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Abstract

We report on an experiment where subjects play an indefinitely repeated prisoner’s
dilemma game (1) against robot opponents known to play the Grim trigger strategy,
and (2) the game’s continuation probability is varied affecting whether cooperation can
be rationalized. These two innovations allow us to classify the play in each supergame
in one of 6 mutually exclusive categories, allowing us to identify whether subjects play
theoretically optimally, whether they are biased towards/against cooperation, whether
they make strategic mistakes, or whether they do something else. Some subjects defect
after cooperating, perhaps anticipating the end of a supergame (in an attempt to
“snipe”), and others cooperate after defecting (thus making strategic errors), which
is harder to rationalize. Consistent with a simple model of inattention, we find two
gradients in strategic play, with cognitive differences predicting optimality vs errors
gradient, and non-cognitive differences predicting persistent bias towards cooperation.
These results suggest that cognition is important for the successful implementation of
strategies.
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1 Introduction

Cooperation in repeated interactions is an important aspect of social behavior. It has also
been the subject of much recent experimental research, surveyed in Dal B6 and Fréchette
(2018). Yet it is still unclear what exactly determines behavior in prisoner’s dilemma settings.
One common observation is that subjects sometimes cooperate even in a one-shot prisoner’s
dilemma. Equally, subjects sometimes cooperate too little when a dilemma is indefinitely
repeated. For example, when the continuation probability is sufficiently high that strategies
supporting cooperation such as the Grim trigger strategy could be both an equilibrium, a
significant proportion of subjects choose always to defect, thereby leaving money on the
table. However, it is difficult to interpret either behavior as mistaken, given many possible
confounds, including diverse beliefs about the strategies employed by others, heterogeneous
risk attitudes, social preferences and cognitive limitations.

This study attempts to simplify the analysis by conducting a novel experiment that
excludes several confounding factors by design. Subjects play a series of indefinitely repeated
prisoner’s dilemma (IRPD) games with different continuation probabilities against a robot
opponent known to play the Grim trigger strategy. This design reduces or eliminates multiple
equilibria, strategic uncertainty and social preferences as factors influencing cooperation, and
focuses attention on the cognitive task of trading off present gain against future reward. The
optimal policy is simple in theory: a subject should cooperate in each round if and only if
the continuation probability, 4, is above a critical level, here 0.5. Further, much existing
experimental analysis of repeated games focuses on first round behavior because behavior
in higher rounds is not independent of previous rounds. Here we do not have this issue
and thus can readily analyse whether subjects implement the optimal policy over the whole
supergame.

We find that first round cooperation is strongly increasing in the continuation probability,
ranging from 9.5% when § = 0.1 to 76% when § = 0.7. This responsiveness to ¢ is much
greater than that estimated based on Dal B6 and Fréchette (2018) in standard subject
versus subject experiments, which suggests that our design is successful in reducing strategic
uncertainty. However, on average, subjects cooperate too much in the first round (48% of
decisions rather than 33%), and too little overall (50% rather than 56%).

As noted our methodology allows us to look in detail beyond the first round. We find that
there are substantial deviations from the optimal strategy. First, 52% of subjects cooperate
at least once after already having defected in a supergame, behavior that is difficult to
rationalize. Further, 24% of subjects make this type of mistake repeatedly, in at least
3 out of 17 relevant supergames. Second, subjects commonly defect after having started
out the play of a supergame by cooperating. Specifically, we find cooperation significantly
decreasing with the round number when theory suggests it should be constant. Although
the supergames have an unknown, random end, subjects may be “sniping”: defecting in the
round they guess will be the last round of the supergame.! We are able to identify these

1 As is standard in indefinitely repeated games, we employ a constant termination probability of 1 — 4,



behaviors only because of our novel, single-person design but our findings offer an alternative
interpretation of results from other repeated game experiments.?

We further find that test scores from a cognitive reflection test predict earnings and are
negatively associated with the error of cooperating after having defected, supporting the
idea that cognitive failures are a cause of deviations from optimal behavior. However, we
also find that individuals with higher cognitive test scores are more likely to snipe. More
generally, our results suggest that cognitive factors are important in explaining the excess
cooperation observed when ¢ is low and the insufficient cooperation observed when 4 is high.

Further, behind the aggregate results, there is considerable heterogeneity - some subjects
never cooperate while others always do. To try to explain this diversity, this experiment
also proposes and tests a novel use of the theory of inattention. Inattention theory suggests
that individuals with high information costs should obtain less precise information about a
decision problem, and therefore be more influenced by their initial prior. We elicit a prior by
asking subjects the frequency they will play cooperate in the first round of the supergames,
before they play. However, we find that a self-reported measure of patience, which we also
collect, fits the theory better in that it predicts cooperation rates of subjects with lower
cognitive reflection test scores. That is, it is as though subjects with lower cognitive test
scores are influenced by their intrinsic level of patience, even though only the actual
should matter. In contrast, subjects with higher test scores respond more strongly to the
continuation probability 0 and are not influenced by their own patience level.

