a

neighbour’s dog to be a lesser crime then when poisoning the neighbour herself was on the

list as well.
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2.5 Context Evaluation

Suppose Robinson Crusoe who faces a single coconut tree which randomly sheds a single

coconut per day. How could Crusoe evaluate such a lottery? Would Crusoe prefer to have a

random coconut from that tree or the coconut with an average (veridical) magnitude? Note

that the coconut tree serves as a database of coconut magnitudes, which Crusoe uses to

evaluate the size of a given coconut. But at the same time, the coconut tree also provides

Crusoe with a database for calculating frequencies of coconuts of various sizes, thus allowing

to calculate a probability with which a coconut of a particular size might fall off the tree.

Thus, Crusoe can use the Nature’s tools to evaluate the entire tree as a gamble.

Furthermore, suppose there are two coconut trees at the opposite ends of the island, and

Crusoe has to be next to the tree to pick up the fallen coconut before wild animals consume

it. How would Crusoe decide which tree to choose? It turns out that when Crusoe faces a

choice between two trees, in addition to his cognitive tools, his memory plays an important

role. While Crusoe always remembers his evaluations of each tree, his choice will depend

on whether he remembers the coconuts hanging on each tree whenever he walks between

the two trees. With fair ordinal tool, an amnesiac Crusoe who only remembers coconuts on

one tree at a time, will not care which tree to choose. In contrast, if Crusoe had a perfect

memory about all coconuts on all trees, he would choose a stochastically bigger tree.

The case-based decision theory of Gilboa and Schmeider [1995, 2003] offers an alternative

to expected utility theory where agents utilize a database of past experiences to make deci-

sions. Rather than weighting utilities by probabilities, the weights are constructed based on

the frequencies of appropriate experiences in the past. As I show here, such database stored

in one’s memory can be used efficiently as a source of information both for constructing an

evaluation function and constructing a probability distribution.

Let us assume that the frequency tool is perfect, and allow for a possibility of ordinal

imperfections. For any context  consisting of  items, for an element  belonging to the

“fused” bin B̂−: one can define the perceived frequency ̂ () as

̂ () =
∼
∈

=
Σ̂−:
Σ

Given the adaptive evaluation  () constructed on context  , one can write context

evaluation  () for context  as:

 () =
X
∈

 ()̂ ()

Using the equation (4), one can write context evaluation  =  () as:

 =
X

=1

 =
X

=1

Σ−−1 + Σ̂−:
Σ

Σ̂−:
Σ

(6)
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or, using the alternative expression from (4), and taking into account that  () = 1, one

can write the above as

 =
X

=1

[ () + (1−) (−−1][ (−−1)− ()] =

= 1−+ (2−1)
X

=1

[ ()2− () (−−1)] (7)

Example 5 Suppose both cognitive tools are perfect, and consider contexts  and  of

Examples 1 and 4. Then, for any  ∈ [0 1], the context evaluation of set  is:

() =


10

1

10
+
1 + 

10

1

10
+
2 + 2

10

2

10
+
4 + 4

10

4

10
+
8 + 

10

1

10
+
9 + 

10

1

10
=
38 + 24

100

the context evaluation of set  is:

() =


10

1

10
+
1 + 

10

1

10
+
2 + 3

10

3

10
+
5 + 3

10

3

10
+
8 + 

10

1

10
+
9 + 

10

1

10
=
39 + 22

100

Note that these two distinct reference sets  and  have the same context evaluation equal

to 1
2
if the ordinal tool is fair, i.e.  = 1

2
.

The above example with fair ordinal tool demonstrates the fundamental property of adap-

tive context evaluation. If the frequency tool is perfect and if magnitude and frequency eval-

uations are based on the same context, then context evaluation is context independent if and

only if judgment of similarly perceived magnitudes is fair.

Proposition 5 Suppose the frequency tool is perfect. The context evaluation () is in-

dependent of the context  if and only if the probability  of judging a similar magnitude to

be smaller is  = 1
2
. Moreover, () =

1
2
for any  iff  = 1

2
.

Proof: From (7) one can observe that if  = 1
2
, then  () =

1
2
for any context. Further-

more, if context evaluation  () is context-independent, it must be that  =
1
2
, and thus

 () =
1
2
.

This is a striking result which only requires that the ordinal judgment is fair, and does

not depend on other properties of the ordinal comparison tool. What is says that if an

individual is not aware or does not remember about the existence of other contexts, and he

has fair ordinal and perfect frequency tools, he will be indifferent among gambles as long each

gamble is evaluated entirely relatively to itself. What is also important, if one faces a single

stochastic context, one’s context evaluation of that gamble is equivalent to the adaptive

evaluation of the median magnitude.
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However, individual’s choice between a gamble and the average (veridical) magnitude will

depend on the stochastic properties of the context. When distribution is positively skewed

(so that larger magnitudes are less frequent), its median magnitude is smaller than mean

magnitude, and the adaptive evaluation of such context is lower than the evaluation of the

average magnitude. This can be seen as a form of risk aversion, as the expected value of a

gamble is less than the value of its expectation. In contrast, if the distribution is negatively

skewed (so that the larger magnitudes are more frequent), the expected value of the gamble

is more than the value of its expectations, corresponding to risk loving. We thus have the

following straightforward result.

Corollary 2 If frequency tool is perfect, and consider a context  with magnitude distribu-

tion , average magnitude  = () and median  = −1 (05). If the cognitive tools are

perfect, then ()  ()() iff   ().

That is, one’s choice between a gamble and its expectation could potentially be governed

solely by the properties of the stochastic environment. However, the memory of previously

encountered environments could be important for behavior in risky situations. To see this,

suppose a individual faces a choice between two contexts  and , with  and . If

his memory can only hold information about one context at a time, and if his ordinal tool

is fair, then Proposition 5 would apply, as it holds for any context . Instead, suppose

the individual’s memory is perfect, so that his database is a combined “global” set  ∪ .
Moreover, suppose the individual’s memory allows him to keep track of which element in his

memory belongs to which context.6 For the purposes of magnitude evaluation, the entire

“global” reference set ∪ is relevant, and one can use equation (5). But, for the purposes of
evaluation of the gambles that each context provides, only the subset of elements associated

with a particular context  =  is relevant as only those allow one to evaluate the

probability of an element with a particular magnitude:

∪() =
X
∈

∪()̂() =
X
∈

()
 + ()



 +


∼


or, using the context-specific frequencies () =



 for any  ∈ B:

∪() =
X

=1

()
 + ()



 +






In other words, the perceived distribution in context  affects the expected magnitude eval-

uation of context , and vice versa. One thus would expect the choice between two contexts

6As Mullett and Tunney [2013] find, activations in ventro-medial prefrontal cortex (vmPFC) and the

anterior cingulate cortex (ACC) are consistent with encoding “global” ordinal rank, while activations in

ventral striatum and thalamus record “local” ordinal rank.
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to be affected by the relationship between the two contexts, as the following proposition

suggests. As the next result demonstrates, when stochastically lower values are added for

evaluation purposes, their magnitude valuations which would have been higher in isolation

provide a boost to the original magnitudes.

Proposition 6 Suppose the frequency tool is perfect. If  º , then ∪() 

(), ∪()  (), and ∪()  ∪().

Proof: Since  º  implies that () ≤ (), contexts  and  are evaluated as

∪() =
X

=1

()
 + ()



 +







X
=1

()





= ()

∪() =
X

=1

()
 + ()



 +







X
=1

()





= ()

That is, if bigger sizes are more common in one context than in the other (in a sense of

first order stochastic dominance), the expected evaluation of stochastically bigger (smaller)

context will be higher (lower) than what they would have been worth to the amnesiac

individual. In other words, exposing one to information about an alternative context makes

one better off if the alternative context is stochastically worse, and vice versa. Furthermore,

as one would expect, the stochastically bigger context is more desirable.

Example 6 Suppose the frequency tool is perfect, and consider sets ,  and  ∪  of

Examples 1, 3 and 4. Then, for perfect ordinal tool with any  ∈ [0 1], when magnitude
evaluation is done relatively to the global set  ∪ , the context evaluation of the entire set
 ∪ is:

∪( ∪) =
2

20

2

20
+
2 + 2

20

2

20
+
4 + 5

20

5

20
+
9 + 7

20

7

20
+
16 + 2

20

2

20
+
18 + 2

20

2

20
=
155 + 90

400

while the context evaluation of set  when magnitude is evaluated based on the “global”

reference set  ∪ is:

∪() =
2

20

1

10
+
2 + 2

20

1

10
+
4 + 5

20

2

10
+
9 + 7

20

4

10
+
16 + 2

20

1

10
+
18 + 2

20

1

10
=
80 + 46

200

and the context evaluation of set  is:

∪() =
2

20

1

10
+
2 + 2

20

1

10
+
4 + 5

20

3

10
+
9 + 7

20

3

10
+
16 + 2

20

1

10
+
18 + 2

20

1

10
=
75 + 44

200

Clearly, for any  ∈ [0 1], ∪()  () and ∪()  (). Furthermore, con-

sider the imperfect ordinal tool as in the Example 2. Because the individual cannot distinguish
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between 10 11 and 12, each of these veridical magnitudes are perceived to have identical fre-

quencies 4
10
in set 0. Similarly, each of 18 19 and 20 are perceived to appear with frequency

6
10
. Thus, context 0 is evaluated as

0(
0) =

4

10
· 4
10
+
4 + 6

10
· 6
10
=
24 + 52

100

and context 0 is evaluated as

0(
0) =

5

10
· 5
10
+
5 + 5

10
· 5
10
=
25 + 50

100

The fundamental property holds, as for  = 1
2
, 0(

0) = 0(
0) = 1

2
. However, relatively

to the “global” comparison set 0 ∪0, the two “local” contexts have different evaluations:

0∪0(
0) =

9

20

4

10
+
9 + 11

20

6

10
=
54 + 102

200

0∪0(
0) =

9

20

5

10
+
9 + 11

20

5

10
=
45 + 100

200

Clearly, as 0 º 0, we have that 0∪0(0)  0∪0(0) for any  ∈ [0 1].

In other words, the adaptive procedure results in intuitively plausible rankings of contexts,

and such ranking does not depend on the nature of the ordinal imperfections.

2.6 Interaction Between Reference Context and Memory

Obviously, Robinson Crusoe may evaluate a target coconut not only relatively to the set of

coconuts which are currently observable to him, but he can also base his evaluation on his

memory of coconut sizes seen previously, or even imagined. How his memory may enter into

his evaluation?

Both Gilboa and Schmeider [1995, 2003] and Stewart, Chater and Brown [2006] assume

that an individual uses a database stored in one’s memory. It thus may be only partially

affected by the current environment, but it can also be affected by the past observations

- and thus might be misremembered. Brown and Matthews [2011] extend the decision-by-

sampling model to allow for memory to interact with the reference distributions. As one’s

memory tend to shape the composition of the reference set, one could expect that, just like

it was shown earlier, one’s adaptive evaluation will be sensitive to one’s memory processes.

Suppose that at time 0, the individual’s history of observations consists of a collec-

tion of  +1 contexts 0  0−1     0−     0− with perceived magnitude distributions
0  0−1     0−     0− . Suppose the individual remembers (samples) observations
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from period 0−  uniformly with the memory rate  ∈ [0 1], i.e. any two contextual magni-
tudes  0 ∈ 0− have equal probabilities of being included in the (remembered) reference
set . Using the general discounting model of Rubinstein [2003] (which permits hyperbolic

discounting), write the remembered adaptive evaluation () of a magnitude  as a mixture

of  + 1 perceived probability distributions:

() =
0

0 +∆
0() +

1

0 +∆

X
=1

(Π=1)0−() (8)

where ∆ =
P

=1 (Π=1).

Since past history may include imaginary environments, the above general formulation

permits for saliency both in specific past histories and specific values. Specifically, a salient

magnitude value ̃ might enter the reference set  as a past environment  containing a

degenerate random variable at ̃, i.e. () = (− ̃); while a salient environment at time

 might enter  with   max{0          } for all  6= .

One can decompose the reference set  into a subset 0 sampled from observations from

the current period and a subset  sampled from remembered observations in the previous

 periods, i.e.  = 0 ∪  . Thus, the evaluation (8) can be written as a weighted sum of

current 0 and remembered past F environment:

() =
0

0 +∆
0() +

µ
1− 0

0 +∆

¶
 () (9)

One can observe that memory determines whether one’s evaluation exhibits context ef-

fects. Specifically, neoclassical context-independent utility function arises as a special case

of adaptive evaluation when an individual has long and strong memory. This is because if

one’s evaluations are (almost) entirely determined by the past environment, present context

has negligible effect on one’s evaluations. In contrast, regardless of one’s past experiences, as

long as one’s present has non-negligible effect, one’s evaluation will exhibit context effects.

Proposition 7 Suppose one’s magnitude evaluation is determined by the past and present

environments 0 and  as given by (9). Then

() if   0 for all  and  → ∞, then () = lim→∞ () is independent of the current

context.

() if 0  0,   ∞, and  fixed, and an individual faces either of the two current

environments,  or  with 
0
and 

0
, respectively. Then ∪()−∪() = 

0
−

0
.

() Suppose both cognitive tools are perfect,  = 1, and the sample size  is large, and the

reference set  includes observations beyond the current environment with ∆  0. Then the

adaptive evaluation  is suboptimal in a sense of Robson [2001].

Proof: ()As lim→∞∆ =∞, the weight of the current context is negligible: lim→∞ 0
0+∆

=

0 and thus () = lim→∞ () =  ().
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() Note that, given that  is fixed, ∪()−∪() = 0
0+∆

(
0
−

0
). Since 0

0+∆
 0,

the rest is straightforward.

() Since the reference set  includes observations beyond the current environment, 0
0+∆



1, and thus () 6= 0(), and () is Robson-suboptimal.

Thus, with long memory, the individual behaves as if he possesses a (neoclassical) context-

independent utility function which is determined by the distribution of remembered past

observations. Such context-independent evaluation, however, is not optimal in the sense of

Robson [2001]. Conversely, if one’s memory is bounded, one’s evaluations will exhibit depen-

dence on the current context. In other words, when an individual is presented with variable

context, her magnitude evaluation will exhibit qualitative, but not quantitative, correspon-

dence with the present context (e.g. Parducci [1963, 1965]). Furthermore, even though the

conditions of Proposition 2 are satisfied, when an individual evaluates prospects based on a

past memory, his adaptive evaluation differs from the current magnitude distribution, and

thus his mistakes in a binary choice in the present environment 0 are not minimized.

2.7 Adaptive Evaluation of Economic Goods

Understanding the role of cognitive imperfections could be particularly relevant in a private

ownership economies where most (if not all) ordinal comparisons are necessarily done inter-

personally, particularly for economically relevant variables such as consumption, income, and

wealth. To evaluate a coconut, Robinson Crusoe compares it against other coconuts present

- whether the other coconuts are on a tree, on a store display, or in hands of other people.

From the cognitive point of view, Mrs. Brown evaluates her house the same way as Crusoe

evaluates a coconut, - using two primitive cognitive tools over a reference set consisting of

other houses, - yet these reference houses tend to belong to other people. A change in Mr.

Jones’ possessions changes how Mrs. Brown values what she has, appearing as a desire to

“keep up with the Joneses”. While the adaptive evaluation is sentiment-free, in private own-

ership economies it may appear as a concern with social status discussed by Veblen [1899],

Frank [1995], and many others. The same cognitive process involves evaluation of individ-

ual characteristics such as height, beauty, intelligence, and skill. When other comparison

objects belong to other people, ordinal comparisons may be especially inaccurate, affecting

one’s evaluation of their possessions, with further economy-wide welfare implications.

Consider a private ownership economy, where each of  individuals is endowed with an

object of magnitude  (e.g. height, intelligence, income, happiness, and so on). Suppose that

these magnitudes of individual endowments are observable and thus constitute the reference

set  with the veridical magnitude distribution  . Assume that all individuals have the

same reference set , have the same perfect frequency tool  , and the same ordinal tool.

First, observe that, as Proposition 2 suggests, if ordinal tool is perfect and if, whenever

one sees other people’s possessions to be equal to one’s own, one judges them to be “smaller”,
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one’s evaluation will be optimal in a sense of Robson [2001]. This means, however, that the

individual at the bottom of human hierarchy will have the lowest possible utility level, and

the individual at the top will have the highest possible utility.

Yet, as Proposition 3 suggests, if all very small possessions appear to be similar, the

bottom individual will be “happier” with own lot than what would be optimal. In contrast,

if all very large possessions appear to be similar, the top individual will be less happy than it

would be optimal. Thus, ordinal imperfections may “flatten” perceived value of possessions,

reducing the potential disparity between those at the top and the bottom. It is thus possible

that the way individuals compare themselves to the others may affect the welfare of the

entire society. The utilitarian economic welfare in a society  can be written as

 () =
X
∈

 ()
=

∈
(10)

Observe however that the welfare can also be written as

 () =
X

=1

 =
X

=1

Σ−−1 + Σ̂−:
Σ

Σ̂−:
Σ

which is equivalent to equation (6) for the context evaluation. In other words, the fundamen-

tal property of adaptive evaluation, stated in Proposition 5 can be restated as the welfare

neutrality of economic processes. That is, utilitarian welfare is independent of economic

processes (such as economics growth, redistribution, etc.) if and only if interpersonal com-

parison involves fair judgment, with half of all similar possessions being judged to be smaller

and the other half being judged to be larger. However, once interpersonal comparisons arising

from cognitive imperfections are not fair, utilitarian welfare depends on economic processes.

The next example highlights the interaction between cognitive imperfections and inequality.

Example 7 Consider an economy where proportion  of population have income  and

proportion 1 −  have incomes   . Suppose all agents have the same ordinal tool

which has the following property: whenever an individual endowed with  encounters another

individual with endowment , he perceived that  ∼  whenever 

∈ [−1 ], where   1.

Consider income distribution  which is sufficiently unequal with   . In this case,

() =  and () =  + (1 − ), and welfare  =  + (1 − 2)(1 − ). Now

consider instead income distribution  which is sufficiently equal with  ≤  . Then

() = () = , and  = . As  − = (1 − 2)(1 − ), welfare is higher

in more equal society  as long as encounters with people of similar incomes tend to be

seen favorably (i.e.   05). And vice versa, welfare is higher in more unequal society 

if, instead, there is bias against encounters with people of similar incomes (i.e.   05).

Notice that welfare neutrality holds whenever  = 05.

Thus, despite its conceptual simplicity, the adaptive evaluation algorithm results in com-

plex and unexpected interactions between social comparison processes and societal welfare.
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2.8 Adding Frequency Imperfections

As Kahneman and Tversky [1979] point out, humans assign non-linear weights to probabil-

ities, overweighing small probabilities and underweighing large ones.7 Thus, it is plausible

that the frequency tool is also imperfect, further distorting the relationship between the

veridical magnitude distribution and adaptive evaluation, and making it more difficult to

observe empirically. Hsu, Krajbich, Zhao and Camerer [2009] found that the neural activ-

ity in the striatum is nonlinear in stimulus probabilities, suggesting a possibility that the

probability distortions may arise at the level of coding in the brain, while Stewart, Chater

and Brown [2006] noted that probability distortions align with the empirical frequency dis-

tributions. However, the exact form and mechanism behind probability imperfections is still

unclear, as recent research suggests that experienced and stated probabilities may result in

opposite pattern of overweighting and underweighting of small and large probabilities (Bar-

ron and Erev [2003], Hertwig, Barron, Weber, and Erev [2004]), while Harbaugh, Krause,

and Vesterlund [2003, 2010] further report that the implied shape of subjects’ probability

weighting function is affected by the elicitation procedure and age, with a possibility of the

probability weighting function to be linear in adults.