Two prior studies, Roth and Murnighan (1978) and Murnighan and Roth (1983), used a
similar idea of having groups of subjects play against a fixed strategy, as well as being the
first to run experiments on supergames with an uncertain end. A fundamental difference
between those two studies and the present study is that subjects in those earlier studies were
not informed of the strategy they faced or that their opponent was in fact the experimenter.
Thus, subjects in those prior studies, who participated in sessions along with other subjects,
faced some strategic uncertainty.® By contrast, in this experiment we instruct subjects
that they are playing against programmed opponents who play the Grim trigger strategy.
Second, these two prior studies did not allow subjects to play multiple supergames with the
same continuation probability. Dal B6 and Fréchette (2018) argue that such repetition is an

where § is known to subjects. Subjects may nonetheless believe that the termination probability rises over
time. Alternatively, Mengel et al. (2021) find that subjects respond to past realized supergame lengths.

2Romero and Rosokha (2018) and Cooper and Kagel (2021) also report decreasing cooperation rates in
indefinitely repeated prisoner’s dilemma experiments. However, there such decreased cooperation may be
caused by beliefs that cooperation by opponents may be about to end.

3In Roth and Murnighan (1978), p. 194 subjects “were told that they played a programmed opponent,
but were not told what strategy he would be using.” The programmed opponent was in fact an experimenter
playing the Tit for Tat (or “matching”) strategy. In Murnighan and Roth (1983) p. 289, subjects “were told
that they would be playing a different individual in each of the three sessions but that the person’s identity
would not be revealed. Actually all of the subjects played against the experimenter who implemented either
matching [Tit for Tat] or [the] unforgiving strategy [Grim trigger].” Roth and Murnighan (1978) p. 194
explain that such design choices were made to “control for differences in subjects’ behavior due to differences
in their opponents.”



important feature, in that more recent experiments have found significant learning effects
with experience. Learning may be less important in our setting where there is no strategic
uncertainty, but nonetheless we think it is important to give subjects an opportunity to
learn by doing. In the most similar paper, Duffy and Xie (2016) consider play against robot
players known to play the Grim trigger strategy but in an n-player Prisoner’s Dilemma game
under random matching, where they vary n and the stage game payoffs but not 4.

Of course, there are many experiments on the repeated prisoner’s dilemma, where subjects
play other subjects. For example, Proto et al. (2019) (see also Proto et al. (2021)) also
find that individual differences between subjects affect play, with higher cognitive ability
players being more cooperative, making fewer mistakes and earning higher payoffs. The main
difference is that, in a two human subject pairing there is not a unique optimum policy as
there is here, and so errors have to be inferred. For example, Proto et al. (2019) assume that
playing defect directly after both players chose to cooperate is an error in implementation.
However, here it seems that such behavior may represent an attempt to guess the final round.
Further, as noted, with our design we can also identify excessive cooperation.

Our methodology is similar to that of Charness and Levin (2009) who show experimen-
tally that the winner’s curse phenomenon is still a factor in a single person bidding problem.
That is, in both cases there are individual cognitive failures that are responsible for mis-
behavior in larger groups. Here, the individual failure is the inability to play a constant
strategy in a stationary environment, which leads to suboptimal behavior even in the ab-
sence of strategic uncertainty. The difference here (besides the different game investigated)
is our use of a within-subject design where subjects face situations both where cooperation
is optimal and where it is not. In that sense, we are adapting the methodology of Duffy et al.
(2021) and Charness et al. (2021), which also have an experimental design where subjects
face opposed environments, to study repeated interactions.

2 Theory and Hypotheses

In our experiment, subjects play the indefinitely repeated prisoner’s dilemma with continua-
tion probability § against a computer playing a fixed strategy. The specific payoffs subjects
faced in the stage game are given in (1),

X Y
X 75,75 15,120 (1)
Y 120, 15 30, 30

where X (V') denote the cooperate (defect) actions. The main theoretical prediction tested
in our experiment comes from the Folk Theorem for repeated games which (Mailath and
Samuelson, 2006, p. 69) states that if players are sufficiently patient, then any pure-action
profile whose payoff strictly dominates the pure-action minimax is a subgame perfect equi-
librium of the repeated game in which this action profile is played in every period. This



result carries over to the situation of indefinitely repeated games by replacing “players are
sufficiently patient” with “the continuation probability is sufficiently high”. However, here
for one player, the computer, the strategy is fixed to be the Grim strategy. This converts
the problem from a game with multiple equilibria to a single person decision problem with
a unique optimum policy. This is to cooperate (defect) in every round of a supergame if the
continuation probability exceeds (is below) a critical level §*, which for our parameterization
(1) is 0.5.