Psychologists Spence [1990] and Hollands and Dyre [2000] found even a more complex

phenomenon for proportion judgments over a variety of stimuli, including continuous sensory

modalities such as probabilities, proportions of graphical elements, numerosities, fullness

of the glass, and so on). Such judgments are found to exhibit non-linearities, involving

relatively accurate evaluations at the “intermediate” proportions, overestimation of low and

underestimate of large proportions

Whatever is the form of frequency (proportion) imperfections, one can build them into

the adaptive evaluation algorithm and generalize the realized magnitude evaluation (2) as:

̂Υ () = Υ

Ã
#( ∈ ̂≺())
#( ∈ )

!
= Υ

µ
#(≺ ∪ ≺∼)
#( ∈ )

¶
(11)

Here, Υ() is the perceived reference distribution Υ() representing a perceived probability

that a magnitude  is judged not exceed an arbitrary other reference magnitude . The for-

mulation (11) takes into account that the frequency imperfections for discrete proportions of

countable objects may differ from those for continuous proportions of continuous modalities

such as luminosities.

Again, since the ordinal comparison tool is stochastic, so is the realized evaluation

̂Υ (), and thus, the realized evaluation ̂Υ can be decomposed into its expectation,

which will be called the adaptive evaluation Υ , and a random noise variable :

̂Υ = Υ + 

7See Hsu, Krajbich, Zhao and Camerer [2009] for a comprehensive list of probability weighting models.
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While the realized evaluations ̂Υ() are generated by a binomial process, their numerical

values tend to be affected non-linearly by the frequency imperfections, resulting in the adap-

tive evaluation with frequency imperfections to be functionally different from the one with

perfect frequency tool.

The research on probability/proportion imperfections is still in infancy, and the mech-

anism behind frequency distortions is not clear. Interestingly, Dehaene, Izard, Spelke, and

Pica [2008] found that subjects tend to undercount large numerosities - particularly for sets

of dots and sequences of tones, - and such mistakes are more pronounced in indigenous so-

cieties.8 Thus it is possible that, in large reference sets, the total number of elements 

might be undercounted, as well as the number of smaller items  when magnitude 

is large (as it “beats” many reference magnitudes). Such counting errors, just like ordinal

imperfections, may lead to overestimation of cumulative frequency for small magnitudes and

underestimation for large ones.

Example 8 Consider the context  of Example 1. For illustrative purposes, suppose nu-

merosities greater than 6 are undercounted by 1. With the perfect ordinal tool, the realized

evaluations are:

̂Υ(10) ∈
©

0
10−1 ;

1
10−1

ª
̂Υ(18) ∈

©
4

10−1 ;
5

10−1 ;
6

10−1 ;
7−1
10−1 ;

8−1
10−1

ª
̂Υ(11) ∈

©
1

10−1 ;
2

10−1
ª

̂Υ(19) ∈
©
8−1
10−1 ;

9−1
10−1

ª
̂Υ(12) ∈

©
2

10−1 ;
3

10−1 ;
4

10−1
ª

̂Υ(20) ∈
©
9−1
10−1 ;

10−1
10−1

ª
with adaptive evaluations being:9

Υ (10) =


9
Υ (11) =

1+

9
Υ (12) =

2+2

9

Υ (18) =
4+4−43+34

9
Υ (19) =

7+

9
Υ (20) =

8+

9

Just like ordinal imperfections of the Example 2, numerosity miscounts here lead to overes-

timation of cumulative frequency for small magnitudes (10 and 11) and underestimation for

large ones (19 and 20). The context evaluation is further affected by the frequency miscounts:

Υ
 () =



9

1

10− 1 +
1 + 

9

1

10− 1 +
2 + 2

9

2

10− 1 +
4 + 4− 43 + 34

9

4

10− 1 +

+
7 + 

9

1

10− 1 +
8 + 

9

1

10− 1 =
36 + 24− 163 + 124

81

With frequency imperfections, the fundamental property fails, as Υ
 () =

187
324

 1
2
for  = 1

2
.

8Furthermore, in Dehaene, Izard, Spelke, and Pica [2008] subjects from Amazonian indigenous societies

also appear to overcount small numerosities, which might further lead to overcounting the number of smaller

items  when magnitude  is small (as it “beats” only a few reference magnitudes).
9Since there are  = 4 elements with veridical magnitude 18, the realized evaluations ̂Υ(18) are bino-

mially distributed with !
!(−)!

(1− )−. However, the counting errors result in ̂Υ(18) =
6
9
appearing

more frequently, leading to a complex expression for the adaptive evaluation Υ (18).
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While the ordinal imperfections coarsen the reference set (as in the Example 2), their

effect is further distorted by the frequency miscounts. To see that, observe first that with the

combined ordinal and frequency imperfections, the realized evaluations are

̂Υ0() ∈
½

0

10− 1;
1

10− 1;
2

10− 1;
3

10− 1;
4

10− 1
¾

for  ∈ {10 11 12}

̂Υ0() ∈
½

4

10− 1;
5

10− 1;
6

10− 1;
7− 1
10− 1;

8− 1
10− 1;

9− 1
10− 1;

10− 1
10− 1

¾
for  ∈ {18 19 20}

so that the adaptive evaluations are:

Υ0(10) = Υ0(11) = Υ0(12) =
4

9

Υ0(18) = Υ0(19) = Υ0(20) =
4 + 6− 203 + 454 − 365 + 106

9

with overvaluation of the small magnitudes and overvaluation of large magnitudes relatively

to their veridical values of the Example 1. The context evaluation is

Υ
0(

0) =
4

9

4

10− 1 +
4 + 6− 203 + 454 − 365 + 106

9

6

10− 1 =

=
24 + 52− 1203 + 2704 − 2165 + 606

81

Again, the fundamental property fails, as Υ
0(

0) = 779
1296

 1
2
.

Thus, when the ordinal and frequency imperfections are combined, frequency imperfec-

tions may aggravate the effects of the ordinal imperfections of small magnitude evaluations

and may not be sufficient to counteract the effects of ordinal imperfections on the evaluations

of large magnitudes. Importantly, as the above Example shows, the fundamental property

of adaptive evaluation tends to fail in the presence of frequency imperfections. This also

highlights a possibility that frequency imperfections might play a further role in assessing

one’s economic well-being and societal welfare.

3 Adaptive Magnitude Evaluation: Continuous Case

Despite its conceptual simplicity, the adaptive evaluation model requires non-trivial math-

ematical treatment. The use of convolution/scale mixture technics for continuous reference

distributions allows to push the analysis further.
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3.1 Convolution/Scale Mixture Model

Let the environment  be represented by a veridical (non-degenerate) distribution  , contin-

uously differentiable on support ( )⊆, with = 00. Let cumulative density function
 () be the frequency tool, as  () = (≤ ), or the frequency with which  is less or

equal than . As the ordinal comparison tool, let the expected outcome of pairwise compari-

son of a fixed magnitude  with any magnitude  be represented by the pairwise comparison

function D( ) :→ [0 1], non-decreasing in , non-increasing in , and discontinuous at a

countable number of points. Thus, for any magnitude  ∈ , the adaptive evaluation ()

of  using two basic cognitive tools on the reference set  is given by the expected perceived

outcome of pairwise comparison tournament of  against every element  in reference set ,

or the perceived rank of  in :10

() =

Z


D( )| {z }
 

 ()| {z }
 

(12)

Proposition 8 Suppose an individual is endowed with a frequency (proportion) tool  and

a pairwise comparison tool D( ), which is non-decreasing in , non-increasing in , and

has a finite number of discontinuities. Then

(i) () is a non-decreasing continuous function on set , and thus rationalizes continuous

“more is better” preferences.

(ii) if set  stochastically dominates set , i.e.  º , then () ≥ () for any

 ∈ .

Proof: (i) Since D is increasing in  and is discontinuous at finitely many points, () is

non-decreasing and continuous. The preference rationalizability is a standard result.

(ii) By definition of first order stochastic dominance, for any non-decreasing function

(),
R

()() ≥

R

()(). But since D is non-increasing in , we have that

() =

Z


D( )() ≤
Z


D( )() = ()

Thus, the adaptive evaluation () can rationalize continuous more is better preferences

on . Yet once the context changes, so does the adaptive evaluation. Thus, both reflexivity

and transitivity may be violated, as one can find some  ∈ ∩, such that () 6= (),

10Formally, the adaptive evaluation model (12) is closely related to the “expected utility without utility”

of Castagnoli and LiCalzi [1996], who suggested to compare lotteries by the expectation of one lottery

outperforming the other.
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Figure 1: Violations of reflexivity and transitivity across different contexts for  º .

and it is possible to find  ∈  and  ∈  such that ()  () and ()  (), but

()  () (see Figure 1). This has an important consequence. Suppose there exist an

“outside” object with exogenously determined valuation  () where ( ∪) ∩  = ∅ such
that ()   ()  (). Then, an individual would trade  for  when reference set is

, but once reference set changes to , he would trade  back for  - an apparent preference

reversal.

Suppose the outcome of pairwise comparison between  and  is determined with certainty

whenever  and  are sufficiently far apart, but the ordinal discrimination is stochastic

whenever  and  are sufficiently close. Suppose the ordinal discrimination depends the

ordinal discriminability variable  = ( ) with 1  0 2  0. Let() be the probability

that  is perceived to be no smaller when compared to  whenever  falls into the interval

of doubt [1 2], with () = 


 0 for all  ∈ [1 2]. Then, the outcome of the imperfect
ordinal comparison tournament is:

D( ) =

⎧⎨⎩ 0 whenever   1
() whenever  ∈ [1 2]
1 whenever   2

(13)

and the imperfect adaptive evaluation () can be written as the expected outcome of

pairwise comparison:

 () =

Z


D( ) () =

Z


(( )) () (14)

The imperfect adaptive evaluation  () depends on the form of discriminability  =

( ). Here, I utilize the isomorphism of between the expected outcome of imperfect

pairwise comparisons and algebra of random variables, and use the convolution and scale
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mixture techniques to model the additive and multiplicative ordinal imperfections (see, for

example, Springer [1979]). Thus I concentrate on two general forms of ordinal imperfections -

additively imperfect ordinal comparison with  = + and multiplicatively imperfect ordinal

comparison with  = 

). These two forms of imperfect evaluations have many features in

common - at least in part because one can use a transformation 
³



´
= ̃

³
ln 



´
=

̃(̃ − ̃), where ̃ = ln and ̃ = ln . While additively imperfect ordinal comparison

tool with  =  +  is computationally simpler and thus potentially easier to understand,

multiplicatively imperfect tool with  = 

is more conducive to cognitive non-linearities and

has a more solid grounding in cognitive and brain research.

3.2 The Benchmark Model of “Perfect” Adaptive Evaluation

Adaptive evaluation with perfect cognitive tools provides a useful benchmark for understand-

ing the role of cognitive imperfections.

Suppose an individual is endowed with a perfect frequency (or proportion) tool, so that he

correctly perceives the veridical distribution of magnitudes  . Suppose further he is endowed

with a perfect ordinal comparison tool, i.e. he can tell a bigger from a smaller magnitude

even if the magnitudes are only slightly different. In this case, an expected outcome of a

pairwise comparison can be written as:11

D ( ) =

⎧⎨⎩ 0 whenever   
1
2

whenever  = 

1 whenever   

(15)

This perfect ordinal comparison tool permits two isomorphic representations as a degenerate

discriminability . First, perfect ordinal tool D can be represented in terms of a difference

 =  − , degenerate at 0, with () = () = ( − ), where (·) is Heaviside (step)
function.12 Thus, the perfect ordinal tool admits additive representation as

D ( ) = (− ) (16)

Second, D can be represented in terms of a ratio  = 

, degenerate at 1, with () =

(− 1) = 
³


− 1
´
. Thus, the multiplicative representation of the perfect ordinal tool is

D ( ) = 

µ



− 1
¶

(17)

11This perfect ordinal tool is isomorphic to the optimal happiness function of Rayo and Becker [2007],

who model perceptual limitations involved when the expected happiness is compared across different choice

options, rather than built into the two cognitive tools considered here.
12A degenerate random variable  at  has a cumulative distribution equal to Heaviside (step) function

( − ), with ( − ) = 0 for   , ( − ) = 1 for   , and () ∈ [0 1]. It has Dirak delta density
function (− ), and domain (−∞∞). For an arbitrary distribution  ,

R∞
−∞(− ) () =  ().
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Since 
³


− 1
´
= (− ), the formulations (16) and (17) represent the same degenerate

random variable. This allows us to derive the following benchmark result.

Proposition 9 If an individual is endowed with a perfect ordinal comparison tool (15) and

with a perfect frequency (proportion) tool  , then his adaptive evaluation of magnitude  is

given by the cumulative density function of the veridical (true) magnitude distribution  ():

 () =  () (18)

Moreover, the perfect adaptive evaluation is optimal in the sense of Robson [2001].

Proof: Using representations (16) and (17), get

 () =

Z


D ( ) () =

Z


 (− )  () =

Z




µ



− 1
¶
 () =  ()

The optimality follows from Robson [2001] and Netzer [2009].

That is, if both ordinal comparison and frequency (proportion) tools are perfectly accu-

rate, an individual’s evaluation  () of magnitude  is isomorphic to the veridical cumula-

tive density function (veridical rank)  (), and is equal to the frequency of a magnitude 

ordinarily “outperforming” other elements in the reference set . Moreover, as it was shown

by Robson [2001] and Netzer [2009], if the adaptive utility is  (), the probability of mistake

in a binary choice in an environment  is minimized. As the rest of the paper will show,

cognitive imperfections result in an adaptive evaluation which is functionally distinct from

the veridical distribution  , and thus suboptimal in the sense of Robson [2001].

When cognitive tools are perfect, the shape of the magnitude distribution entirely deter-

mines the shape of the utility function. For example, if the veridical magnitude distribution

is of the power function form, individual’s adaptive evaluation is consistent with a constant

relative risk aversion (CRRA) utility function; and if the veridical distribution is exponential,

the evaluation exhibits constant absolute risk aversion (CARA).13

3.3 Context Evaluation with Perfect Tools

The above cognitive evaluation model allows one to evaluate magnitude  based on one’s

environment . One can make a step further and evaluate the entire context  as a gamble

by utilizing Gilboa and Schmeider [2003]’s suggestion that one could use one’s environment

 to extract probability information.

13See Castagnoli and Li Calzi [1996] for these relationships between distribution functions and the shape

of utility function.
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Consider an environment  with magnitude distribution  with support ( ). The first

result shows that, when both cognitive tools are perfect and all observations in the database

are relevant both for magnitude evaluation and for probability calculation, the evaluation of

a stochastic environmental context is independent of that context.

Proposition 10 Consider an environment  with magnitude distribution  with support

( ). If the cognitive tools are perfect, the context evaluation  is independent of the

environment  and is equal to the evaluation of the median magnitude.

Proof: The proof is simple:

 () =

Z


 ()() =

Z


()() =
1

2

In other words, if one faces a single stochastic context, one’s evaluation of that gamble

is equivalent to the evaluation of the median magnitude. When distribution is positively

skewed (with frequent smaller magnitudes), its median magnitude is smaller than mean

magnitude, and the adaptive evaluation of such context is lower than the evaluation of the

average magnitude, leading to apparent risk aversion (as the expected value of a gamble is

less than the value of its expectation). In contrast, if the distribution is negatively skewed

(with frequent larger magnitudes), the expected value of the gamble exceeds the value of its

expectation, corresponding to risk loving. We thus have the following straightforward result.

Corollary 3 Consider an environment  with magnitude distribution  with support ( ),

and average magnitude  = () and median = −1 (05). If the cognitive tools are perfect,

then ()  ()() iff   ().

That is, one’s choice between a gamble and its expectation could potentially be governed

solely by the properties of the stochastic environment. However, the memory of previously

encountered environments could be important for behavior in risky situations. To see that,

suppose there are two environments  and , with  and  on ( ). If one’s memory

can only hold information about one environment only, then Proposition 10 would apply, as

it holds for any environment .

Instead, suppose the individual has perfect memory, and able to associate each reference

element with the corresponding environment. For the purposes of magnitude evaluation, one

uses the “global” reference set  ∪:

∪() =
Z
∪

D ( )(() + (1− )()) = () + (1− )()
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where  and 1 −  denote the shares of elements belonging to environments  and ,

respectively. However, the probability distributions associated with each context are still 

and .
14 Thus, the context evaluation of each environment  =  given the combined

reference set  ∪ are:

∪() =

Z
∪

(() + (1− )())() =


2
+ (1− )

Z
∪

()()

∪() =

Z
∪

(() + (1− )())() =
1− 

2
+ 

Z
∪

()()

In other words, the distribution of elements in context  affects the expected magnitude

evaluation of context . One thus would expect the the choice of one gamble over the other

is affected by the interaction between the two contexts, as the following proposition suggests.

Proposition 11 Consider two environments  and  with magnitude distributions  and

 with support ( ). If the agent’s cognitive tools are perfect, then  Â (≺) wheneverR
∪ ()()  ()1

2
⇔ R

∪ ()()  ()1
2
. Moreover, unless  = ,

indifference is non-generic.

Proof: The agent’s choice depends on the difference between the two expectations:

∪()−∪() =


2
+

Z
∪

(1− )()()− 1− 

2
−
Z
∪

()()

Note that
R
∪ ()() +

R
∪ ()() = 1, so that

∪()−∪() =
Z
∪

()()− 1
2
=
1

2
−
Z
∪

()() (19)

As the next result states, exposing one to information about an alternative context makes

one better off if the alternative context is stochastically worse, and vice versa. Moreover, as

one would expect, the stochastically bigger context is more desirable.

Corollary 4 Iff  º , then ∪() ≥ (), ∪() ≤ (), and

 º .

Proof: First order stochastic dominance implies that () ≥ () for all  on ( ), thusZ
∪

()() ≥
Z
∪

()() =
1

2Z
∪

()() ≤
Z
∪

()() =
1

2

14This partitioning the memory set into disjoint subsets for the purpose of probability calculation can be

modeled by the similarity function of Gilboa and Schmeider [1995, 2003].
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Thus, ∪() ≥ () =
1
2
and∪() ≤ () =

1
2
, and∪() ≥ ∪().

The next result assumes that the distribution  is concave, so that bigger magnitudes are

less frequent than smaller ones. If, in addition, it is second order stochastically dominated

by the other context , then  is less desirable. This happens for two reasons - first,

because from the magnitude evaluation point of view, the frequent small magnitudes in 

make magnitudes in  to be more attractive, and, second, because bigger magnitudes are

more frequent in  than in .

Corollary 5 If  º  and 
00
  0 on ( ), then ∪() ≥ (), and  º .

Proof: As  is increasing and concave, second order stochastic dominance implies that

∪()−∪() =
Z
∪

()()− 1
2
≥
Z
∪

()()− 1
2
= 0

The context evaluation generates the same prediction as expected utility theory in the

case of first order stochastic dominance, but is more restrictive in the case of second or-

der stochastic dominance. Yet, as Stewart, Chater and Brown [2006] point out, empirically

observed distributions tend to exhibit everywhere decreasing density. Thus, from the em-

pirical point of view, the cases when the expected utility theory and the theory of adaptive

magnitude evaluation generate different predictions are not common.