To see this, note first that since the computer is programmed to play the Grim trigger
strategy, it first cooperates and continues to cooperate so long as all previous play by its
opponent has been cooperate, but after any defection, it switches to defect for all subsequent
periods. Thus, any player should understand, given that the continuation probability is fixed
at 0, that the return to playing cooperate (X) forever is

75

In contrast, the expected return to defecting in period one is,

300
120 + 300 + 306° + ... = 120 + —. (3)
Simple calculations reveal that (2) is greater than (3) if § > 0.5. Thus, the critical continu-
ation probability is 6* = 0.5.

Note that, because the continuation probability is constant over time, the problem is
stationary and so, if it is optimal to cooperate in period one, it is also optimal to cooperate
at all future periods. Thus, it cannot be optimal to switch within a supergame from cooperate
to defect Further, given the fixed Grim strategy of the computer, if a player ever defects, it
is always optimal to continue defecting and not to switch back to cooperating. This brings
us to a simple hypothesis.

Hypothesis 1. Rational Play: subjects should play Cooperate, X (Defect, Y ) in every round
of every supergame when 6 > (<) 0* = 0.5.

Three important factors present in the standard two player repeated prisoner’s dilemma
are removed in our experimental design. First, our design reduces the problem of multi-
ple equilibria. When the continuation probability is sufficiently high for cooperation to be
supported, there are typically an infinite number of equilibria which presents subjects with
difficult coordination problems. Given that the opponent in our design is playing the Grim
strategy, the set of equilibria is reduced to just two, always cooperate or always defect. Sec-
ond, our design minimizes strategic uncertainty. This type of uncertainty is always present
in the standard design because subjects do not know which strategy their opponent is fol-
lowing. Indeed, a simplification used by Dal Bé and Fréchette (2018) is to suppose that
strategy choices are limited to Grim trigger and the strategy of always defecting. They show
that there exists 6P > §* such that only if § > ¢7*P is it risk dominant to choose the Grim
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strategy and hence start out cooperating. Or, in other words, although it is an equilibrium
to cooperate as long as 6 > 0*, strategic uncertainty can make it difficult to cooperate unless
§ > 6fP a higher hurdle.

Third, researchers have found evidence for social preferences being important in many
experimental settings, see, e.g., Camerer (2003), Chaudhuri (2008). In the repeated pris-
oner’s dilemma, Bernheim and Stark (1988) and Duffy and Munoz-Garcia (2012) show how
social preferences, in the form of positive concerns for the other player, reduce 6*. Thus, in
conventional experiments, subjects with social preferences could cooperate even when § < §*.
Further, there is a second order effect. Subjects who are entirely self-interested, but who
believe that other subjects have social preferences and are thus more likely to cooperate,
will themselves be more cooperative than in the absence of such beliefs (see, for example,
Andreoni and Samuelson (2006)). That is, strategic uncertainty and social preferences can
potentially interact with one another. However, in our design, since the opponent that sub-
jects face always is known to play the Grim strategy there is a unique optimum response
and no strategic uncertainty. Further, subjects are unlikely to feel altruism toward their
computer opponent, or believe that it has altruistic feelings for them. Thus, multiple equi-
libria, strategic uncertainty and social preferences as well as any interactions between them
are minimized, if not eliminated by our design.

2.1 A Simple Cognitive Model

In this section, we outline a very simple cognitive model that may be used to explain de-
viations from optimality in single-person decision problems. The optimal strategy is to
cooperate if and only if the current § is above 6* = % This cognitive model tries to place
some structure on deviations from this ideal and how this might vary across subjects ac-
cording to their cognitive ability. It is based on ideas about attention in Gabaix (2019) and

cognitive uncertainty in Enke and Graeber (2019).*

The model works in the following way. A decision maker is faced with a single person
decision problem. She has a default which is derived from previous experience. But she also
attempts to determine by introspection which is the optimum action. This is modelled by
assuming that she received a signal, the informativeness of which depends on her cognitive
ability which varies across individuals. A further assumption is that she is in effect aware
of her cognitive limitations and will place greater weight on her default the higher is her
cognitive uncertainty.

We can represent this mathematically, adapting Gabaix (2019)’s simple Gaussian frame-

4We show here that this leads to the choice of cooperation being given by a probit choice rule. This then
is similar to the rational inattention model of Matéjka and McKay (2015) which results in a logit choice
rule. The principal difference there is that precision of the signal is endogenous rather than exogenous, being
chosen by the agent. However, if individuals vary in the cost of information, they will end up with signals
of different precisions even in the endogenous model.



work, by saying that a subject ¢ has an initial default d;, which we can think of as a default
payoff to cooperation in situations outside the laboratory. Now in the lab, faced with a
supergame with a particular 9, she must try to update the payoff to match the particular
circumstances faced. Let the true relative return to cooperation in a repeated game with
continuation probability 0 be 7(J) so that 7(-) is a strictly increasing function with, given our
chosen parameters, 71'(%) = 0. Then assume a subject ¢, faced with a decision problem where

the continuation probability is dg, subjectively estimates 7(dg) as being normally distributed

with expectation d; and variance ag, ie. N(d;, 0]2)). That is, the subject’s initial evaluation
of the return to cooperation is influenced by her outside default d; and this default varies

across subjects (though we assume for simplicity that ¢ is constant).”

However, by further cognitive introspection, she can gain a potentially more accurate
estimate of m. We model this by assuming the subject receives a noisy signal s; which is
equal to the true value 7(dy) plus noise g;, where ; ~ N(0,0?),

si(60) = m(do) + &;. (4)

The noisiness of the signal varies across individuals with ¢? being the variance of the noise
g; for individual ¢. The hypothesis is that the higher is the subject’s cognitive ability, the
lower is the variance and the more precise is the signal.

The subject’s posterior of 7(dg) is thus

where

2

2 2"
Op + 05

i

Note that, as the cognitive noise o2 goes to zero, the weighting A goes to one and the posterior
P; is closely clustered around the true value of the payoff w. However, for a subject with a
high o2, the posterior is in fact very close to the individual’s default d;.

Remember that given our definition of 7 as the relative payoff to cooperation, the in-
dividual estimates that cooperation is preferable to defection if P, > 0. Thus, when the
subject faces a decision problem with an arbitrary continuation probability ¢, the subject’s
probability of cooperation is the probability that the posterior P; is positive which is,

2
Up

Ci(6) = Pr(hisi + (1 — \)d; > 0) = @ <7r(5) Lo di) (6)

where @ is the normal CDF of ¢;, that is with variance ¢?. So, the individual’'s actions

are given by a probit in which the probability of cooperation is influenced both by the true
payoff and the individual specific default.

°In Gabaix (2019)’s original specification, there is an unknown state of the world which the agent seeks
to match with her action. Modelling it as an unknown payoff is convenient as it directly implies a probit
choice rule as we show below.



Further, one can see that those individuals with higher cognitive ability and so with lower
cognitive noise o2 will place less weight on the default d; and more weight on the true payoff
p. Because p(¢) is increasing in §, one can draw a similar conclusion: those with higher
cognitive ability should be more sensitive to ¢ in their choice of cooperation.®

Hypothesis 2. Cognitive Ability and Cooperation:

1. for high cognitive ability subjects the probability of cooperation will be less influenced
by their default value of cooperation than for low ability subjects;

2. the probability of cooperation for high cognitive ability subjects will be more influenced
by the true payoff to cooperation or the current continuation probability 6 that they face
than for low ability subjects.

A related, natural hypothesis is that higher ability individuals earn higher payoffs. This
is implied by the model in that the probability of cooperation C' will be closer to its optimal
value, the larger the relative weight on the true payoffs (holding the default d; constant).
As we have seen, this is the case when o7 is lower, which is associated with higher cognitive
ability.

Hypothesis 3. Cognitive Ability and Payoffs: subjects with higher cognitive ability will earn
higher average payoffs than those with lower cognitive ability.

3 Experimental Design

The main experimental task consisted of the play of 24 indefinitely repeated prisoner’s
dilemma games or “supergames”’ against a computer program known by subjects to play
the Grim trigger strategy. The payoff matrix for the prisoner’s dilemma stage game was
held constant across all treatment conditions and is shown in (1). Subjects were instructed
that the rows referred to their action and the columns referred to the computer opponent’s
actions and that the first number in each cell (in bold) was their payoff in points and the
second number in each cell (in italics) was the computerized opponent’s payoff in points.”

The 24 indefinitely repeated games were chosen with the following considerations. First,
we wanted subjects to have some experience with the same continuation probability, and we
also wanted to vary the continuation probability so as to assess the subject’s attentiveness
to the nature of the supergame they were playing. We chose to have them face 6 different
continuation probabilities 4 times each, which yields the 24 supergame total.

The set of 6 continuation probabilities § € {0.1,0.25,0.33,0.4,0.67,0.7} were selected
using several criteria. First, with this set, the expected theoretical payoff is the same for

6Note that, specifically, C /9§ is proportional to ®’(-) which is decreasing in o;, around the critical point
m(0) = 0, by the properties of the normal distribution.

"We provided the computer program’s payoff so that the game setup would be comparable to two player,
human-to-human games, where both players’ payoffs are common knowledge.



subjects who are biased towards always cooperating and for those biased towards always de-
fecting. Second, the expected payoff from always following the theoretically optimal strategy
relative to either of the fully biased strategies is substantial and results in a clear difference.
Finally, since the threshold probability for sustaining cooperation in the stage game (1),
0* = 0.5, we did not want the simple heuristic of cooperating in 50% of the supergames to
correspond to the optimal policy. Instead, optimal play would involve cooperating in round
1 of just 8 of the 24 supergames (those with 6 = 0.67 or 0.7) and always defecting in the
other 16 supergames.