3.4 Additively Imperfect Ordinal Comparison Tool

Let the ordinal discriminability  be in terms of differences, i.e.  =  −  ∈ [1 2], with
1 ≤ 0 ≤ 2. For technical simplicity, assume that the interval of doubt is “small”, i.e.

0  2 − 1 ≤  − . Whenever   0, a reference magnitude  “looms large”, with the

ordinal tournament assessment of magnitude  being biased downwards. And vice versa,

whenever   0, a reference magnitude  “looms small”, and the evaluation of  is boosted

upwards. Furthermore, note that whenever (0)  05, one’s “upward” comparisons are less

accurate than “downward” comparisons, in a sense that one tends to incorrectly perceive

more frequently “winning” to larger magnitudes than “losing” to smaller magnitudes, leading

to “upward bias”, and vice versa, with (0) = 05 corresponding to “fair” (symmetrically

inaccurate) ordinal imperfection.

The resulting adaptive evaluation () is isomorphic to a convolution of a reference

variable  and an ordinal discriminability variable :

 () =

Z


D( ) () =

Z


 (− )  () (20)
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with the marginal evaluation function being

 ()


=

Z


 (− ) () where  =  + 

Obviously, the perfect comparison tool (16) is a special case of (20). This isomorphism of the

additively imperfect adaptive evaluation and a distribution of a variable  = +  simplifies

the subsequent analysis.

Proposition 12 Suppose the expectation of ordinal discriminability  is zero, i.e.  = 0.

Then, the additively imperfect adaptive evaluation of () crosses the veridical adaptive

evaluation  () once, and from above.

Proof: The reference magnitude  second order stochastically dominates the additively

imperfect reference magnitude  + (or  ≥  +), and the result is straightforward

(see Shaked and Shantikumar [2007], Theorems 3.A.5 and 3.A.34).

In other words, whenever ordinal discriminability  has zero mean, the low values of 

are adaptively overvalued, and the high values are undervalued. For example, if the veridical

(true) reference distribution is normal ( 
2
), and the ordinal discriminability variable 

is also normal (0 2), then the additively imperfect adaptive evaluation of  is the rank in

the convolution distribution, which is normal ( 
2
 + 2), having “fatter” tails than the

veridical (true) distribution. This “fatter tail” result holds for most reference distributions.

Proposition 13 Suppose an individual is endowed with a perfect frequency (proportion) tool

 , and an additively imperfect ordinal comparison tool  (20) with the ordinal discrim-

inability variable  distributed with  on [1 2] with 1  0  2 and 2− 1 ≤ − . Then

 ()  0 and 

 ()  1 as long as  = 0  0 on [1 2] and   −∞ and  ∞.

Proof: As 2 − 1 ≤ − , an additively imperfect evaluation  () is:

 () =

⎧⎪⎨⎪⎩
R 


R −1


(− ) () if  ≤  ≤ + 2R 
+2

R −1
−2 (− ) () + (+ 2) if + 2    + 1R 

+1

R 
−2 (− ) () + (+ 1) if + 1 ≤  ≤ 

(21)

Thus,  () =
R 
+1

R −1


( − ) () is strictly positive as long as   −∞, and
 () = 1−

R +2


R 
−2 (− ) () is strictly less than one as long as  ∞.

Thus, ordinal imperfection alter the shape of magnitude evaluation, obscuring the re-

lationship between context and evaluation, as an imperfect additively imperfect evaluation

may not be a distribution function. Ordinal imperfections tend to result in overvaluation
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of low magnitides and undervaluation of high magnitudes because, when evaluating small

objects, the individual incorrectly perceives the existence of objects that are smaller than

the smallest object in the set , and, similarly, he imagines non-existing large objects when

evaluating large magnitudes.

Example 9 Suppose the reference distribution  is uniform on [−;+], and distribution
of ordinal discriminability () is also uniform on [1 2] with 2 − 1 ≤ 2. Then

 () =

⎧⎪⎨⎪⎩
(−+1−)2
4(2−1) if −  ≤  ≤ −  + 2

1
2
+ −

2
− 1+2

4
if −  + 2    +  + 1

1− (++2−)2
4(2−1) if +  + 1 ≤  ≤ + 

Thus, in addition to overvaluing small and undervaluing large magnitudes, the evaluation

exhibits increasing marginal utility for small magnitudes, decreasing marginal utility for large

magnitudes, and constant marginal utility in-between.

3.5 Multiplicatively Imperfect Ordinal Comparison Tool

Let us consider a generalization of Rubinstein’s [1988] similarity model (which can be seen

as a form of psychophysical Weber-Fechner law). Let  ≥ 0 and suppose the ordinal dis-
criminability  be in terms of ratios, i.e.  = 


∈ [1 2], with 0  1 ≤ 1 ≤ 2. That is,

the individual can tell apart two distinct magnitudes  and  with certainty only if the ratio

of magnitudes  = 

is outside of the interval of doubt [1 2], but within this interval an

individual can only tell that  is greater than  with some probability (). For technical

simplicity, assume that the interval of doubt is “small”, i.e. 1  2
1
≤ 


. Whenever   1,

a reference magnitude  “looms large”, with the ordinal judgment of magnitude  being

biased downwards. And vice versa, whenever   1, a reference magnitude  “looms small”,

and the judgment of  is boosted upwards. Furthermore, note that whenever (1)  05,

one’s “upward” comparisons are less accurate than “downward” comparisons, in a sense

that one tends to incorrectly perceive more frequently “winning” to larger magnitudes than

“losing” to smaller magnitudes, leading to “upward bias”, and vice versa, with (1) = 05

corresponding to “fair” (symmetrically inaccurate) ordinal imperfection.

The resulting adaptive evaluation () is isomorphic to a scale mixture of a reference

variable  and an ordinal discriminability variable :

 () =

Z


D( ) () =

Z




µ




¶
 () (22)

with the marginal evaluation function being

 ()


=

Z


1




µ




¶
() where  =  · 
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a)  ∼ (0 1),  ∼  [05 20] b)  ∼ (0 1),  ∼  [05 12]

Figure 2: Relatively to the uniform veridical distribution on (0 1) (dashed lines) the multi-

plicatively imperfect evaluation (solid curves) exhibits non-increasing diminishing marginal

utility.

Obviously, the perfect comparison tool (17) is a special case of (22).

The isomorphism of the multiplicatively imperfect adaptive evaluation and a distribution

of a variable  =  ·  leads to a number of interesting results, including to an interesting
observation that with an arbitrary multiplicative discriminability, one’s adaptive evaluation

based on the uniform reference distribution on (0 1) will tend to exhibit non-increasing

marginal evaluation.

Proposition 14 Suppose the veridical distribution  is uniform on (0 1). Then, the mul-

tiplicatively imperfect ordinal tool results in a concave magnitude evaluation.

Proof: This follows from the converse to Khinchine’s representation for unimodal distribu-

tions and the definition of unimodal distributions (see Dharmadhikari and Joag-dev [1988],

Theorem 1.3).

For example, as Figure 2 shows, evaluation relatively to the uniform reference distribution

on (0 1) with a uniform multiplicative tool, will exhibit constant marginal utility for the

lower range of veridical magnitudes and decreasing marginal utility for the higher range.

The following statement shows that the “fatter tail” result holds for the multiplicatively

imperfect ordinal tool as well.

Proposition 15 Suppose an individual is endowed with a perfect frequency (proportion) tool

 , and a multiplicatively imperfect ordinal comparison tool  (22) with ordinal discrim-

inability  distributed with  on [1 2] with 0  1  1  2 and
2
1
≤ 


. Then  ()  0

and  ()  1 as long as   −∞ and  ∞.
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Proof: For small interval of doubt 2
1

 

, adaptive evaluation  () is:

 () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R 
1

R 
1


1


³



´
 () if  ≤  ≤ 2R 

2

R 
1

2

1


³



´
 () + (2) if 2    1R 

1

R 

2

1


³



´
 () + (1) if 1 ≤  ≤ 

Thus, () =
R 
1

R 
1


1


³



´
 () is positive as long as   0, and () = 1 −R 2



R 

2

1


³



´
 () is strictly less than one as long as  ∞.

Whether imperfect ordinal tool is additive or multiplicative, the imperfect adaptive eval-

uation is not a distribution function. This is because ordinal imperfections lead to the indi-

vidual incorrectly perceiving the existence of magnitudes which are outside of the reference

set, leading to overvaluation of small magnitudes and undervaluation of large ones.

Example 10 Suppose the reference distribution  is uniform on [−;+], and distribu-

tion of multiplicative ordinal discriminability () is also uniform on [1 2] with
2
1
≤ +

− .
Then


 () =

⎧⎪⎪⎨⎪⎪⎩
1

2(2−1)

³
1(− )− +  ln 

1(−)

´
if −  ≤  ≤ 2(− )

−
2
+ 

2(2−1) ln
2
1

if 2(− )    1(+ )

1− 1
2(2−1)

³
2(+ )− +  ln 

2(+)

´
if 1(+ ) ≤  ≤ + 

Thus, in addition to overvaluing small and undervaluing large magnitudes, the evaluation

exhibits increasing marginal utility for small magnitudes, decreasing marginal utility for large

magnitudes, and constant marginal utility in-between (see Figure 3).

As Figure 3a shows, if an individual faces similar ordinal imperfections for upward and

downward comparisons, it is possible that undervaluation may occur for most of the veridical

range. In contrast, as Figure 3b shows, if an individual is better at distinguishing magnitudes

which are less rather than those which are greater than the target magnitude, most of the

veridical magnitudes might be overvalued.