We ran the current experiment with Grim the only programmed strategy. Tit-for-Tat
seems a reasonable alternative to Grim, but has the following difficulties. First, as it gives
a weaker punishment than Grim, cooperation is only a best response for high continuation
probabilities (6* = 0.75 for current parameters). We would therefore have to run supergames
with high expected length. Second, more importantly, it provides a much weaker restriction
on optimal strategies. In particular, cooperation after having defected is not necessarily an
error against Tit-for-Tat, while it is against Grim. Thus, the identification of optimal play
would be significantly more difficult.

The experiment was computerized and conducted entirely online. It was programmed
using oTree (Chen et al. (2016)). Example screenshots are provided in Appendix E. Subjects
were always informed of the probability that the supergame (sequence) would continue with
another round. They were also reminded of the strategy (X or Y') that their computer
opponent would play in each round (following the Grim trigger strategy and based on the
history of play in all prior rounds of the current supergame) on the same decision screen
where they made their own action choice (X or Y') for that same round. Thus, any strategic
uncertainty should have been eliminated.

Subjects were 100 undergraduate students, 52% female, recruited using Sona system from
the Experimental Social Science subject pool at the University of California, Irvine. The
mean age was 21.5 years with a range of 18-34. All subjects were university students from a
diverse set of majors, with 36 subjects reported majoring in engineering, 25 in social sciences,
21 in life sciences, 9 in physical sciences, 7 in education, 5 in arts and humanities, and 3 in
business studies (double majors double counted).

Subjects were first asked to provide demographic information. Next, they answered 7
personality questions on an 11-point Likert scale (taken from Falk et al. (2018)), followed
by 7 cognitive reflection test (CRT) questions (based on Toplak et al. (2014) and Ackerman
(2014)) (see Appendix D for these questions). They were then presented with written instruc-
tions regarding the 24 IRPD games (referred to neutrally as “sequences”) they would play
and they had to successfully complete a comprehension quiz that tested their understand-
ing of payoff outcomes, their understanding of the Grim trigger strategy that the computer
program would follow in various scenarios and their understanding of how the continuation
probability affected the duration of the game. The next step involved elicitation of their be-
lief as to proportion of times they would choose the cooperative action (referred to neutrally
as action “X”) in each of the first rounds of the 24 sequences (supergames) that they would



face, given knowledge that they would face 4 supergames for each of the 6 different § values.
After this belief was elicited, they played the 24 supergames against the computer opponent

Subjects were presented with written instructions regarding the 24 IRPD games (referred
to neutrally as “sequences”) they would play and they had to successfully complete a com-
prehension quiz that tested their understanding of payoff outcomes, their understanding of
the Grim trigger strategy that the computer program would follow in various scenarios and
their understanding of how the continuation probability affected the duration of the game.

For half of the subjects (50/100) or in 4 out of 8 sessions, the randomly chosen real-
izations for the 24 supergames (4 supergames for each continuation probability §) and the
corresponding number of rounds (in parentheses) were as follows: 0.67 (4), 0.33 (1), 0.4 (2),
0.25 (1), 0.7 (3), 0.33 (2), 0.7 (5), 0.4 (1), 0.67 (2), 0.1 (1), 0.25 (1), 0.1 (1), 0.25 (2), 0.1
(1), 0.4 (1), 0.67 (4), 0.33 (2), 0.25 (1), 0.7 (2), 0.4 (3), 0.67 (2), 0.1 (1), 0.7 (4), 0.33 (1),
resulting in 48 decisions (see Figure 1 (left panel) and Table A2 in Appendix A).® For the
other 50 subjects (or the remaining 4 out of 8 sessions), the order of these supergames was
reversed.”

In addition to subjects’ choices in the 24 IRPD games, we collected demographic and
other data. Subjects were asked to answer 7 cognitive reflection test (CRT) questions based
on Frederick (2005), Toplak et al. (2014) and Ackerman (2014) (see Appendix E for the list
of questions). We use subjects’ scores on this set of 7 CRT questions as a proxy measure for
their cognitive abilities.

Subjects were instructed that at the end of the session, six supergames would be chosen
from all 24 played, one from each of the six different values for 9. They were further instructed
that their total point earnings from those six supergames would be multiplied by $0.01 and
this amount would comprise their monetary earnings from the repeated PD game.'® Subjects
were guaranteed $7 for showing up and completing the study. Subjects’ total earnings
averaged $17.90 for a 1 hour experiment.

4 Results

As the design involved 24 supergames, each subject faced 24 first round choices. Given the
randomization, 7 supergames ended after a single round, and each subject made a further
24 choices in 17 supergames lasting 2-5 rounds (see Table A2). Given the parameters of our
design, the theoretically optimal strategy involves choosing to cooperate in all rounds of the

8These supergame lengths were drawn using a random number generator. Subjects were instructed of
this procedure. To reduce noise across subjects, we used the same supergame lengths across all subjects.

9See Appendix B for a discussion of order effects.

10Following the 24 repeated PD games, subjects were randomly paired to participate in a two-player task
where they could earn an additional 15-100 points that were also convertible into dollars at $0.01 per point
which we do not report on in this paper.