3.6 Economic Applications: Continuous Case

The evaluation procedure could be particularly relevant in cases when evaluations involve in-

terpersonal comparisons, yet cognitive imperfections may prevent individuals from assessing

their possessions accurately. Specifically, as the material below demonstrates, when individ-

uals make more inaccurate ordinal comparisons while comparing their possessions to those
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a)  ∼ (1 10),  ∼  [05 20] b)  ∼ (1 10),  ∼  [05 12]

Figure 3: Relatively to the uniform veridical distribution on (1 10) (dashed lines) the mul-

tiplicatively imperfect evaluation (solid curves) exhibits overvaluation for lower magnitudes

and undervaluation for high magnitides.

“above” them, than to those “below” them, their evaluations of own possessions are higher

than “true” evaluation, leading to greater satisfaction with their possessions. When individ-

uals have this bias, equality and economic growth may be associated with greater welfare. In

general, the intuitively plausible results tend to be associated with ordinal comparison tools

which exhibit upward comparison inaccuracies (rather than “fair” judgments or “downward”

inaccuracies).

3.6.1 Well-Being and Social Welfare

Consider a private ownership economy with a continuum of individuals, each endowed with

an object of magnitude  (e.g. height, intelligence, income, happiness, and so on). The

magnitudes of individual endowments are observable and thus constitute the reference set 

with the veridical magnitude distribution  . Assume that, being atomistic, all individuals

have the same reference set , have perfect frequency tool  , and the same ordinal tool D.
Individuals evaluate the magnitude of their objects via interpersonal encounters with

other individuals in the economy. Each encounter between two individuals possessing mag-

nitude  and , respectively, thus two outcomes of the ordinal comparison tournament.

The result of the ordinal comparison tournament for the individual possessing  is given by

D( ), while the corresponding result for the individual possessing  is given byD( ). Let
us further aggregate the results of each encounter, and define the surplus function Ψ(⊥)
from an encounter between  and  to be the sum of the results of both ordinal comparison

tournaments:

Ψ(⊥) = D( ) +D( ) (23)

Clearly, 0 ≤ Ψ(⊥) ≤ 2. (For example, if the ordinal tool is perfect, whenever   ,
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D ( ) = 0 and D ( ) = 1 (and vice versa), and whenever  = , D ( ) = D ( ) =
1
2
, so that for any  , Ψ (⊥) ≡ 1.) The surplus function Ψ(⊥) plays an important
role for the societal welfare. As the following Proposition suggests, the distributions of

economically important goods is welfare-neutral if and only if the surplus function Ψ has a

constant sum property.

Proposition 16 Consider a private ownership economy where all individuals have the same

reference set  consisting of magnitudes of objects belonging to all other individuals in the

economy with veridical (true) magnitude distribution  . Suppose all individuals have the

perfect frequency (proportion) tool  , and an identical ordinal comparison tool. Then the

utilitarian measure of the total welfare  =
R

() () equals to 

2
independently of

the magnitude distribution  () iff the ordinal comparison tool subject to a constant-sum

property Ψ(⊥) = D( ) +D( ) =  ∈ [0 2] everywhere except at a countable number
of encounters  .

Proof: Rewrite the total welfare as:

 =

Z


() () =

Z


Z


D( ) () ()

Since adaptive evaluation is determined for any  and , one can also write  as:

 =
R


R

D( ) () () =

Z


Z


(Ψ(⊥)−D( )) () () =

=

Z


Z


Ψ(⊥) () ()−

so that

 =
1

2

Z


Z


Ψ(⊥) () () (24)

Clearly, if Ψ(⊥) = , then  = 
2
. Conversely, for  to be independent of  , Ψ(⊥)

has to be constant.

Corollary 6 If all individuals in economy have perfect cognitive tools, resulting in Robson-

optimal evaluation, then the utilitarian welfare  is independent of the distribution  .

The economic processes, such as economic growth, and public policies, such as redistribu-

tive taxation, tend to change the distribution of individual possessions. As individuals adapt

their evaluations of their possessions to the new social environment, the cognitive processes

involved in interpersonal comparisons might be important for societal welfare (and thus the
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success of economic policies). Whenever a pairwise comparison tournament entails opposite

outcomes for any two individuals, welfare neutrality of economic processes may arise.15

Clearly, with frequency imperfections the welfare neutrality does not hold. With a perfect

frequency tool, if the ordinal tool allows for both individuals to “win” the ordinal comparison

tournament when the magnitudes  and  are sufficiently similar, it is possible that more

equal societal distributions increase welfare. Conversely, equality may decrease welfare if

sufficiently similar magnitudes lead to “losses” for both individuals. The next example

demonstrates a possibility that different inaccuracies in ordinal comparisons may lead to

different social outcomes.

Example 11 Suppose individuals have additively imperfect evaluations, with the magnitude

and ordinal discriminability distributions uniform as in Example 9. Then welfare is given by

 =
231 − (1 − 2)3 + (2 − 2)3

242(2 − 1)

Note first that the welfare is independent of average magnitude . Yet if ordinal discrim-

inability  ∼  [− ] with  ≤ , the surplus function Ψ = 1 for all  and , and welfare

 = 05 independently of . In contrast, as Figure 4 demonstrates, if ordinal tool is sub-

ject to “upward comparison inaccuracies”, so that ordinal discriminability  ∼  [− 0] with
 ≤ 2, the surplus function Ψ has maximum at  =  and welfare  = 1

2
+

(6−)
242

 05.

Instead, if ordinal tool is subject to “downward comparison inaccuracies”, so that ordinal

discriminability  ∼  [0 ] with  ≤ 2, the surplus function Ψ has minimum at  =  and

welfare  = 1
2
− (6−)

242
 05.

The case of multiplicatively imperfect evaluations is more computationally more complex.

Example 12 Suppose individuals have multiplicatively imperfect evaluations, with the mag-

nitude and ordinal discriminability distributions uniform as in Example 10. The resulting

welfare  is a complex quadratic function of the ratio 


. Again, there is a relationship

between the behavior of the surplus function Ψ(⊥) = (+)−21
2−1 and welfare  . Specif-

ically, for  ≤ +

− , if ordinal tool is “upward inaccurate”, so that ordinal discriminability
 ∼  [1 1], the surplus function Ψ has maximum at  =  and welfare  increases with

the ratio 


. That is, for a given level of inequality , economic growth is socially desir-

able, while for a given level of aggregate income, inequality is not. Instead, if ordinal tool is

“downward inaccurate”, so that ordinal discriminability  ∼  [1 ], the surplus function Ψ

has minimum at  =  and welfare  = decreases with the ratio 


.

15Compare this welfare neutrality result to the “happiness paradox” of Easterlin [1974] who pointed out

that average self-reported happiness in USA stayed practically unchanged in the post-war period despite real

incomes nearly doubled.
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a) additive imperfection  ∼  [1 2] b) surplus function Ψ

Figure 4: When additive ordinal comparisons are “symmetrically inaccurate” (or fair) with

 ∼  [− ], surplus is Ψ = 1 for all   (brown lines); when ordinal comparisons are

“upward inaccurate” with  ∼  [− 0], surplus Ψ is maximized at the point of parity

 =  (blue lines), and when when ordinal comparisons are “downward inaccurate” with

 ∼  [0 ], surplus Ψ is minimized at the point of parity  =  (red lines).

Multiplicatively imperfect ordinal tools which satisfy constant sum property are rare, but

they also result in welfare neutrality.

Example 13 Suppose veridical income distribution is uniform on [− +] and suppose

all agents have multiplicatively imperfect ordinal tool on [−1 ], with 1  2  +

− with

ordinal discriminability  = 

being distributed with  () = 05 + 075 ln 

ln
− 025 ¡ ln 

ln

¢3
.

One can verify that as  () +  (−1) = 1, the welfare neutrality holds.

One can speculate that social aspects of interpersonal comparisons alter the nature and

shape of ordinal comparison inaccuracies. However, regardless of whether the ordinal com-

parison is entirely cognitive or has any social component to it, the relationship between

welfare and income distribution is determined by the social surplus Ψ function. Specifically,

if the surplus is highest at the point of parity  = , equality is likely to be socially desirable,

and vice versa.

3.6.2 Relative Skill Judgment

Svenson (1981) observed that individuals tend to misjudge their skills relatively to the others.

The phenomenon of individuals overvaluing their own skills relatively to those of the others

has since been widely documented. Let us explore whether cognitive imperfections could

contribute to such overconfidence.
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First, as Propositions 5 and 7 suggest in the case of the perfect frequency tool, the

individuals with the lowest possible skill tend to overvalue their skills relatively to the oth-

ers, and those at the very top of the distribution will tend to undervalue their skills. As

Proposition 8 suggests, this tendency maybe further aggravated by frequency imperfections.

Second, as Figure 3b suggests, if individuals are have difficulties in making accurate upward

comparisons (i.e. in comparing themselves accurately to those whose skills are better than

theirs), the overconfidence in relative skill judgment will arise for a significant fraction of the

population.

Burks, Carpenter, Goette and Rustichini [2010] further observe that, on average, the least

able tend to overvalue their relative skill, and the most able tend to undervalue themselves,

with the judgment gap between the judgment of own skill rank and the true skill rank

decreasing with the true rank. This phenomenon maybe consistent with possessing cognitive

imperfections in their skill evaluations.

Proposition 17 The judgment gap between assessment of own skill () and true rank  ()

is non-increasing in true skill rank  () if and only if the marginal magnitude evaluation
()


(which is the density of convolution/scale mixture of pairwise comparison tournament

 and comparison variable ) is no higher than the true density () for all skill levels .

Proof: For any skill , let  stand for the true rank in the distribution  (·), or  =  ().