8 supergames where 6 = {0.67,0.7}, and to defect in all rounds of the other 16 supergames.
Thus, perfect theoretically optimal behavior involves exactly 8 counts of cooperation across
all first rounds of 24 supergames, and exactly 18 counts of cooperation in the subsequent
24 decisions, amounting to exactly 26 counts of cooperation overall, out of 48 choices (see
Figure 1, also Table A2). That is, by design, the theoretically optimal choices should be
skewed towards defection initially, since most ds are less than 0.5 and then skewed towards
cooperation later on, as it is in the longer games where cooperation is the optimal policy.
Over all rounds, the theoretically optimal strategy involves always defecting in 16 supergames
with § < 0.5 and always cooperating in the remaining 8 supergames with § > 0.5 (the same
prediction as for first round play).

4.1 Response to the Continuation Probability ¢

We find that cooperation is strongly increasing in the continuation probability (see Figure
1 (top row), also Figure C2), further confirmed by mixed-effects probit regressions in Table
4., specifications (1)-(2)).

We also find that the first round cooperation rates are as low as 9.5% when 6 = 0.1 and
as high as 76.25% when 6 = 0.7. This responsiveness is much greater than is observed in
standard subject versus subject experiments.!!

Finding 1. For every round of a supergame, the rate of cooperation (defection) tends to
increase (decrease) with the continuation probability 6.

4.2 Choices to Cooperate vs. Theoretically Optimal Choices

As Figure 1 (top row) shows, subjects tend to excessively cooperate in the first round of each
supergame, choosing to start almost half of the 24 supergames by cooperating. (see also Fig-
ure C1). The mean (st.dev.) count of cooperative choices is 11.53 (5.73) which significantly
exceeds the theoretical prediction of 8 (p-value=0.000). As a result, the mean (st.dev.) count
of theoretically optimal choices per subject is 16.81 (3.74), which is significantly short of the
theoretical prediction of 24 ( p-value=0.000) (see also Figure C1). Figure 2 (left) depicts
two-dimensional distribution of per-subject counts of cooperation and of optimal choices in
the first rounds across all 24 supergames.

Finding 2. In the first rounds, subjects cooperate excessively by 44.1% on average compared
to the theoretical optimum.

1 Using the probit estimates in (Dal B6 and Fréchette, 2018, p. 66, Table 4), we calculate that in subject
to subject experiments that used our continuation probabilities, cooperation would be predicted to vary only
from 45.5% (when 6 = 0.1) to 56% (when ¢ = 0.7) among inexperienced subjects. Even after 25 supergames,
cooperation in such experiments is predicted only to vary from 16.1% (§ = 0.1) to 62.7% (6 = 0.7).
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Figure 1: Patterns of cooperation and defection using all data: 100 subjects, 2,400 supergames). Top
row: Average per-subject counts of cooperation versus defection (left) and optimality versus suboptimality
(right), split by 0, the first row of the horizontal axis scale and by round number, the second row of the
horizontal axis scale. In the upper left panel cooperation counts, a distinction is made between undominated
cooperation and dominated cooperation after defection (CaD). In the upper right panel suboptimal counts
are divided between the error of CaD and other suboptimal choices. As the top row shows, later rounds
were never reached for some ¢ values (see also Table A2 in Appendix A). Bottom row (left): Average
per-subject counts of first defection within a supergame by ¢ and round number. Bottom row (right): The
population shares of the behavioral patterns in a supergame, by § value. By construction, the four strategies
are mutually exclusive.

Across all 48 choices in all 24 supergames, the overall optimal choice counts are signif-
icantly short of the theoretical prediction of 48, with a mean (st.dev.) of 31.05 (8.06) (see
Figures 1, top right, and C1). The mean (st.dev.) of the overall count of cooperative choices
is only 24.09 (11.24), which is marginally lower than the theoretical prediction of 26 (one-
sided t = 1.670, p-value=0.046) (see Figure 1, top left, and Figure C1). Figure 2 (right)
depicts two-dimensional distribution of per-subject counts of cooperation and of optimal
choices in all rounds across all 24 supergames.

While subjects start by cooperating excessively in the first rounds, the mean (st.dev.) of
cooperation counts in the subsequent rounds (given by the difference in the overall and first
round cooperation counts) is only 12.56 (6.29), which is significantly lower than the theoret-
ical prediction of 18 (p-value=0.000). Note that this is despite the excessive cooperation of
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Figure 2: Two-dimensional distributions of per-subject counts of cooperation and of optimal choices across
all 24 supergames, for the first rounds (left) and for all rounds (right). Bubble size proportional to the share
of subjects, 100 subjects total. (See also Figure C1.)

1.82 counts per subject on average due to strategic errors described in the next Section 4.3.