Then, the evaluation of skill  with true rank  will be given by () = (−1()). Consider
how the judgment gap ()−  () = (−1())−  changes with rank :

(()−  ())

 ()
=

((−1())− )


=


R

D(−1() ) ()


− 1 =

=
1

()

Z


D0( ) ()− 1 = 1

()

µ
()


− ()

¶
For additively imperfect ordinal tool, the condition becomes

()


=
R

( − )() ≤

(), and for multiplicatively imperfect tool:
()


=
R

1


³



´
() ≤ ().

Corollary 7 Suppose skill is distributed uniformly on interval [ ], and that the ordinal

comparison tool  is imperfect with density (·). Then the judgment gap is non-increasing
in true rank.

Proof:
()


= 1

−
R

(− ) ≤ 1

− . Similarly,
 ()


= 1

−
R

1


³



´
 ≤ 1

− .

In other words, as long as individuals have difficulties in making upward ordinal compar-

isons, and cognitive imperfections result in reduced sensitivity to an increase in own skill (as

manifested by a less steep marginal evaluation of skill), the imperfect adaptive evaluation is

consistent with overconfidence in relative skill judgment.
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3.7 Adding Frequency Imperfections

One can accommodate frequency imperfections into continuous model by assuming that, as

in Quiggin [1982], imperfect frequency tool can be represented as ( ), with 0  0. Then
the adaptive evaluation of magnitude  is

̂() =

Z


(( ))( ()) (25)

That is, the adaptive evaluation is determined by three components: by the context of

evaluation  , by the ordinal imperfection  and by the frequency (proportion) weighting

( ), resulting in adaptive evaluation very different from the reference distribution.

Proposition 18 Suppose an individual’s magnitude evaluation is given by (25). With a

perfect ordinal comparison tool, his adaptive evaluation of magnitude  is entirely determined

by its rank in the weighted magnitude distribution:

 () = ( ()) (26)

so that  () S  () whenever ( ()) S  (). Moreover, an adaptive evaluation with

imperfect frequency tool is suboptimal in the sense of Robson [2001].

Proof: Using representations (16) and (17), get

 () =

Z


D ( )( ()) =

Z


 (− ) ( ()) =

Z




µ



− 1
¶
( ()) = ( ())

With perfect ordinal tool, if the frequency imperfections follow the pattern found by

Kahneman and Tversky [1979], frequency imperfections tend to boost the adaptive evalua-

tions for relatively small magnitudes and depress evaluations of relatively large magnitudes,

further aggravating the distortion caused by the ordinal imperfections.

4 Two-Stage Decision Process: Valuation vs. Choice

With the development of new technology, behavioral scientists became increasingly interested

in the processes involved in choice behavior. In their review of the recent findings on the

neurobiological mechanism of decision-making in humans and primates, Kable and Glimcher

[2009] describe the decision process as a two-stage procedure consisting of a valuation stage

(involving ventro-medial prefrontal cortex and striatum) and a choice stage (involving lateral
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prefrontal and parietal cortices). This leads to a possibility that discrete choice can be

decomposed into two distinct processes - the valuation process and choice process.

While economists have been interested in the final, choice, stage, the issue of magnitude

evaluation has frequently been overlooked. Yet even for alternatives which differ on a single

dimension, like size, one still needs to tell apart the larger object from the smaller object. If

one had more-is-better preferences, and there were no constraints on choice, one still needs

to know which of all alternatives is the largest (and thus most desirable). In contrast, econo-

mists assumed that decision-makers have readily available rankings of all alternatives, and

concentrated on the final stage of decision making, choice, in the presence of known ranking.

Yet, as this paper suggests, the first, valuation, stage, is an important component of decision-

making, understanding of which may clarify choice behavior - even when choice alternatives

differ only along one dimension. One thus would expect that when the alternatives have

different attributes, the situation would be even more complicated.

Consider Robinson Crusoe on a desert island, and suppose that he faces a choice between

a coconut and a banana, which have magnitudes  and  respectively. Suppose Crusoe is

indifferent between coconuts and bananas, but he prefers a “gigantic” banana to a “tiny”

coconut (and vice versa) - i.e. he has “more is better” preferences. Thus, before he can make

a choice between a coconut and a banana, he needs to be able to evaluate the fruit sizes.

Let us suppose that Crusoe’s decision making process consists of two stages. In the first,

evaluation, stage he evaluates the magnitude  of each fruit, which may then be stored in

his memory for the relevant period of time, and in the second, choice stage, conditional on

his assessment of fruit sizes, he selects the fruit he finds to be “bigger”.

In other words, an individual’s decision making process involving a choice between two

alternatives can be described by the following algorithm.16

Two-Stage Binary Choice Process: Suppose an individual faces a choice between two

alternatives  = 1 2, with magnitudes . Then the process of choice between these two

alternatives can be described as follows:

Stage 1: For each of the choice alternatives  = 1 2, an individual evaluates magnitude 
using magnitude evaluation functions (), and given these magnitude evaluations

 = (), forms utilities  = () = (()).

Stage 2: Given the utilities  of each object  = 1 2, the individual chooses the object 1 over

the object 2 with probability Ω(1 2) ∈ [0 1] as follows:

Ω(1 2) =

⎧⎨⎩ 0 whenever 1 − 2  −

(1 2) whenever − ≤ 1 − 2 ≤ +

1 whenever 1 − 2  +
(27)

16The two-stage decision-making process presented here is a simplification which ignores the learning

process and the dynamic feedback between the past choice results and future choices.
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where − and + are lower and upper thresholds of just noticeable differences of Luce

[1956].

The above two-stage procedure allows for different cognitive processes involved at each

stage of the decision making (Kable and Glimcher [2009]). Stochastic decision processes

and/or perceptual limitations can happen at each stage of the process, leading to random

choices.17 Anderson, de Palma and Thisse [1992] identify two general classes of discrete choice

models, both motivated by the psychophysical Weber-Fechner law. Thurstone [1927] pointed

out that cognitive limitations can occur at the valuation (measurement) stage, leading to

a development of stochastic utility models. In contrast, Luce [1956] considered situations

where the difference in utilities may not satisfy just noticeable differences subsequently lead-

ing to the development of stochastic choice rule models. The above two stage procedure

unifies these two classes of models, with random utility models being relevant when choice

randomness is originated at the first (evaluation) stage because underlying alternatives are

not perfectly discriminable in a Thurstonian sense,and random choice rule models being rele-

vant if randomness is originated at the second (choice) stage because “utility is not perfectly

discriminable” in a Lucean sense. Traditionally, choice theorists made little distinction be-

tween these two stages, by “compounding” the full model Ω(1(1(1)) 2(2(2))) into a

“reduced-form” model Ω(1 2).

The present paper is agnostic regarding possible processes involved at the second stage

of decision making. The second-stage randomness may arise because of the perceptual limi-

tations at the choice stage (similar to Rayo and Becker [2007]), or because of more complex

decision process in the brain (as in the drift-diffusion model of Ratcliff [1978] and its ex-

tensions - see Fehr and Rangel [2011]). Based on the recent developments in neuroscience,

psychology, and economics, Solway and Botvinick [2012] build a computational framework

for decision-making, linking the multiple cognitive processes which may potentially occur at

different stages of action choice.

Instead, the present paper concentrates on the less explored first, evaluation, stage (and

thus could be thought as a member of random utility models), which can be nested into the

two-stage procedure presented here, with the random choice rule model potentially imple-

mented at the second, choice, stage. However, to keep the focus on the valuation stage, it is

assumed throughout the paper that one has “more is better” preferences, and once the eval-

uation of alternatives is known, the “larger” objects are chosen. In other words, the model

presented here abstracts away from a possibility that an individual may have a “taste” for

one type of objects over the other (e.g. coconuts vs bananas - captured by general utilities

 and ). Instead, it implicitly employs the following assumption.

Assumption: Suppose  =  and − = + = 0.

17There is a possibility that perceptual limitations may lead to “incompleteness of preferences”, which can

happen at either of the stages of the decision making.
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This assumption allows one to concentrate on the features of behavior originated at the

valuation stage. Such approach underscores the potential mental effort spent evaluating

choice alternatives - especially unfamiliar ones. Once the evaluation is done, the choice is

trivial. On the other hand, the results of past evaluations could be stored in memory, so that

the valuation stage for familiar choice options may be less resource-demanding. The focus

on the valuation stage could be particularly relevant in situations where evaluations are of

particular importance, for example, for judgment of one’s well-being or one’s abilities.

5 Related Literature

This paper is related to a large and diverse body of the existing literature in economics,

psychology, and neurobiological sciences only a small portion of which is surveyed below.

The model presented here follows the new evolutionary framework for decision-making

as an alternative to neoclassical utility theory. Robson [2001] advanced an argument in

support of a utility function which adapts to the environment.18 Rather than endowing

living organisms with all necessary information, Nature provides the “tools” that enable

one to extract information from one’s environment and experience (Robson [2001, 2002],

Samuelson [2004], Samuelson and Swinkels [2006]), which might have been further adapted

to deal with more evolutionarily recent tasks (Cosmides and Tooby [1994], Gigerenzer [1998]).

The quest for evolutionary basis of decision-making primitives has been expanded by Robson

and Samuelson [2010] to decision and experienced utilities, while Rayo and Becker [2007]

further suggest that Nature may endow humans with happiness as a context-dependent

measurement tool which allow one to choose among the alternatives. Furthermore, Herold

and Netzer [2011] suggested that the non-linear probability weighting function evolved as an

evolutionary second-best to complement an adaptive S-shaped value function.