Finding 3. Compared with theoretical predictions, on average, subjects cooperate too much
at the beginning of supergames with 6 < 0.5 and stop cooperating too early in supergames
with 6 > 0.5, wuth only 64.69% of all choices being theoretically optimal.

4.3 Strategic Error of Cooperating after Defection (CaD)

Since the robot opponent was programmed to play the Grim trigger strategy, a defection any
time in a given supergame would trigger subsequent defection by the automated opponent
in all remaining rounds. Thus, choosing to cooperate after defecting earlier within the
same supergame (CaD) is dominated for any ¢, and is a strategic error. In Figure 1, such
suboptimal cooperation is split from un-dominated /non-erroneous cooperation (top left) and
from other theoretically suboptimal choices (top right), and it amounts to 182 counts, or
7.58% of relevant observations (see also Figure C2 in Appendix C).

As Figure C3 (left) shows, only a bit less than half the subjects (48%) never made strategic
errors (CaD), and 20% of subjects made at least 4 dominated choices. Some such choices
could be intentional, e.g., a desire to verify the computer opponent’s behavior.'> Others
could be due to a genuine “trembling hand” error of accidentally pressing the “defect”
button without noticing it, In either case, an attentive payoff-maximizing subject would
likely refrain from repeatedly making dominated choices in multiple supergames. Figure
C3 (right) compares the total count of strategic errors (CaD) per subject (vertical axis)
versus the count of supergames where such errors were made (horizontal axis). While most
strategic errors were made only once in a supergame (as revealed by the bubbles located on

12Recall, however, that the computer program’s action choice of X or Y, based on the history of play and
following the grim trigger strategy, was shown to subjects in advance on their decision screen prior to their
making a decision.
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Figure 3: Strategic errors of dominated cooperation after defection (CaD). Left: Distribution of per-subject
counts of instances of cooperation after defection (CaD), among 17 relevant supergames. Right: Per-subject
counts of CaD instances vs. count of supergames with those instances (among 17 relevant supergames).
(Bubble size is proportional to the share of subjects, number of subjects in the bubbles, 100 subjects total.)

the diagonal in the figure) the extent of strategic errors is non-trivial, with 24% of subjects
making errors in at least 3 out of 17 relevant supergames (those lasting more than 1 round),
suggesting that some of the dominated CaD behavior could instead be due to inattention or
a lack of strategic understanding of the game.

While the prevalence of such strategic errors (CaD) is relatively small, it nevertheless
complicates the interpretation of the deviations from the theoretically optimal behavior.

Finding 4. A majority of subjects (52%) made at least one strategic error of choosing to
cooperate after defecting earlier within the same supergame (CaD), i.e., after triggering a
“grim” response. Qwerall, suboptimal, excessive cooperation amounts to 7.58% of relevant
observations, with 24% of subjects making dominated choices in at least 3 out of 17 relevant
supergames.

4.4 Overall Point Totals

Let us turn to the overall total of awarded points (i.e., the sum of point earnings across all
48 decisions). As Figure 4 shows, the empirical range of overall point totals is [3285, 4185]
points, with a mean (st.dev.) of 3835.05 (203.38).

As Figure 6 (left) shows, strategic errors (CaD) reduce the overall point totals. In fact,
16 subjects could have achieved a strictly higher total of 3600 points by choosing either to
always cooperate (All-C) or always defect (All-D), as by design, the expected payoff to these
two extremely biased strategies is the same.

Note that the mode is at the theoretically optimal point total of 4050, and that the
maximum point total is still higher. Overall, 19 subjects were able to achieve at least this
optimal point value, despite only 2 subjects behaving in a way that was fully theoretically
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Figure 4: Distribution of overall point totals, or the sum of point earnings across all 48 decisions.

optimal. Thus, given the random realization of the supergames, some subjects were able to
achieve at least as much as the theoretical payoff despite pursuing strategies that were not
theoretically optimal (which will be explored in the next Section 4.5).
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subjects in the bubbles, 100 subjects total.

Finding 5. 16% of subjects earned less than what they could have achieved by either always
cooperating or always defecting. 17% of subjects were able to achieve an overall payoff at least
as high as the expected theoretical payoff without following the theoretically optimal strategy.
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4.5 “Sniping”

Note that when playing against a robot known to play the Grim trigger strategy, one could
achieve up to 4680 points, a much higher point total than under the theoretically optimal
strategy, if one knew in advance exactly when each supergame would end by always coop-
erating prior to the final round of a supergame, and defecting in the final round. Such a
“sniping” strategy would allow one to earn the temptation payoff without triggering the
“grim” punishment as the supergame ends.'® Of course, subjects did not have such knowl-
edge in our experiment, but they may have formed some expectations as to when a sequence
(supergame) might end in an effort to employ such a strategy.