The evaluation mechanism proposed here assumes that the two primitive cognitive tools

are used to extract information from one’s environment, rather than to rely on the “absolute”

physical properties. Robson [2001] proposed that the optimal hedonimeter is an empirical

distribution of the environmental stimuli. Suppose one faces a choice between two alterna-

tives, which are non-negative numbers independently drawn from a continuous distribution

 . In terms of hedonic utility, the organism can only observe whether an alternative is

above or below each of the  threshold values. That is, hedonic values (e.g. “High”, “Low”)

are assigned following a series of ordinal comparisons to thresholds. When both draws fall

within the same region, they are of the same hedonic value. Thus incorrect choices may

occur. When both draws fall within the same region, as determined by adjacent threshold

values, they are assigned the same hedonic value, despite being distinct. Robson shows that,

with no complexity costs, the overall probability of error is minimized when the threshold

18See a survey on hedonic adaptation by Frederick and Loewenstein [1999].
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values  satisfy  () =


+1
(e.g. if  = 99, each threshold level is a percentile). That is,

the optimal hedonic utility function is the distribution function  . This result was further

examined by Netzer [2009] who further pointed out that the hedonic discriminability is par-

ticularly important for stimuli which are particularly environmentally relevant - that is, the

utility function should be more sensitive for the stimuli which are particularly frequent.

Independently, visual scientists Yang and Purves [2004] argued that for the survival of a

living organism the empirical significance of stimuli is more important than their physical

properties. As the same visual aspect of an environment (such as luminance) in different

contexts results in different perception of that aspect, they proposed that the visual system

does not record the physical aspects of stimuli, but instead their statistical relevance as

represented by their relative rank in the distribution of stimuli.

The present paper is closely related the decision-by-sampling theory by psychologists

Stewart, Chater and Brown [2006], who, referring to the formal model of Kornienko [2004],

suggested that using a series of binary, ordinal comparisons, an object’s subjective value

is constructed to be its rank in a sample drawn from one’s memory. They show that this

procedure may account for a number of observed regularities involving money, time, and

probability, including concave utility functions, losses looming larger than gains, hyperbolic

time discounting, and the overestimation of small and underestimation of large probabilities.

Ranking alternatives by pairwise comparisons was explored by Rubinstein [1980], who

considered ranking participants in a tournament by counting the number of times a given

player beats another player in a tournament (with “ties” not allowed). Landau [1951] used

trichotomous outcomes of pairwise tournaments to describe societies’ dominance structures.

The present paper shares the frequentist procedurial focus on subjective experience with

the case-based decision framework pioneered by Gilboa and Schmeidler [1995], which utilizes

a database of past experiences to construct decision weights akin probability weights of

expected utility. This framework was extended in Gilboa and Schmeidler [2003] to show

that one can use empirical frequency distributions to rank an alternative to be “at least as

likely” as another.

The present paper adds to a number of theoretical models explicitly or implicitly employ-

ing the isomorphism of a cumulative density function and a utility function. One of the the

pioneers of context-dependent evaluation, psychologist Parducci [1963, 1965] observed that

the shape of subjects’ magnitude evaluations followed the corresponding veridical distribu-

tions, albeit with less pronounced curvature. To explain such empirical relationship between

magnitude evaluations the and context, he proposed his range-frequency theory whereby

the magnitude evaluation is a weighted sum of a veridical rank and a rank in a uniform

distribution with the same support. Simultaneously and independently from Parducci, the

isomorphism of a utility function and a cumulative density function was noted by Van Praag

[1968] who developed a formal model with the money utility being isomorphic to a normal

distribution. This idea was later extended by Kapteyn [1985] (and references therein). who
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suggested that money utility is a cumulative density of an income distribution.

In addition to the above rank-based models, there exist a number of reference-dependent

models where alternatives are evaluated, at least in part, against a reference set, or its specific

elements. Single-reference point theories developed by psychologists include the adaptation-

level theory of Helson [1948] and the prospect theory of Kahneman and Tversky [1979].

With a notable exception of the endogenous reference point theory of Koszegi and Rabin

[2006], reference-dependent models developed by economists have been primarily concerned

with social comparisons. Pioneered by Duesenberry [1949], “keeping up with the Joneses”

models involve comparisons to the average action by the others. The observation that in-

dividuals care about their relative position in a social hierarchy led Frank [1985] to develop

a model where ordinal rank with respect to the other individuals is a component of one’s

utility. Harbaugh and Kornienko [2000] consider how the individual reference sample from

the common environmental information may affect individual valuations.

Lazear and Rosen [1981], followed by Green and Stokey [1983], suggested that compar-

isons relatively to peers provide informational improvements. This was further advanced

by Samuelson [2004] who highlighted the importance of environmental persistence in an

evolutionary context. Rayo and Becker [2007] develop an evolutionary-inspired model with

perceptual limitations which allows for hedonic effects of relative success arising due to the in-

creased power of the happiness measurement by using average of peer performance. Wolpert

[2010] explores the socially constructed benchmarks using both single point (average) and

whole population (rank) models.

The empirical evidence suggests that nearly everything that enters one’s mental “in-box”

is evaluated against a reference set, or its specific elements. There is plenty of evidence that

people compare their possessions relatively to what others have (see, for example, Frank

[1985], Clark and Oswald [1996], Solnick and Hemenway (1998), and Neumark and Postle-

waite [1998]). Nor are moral judgements absolute - as students were found to be appalled by

the idea of poisoning a neighbour’s dog, yet judged it as a petty crime when poisoning the

neighbour herself was on the list (Parducci [1968]). Even evaluation of painful experience is

not absolute as it varies with different sequences of pain (Redelmeier and Kahneman [1996]).

And so are the judgements of size, weight, or numerousness (Parducci [1963, 1965]), as well

as visual perception (Yang and Purves [2004]).

Olivola and Sagara [2009] argue against context-independent utility functions, and show

that empirical distribution of death tolls affects experimental subjects’ decisions involving

human fatalities in hypothetical situations, and moreover, consistent with cross-country dif-

ferences in environmental contexts, subjects’ choices vary across countries. Stewart [2009]

found that evaluations by experimental subjects depend on the relative rank of magnitudes

in the reference sets. Wood, Brown and Maltby [2011] found that gratitude is affected by

the magnitude distribution of help others provide. Stewart, Reimers, and Harris [2011] fur-

ther argue that since utility, probability weighting and temporal discounting functions are
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context-dependent, they cannot be stable primitives of economic decision making.

There are a few studies which provide an empirical support for the models based on

the isomorphism of evaluation/utility and an empirical rank. Based on the experimental

and survey data, Clark, Masclet and Villeval [2006] suggest that one’s rank in the income

distribution is a strong determinant of effort, while Brown, Gardner, Oswald and Qian [2008]

found that one’s rank in salary distribution determines job satisfaction and can predict job

separation. Using Gallup World Poll data, Barrington-Leigh [2012] reports that, comparing

to a specification involving log income, pure ordinal rank is just as successful in explaining

the data on life satisfaction, and within country pure rank model provides a better fit.

Furthermore, the brain studies suggest that the anticipated reward magnitudes are coded

in relative, and not absolute, terms (Seymour and McClure [2008] and references therein).

Mullett and Tunney [2013] recently found that in a human fMRI experiment using monetary

values, activations in ventral striatum and thalamus are “locally” context dependent, while

activations in ventro-medial prefrontal cortex and the anterior cingulate cortex are consistent

with encoding “global” ordinal rank across two different “local” contexts. Their experimental

design involved valuation of monetary values independently of choice. This is in contrast to

earlier studies on primate neurons in situations where choice and valuation could potentially

be confounding, the activity in the orbitofrontal cortex was reported to be invariant to

changes of menu (Padoa-Schioppa and Assad [2008]), yet to be adapting to the range of

alternatives (Padoa-Schioppa [2009]).

6 Conclusions

This paper provides a conceptual framework which combines the insights from economics,

behavioral, evolutionary and cognitive sciences into one parsimonious mathematical model.

It advances a hypothesis that a minimal set of cognitive tools is sufficient to extract infor-

mation from one’s environment efficiently, and that utility can be thought as an adaptive

measuring tape for choice alternatives.

Undoubtedly, the model presented here has limitations. First, it concerns the magnitude

evaluation stage of decision process, rather than with the final choice. The neurobiologi-

cal processes at the choice stage of decision process is an area of active research (see Fehr

and Rangel [2011]), which can be incorporated into the two-stage decision model indepen-

dently of the processes at the valuation stage. Second, the model describes the evaluation

of one-dimensional objects, while individuals are likely to use additional tools to evaluate

multidimensional objects and bundles. One possible model for the evaluation of multi-

dimensional bundles (such as bundles consisting of apples and oranges) could employ copulas

( ) = (() ()), with complements and substitutes modeled, respectively, by

positive and negative dependence. Third, the present paper leaves frequency imperfections

46



largely unexplored. It also ignores possible interactions between the frequency (rarity) of

particular magnitudes and cognitive/memory imperfections. Brown and Matthews [2011]

extend decision-by-sampling model to allow for memory distortions which interact with the

reference distributions. Fourth, it remains to be determined whether there are additional

cognitive tools involved in processing of uncertainty, as Andreoni and Sprenger [2010] doc-

ument a qualitative difference between certain and uncertain utility. Fifth, the paper does

not explore the evolutionary basis of cognitive imperfections. As Herold and Netzer [2011]

suggest, certain cognitive imperfections may evolve to counteract the effects of others. Sixth,

it is still unclear how agents evaluate novel items. Examples of early trade between Western-

ers and Amerindians (e.g. Miller and Hamell [1986]) suggest a possibility that individuals

may assess novel objects against the existing systems of values, the process which could pos-

sibly be modeled using the similarity functions of Gilboa and Schmeidler [1995]. Seventh,

the strategic nature of interpersonal comparisons has been entirely left out. Undoubtedly,

asymmetric information could play an important role in evaluation of economically relevant

goods, thus adding an extra complication to welfare assessments.

Yet, despite its shortcomings, the present paper highlights the importance of recent

advances in cognitive and brain research for understanding of economic decision making.
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