Indeed, Figure 1 (bottom left) shows that, for some ds, some subjects defect for the first
time (thus triggering subsequent defection by the automated opponent) later in the sequence,
rather than in the first round (if ever) as predicted by the theory.!* We hypothesize that
this pattern of behavior could be due to some subjects using a “sniping” strategy, which we
define as consistently defecting after the earlier play of cooperation in the same supergame,
or (DaC) for short. Such a sniping strategy is risky, as it is most profitable if the first
defection happens in the final round of the supergame.

Furthermore, as Figure 1 (bottom right) shows, the shares of the supergames where
subjects always defected (All-D) are declining as ¢ increases. However, this does not translate
into an increase in the prevalence of the always cooperate (All-C) strategy as delta increases.
Instead, as § (and thus the expected duration of a supergame) increases, both the prevalence
of strategic errors (CaD) and “sniping” (consistent DaC) strategies increases. Note that
interpreting All-C strategies is complicated by attrition, as a subjects might have intended
to snipe, but a supergame ended earlier than expected. Similarly, All-D strategies in low
0 supergames could be not only due to theoretically optimal behavior, but also due to the
intended use of a sniping strategy.

Indeed, if the behavior were theoretically optimal, then in the mixed-effects probit re-
gressions in Table 4 (specifications 1-2), the coefficients on 6 = {0.25,0.33,0.4} would have
been insignificantly different from the baseline of § = 0.1, and would only be significantly
different for § = {0.67,0.7}. In addition, the round dummies would all be insignificantly
different from the baseline of the first round. Instead, as this table demonstrates, subjects’
tendency to choose cooperation increases with ¢, and decreases with the round number,
consistent with the use of the sniping strategy.

13While we refer to this type of behavior as sniping borrowing terminology from the auction literature, it
is also an instance of “gambler’s fallacy,” Cowan (1969). This is the erroneous belief that the probability
of some event is lowered when that event has occurred recently even though the probability of that event is
known to be independent from one instance to the next.

14Note that the expected final round ﬁ (as calculated from the perspective of round 1), as well as the
average realized final round increase with 0 - see Table A2. Mengel et al. (2021) report that subjects respond
to the realized supergame length, and are more likely to cooperate when they have experienced supergames
of longer duration.
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Figure 6: Supergames with non-constant play: supergames with strategic errors (CaD) vs. supergames
with sniping (DaC). Bubble size is proportional to the share of subjects, number of subjects in the bubbles,
100 subjects total.

Furthermore, as Figure 6 (right) shows, there is a group of subjects with overall point
total close or above the theoretically optimal payoff of 4050, who used the sniping strategy
in at least one supergame. Comparing this to Figure 6 (left), one can note that only of
few among these subjects made strategic errors (CaD). As Figure 6 shows, only 1 out of 7
subjects who sniped (DaC) in at least 7 out of 17 relevant supergames made strategic errors
(CaD), confirming that for these subjects, sniping behaviour is intentional, rather than due
to confusion. However, apparent sniping behaviour (DaC) may or may not be intentional.
For example, among 22 subjects who appeared to snipe (DaC) in 5-6 supergames, 15 (68.2%)
never made strategic errors (CaD) (and thus likely to do it intentionally), in conttrast to the
remaining 7 subjects made strategic errors (CaD) in at least two supergames.

Finding 6. Some subjects appear to use a “sniping” strateqy, by trying to time their first
defection with the unknown final round of a supergame. While following this strategy could
lead to a higher payoff, only a few subjects earned more than the theoretically optimal payoff.

4.6 Classifying the Patterns of Play Within Each Supergame

The complex pattern of non-constant intra-supergame play (discussed earlier in Section 4.5)
highlights the difficulties in interpreting each type of play in isolation, calling for a more holis-
tic approach. Indeed, our two design innovations allow us to interpret each subject’s whole
play across all supergames. It turns out, we can classify subjects’ patterns of play within
each supergame into 6 mutually exclusive types: optimal All-C, optimal All-D, suboptimal
All-C, suboptimal All-D, strategic errors (CaD), and sniping (DaC).
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Figure 7: Subject heterogeneity in patterns of choices within supergames, out of 24 supergames, by subject,
ordered by the count of supergames with All-Defect choices (100 subjects total). The theoretically optimal
strategy involves always defecting in 16 supergames and always cooperating in the remaining 8 supergames
(represented by a horizontal line). Diamonds, circles, and triangles represent subjects who made optimal,
All-C, and All-D decisions, respectively, in at least 22 supergames, with solid markers representing those
making such decisions in all 24 supergames.

As Figure 7, there is no prevalent pattern of subjects’ play. Only two subjects (repre-
sented by solid diamonds) behaved fully theoretically optimally, and four more (represented
by hollow diamonds) were only two supergames away from full optimality. Similarly, there
are two solid circles and one hollow circle representing subjects who always and almost al-
ways cooperated, as well as one solid triangle and four hollow triangles representing subjects
who always and almost always defected (see also Figure 2). Furthermore, as Figure 7 shoes,
both types of non-constant play (CaD and DaC) as well as both optimal and suboptimal
constant play (All-C and All-D) tend to co-exist in subjects’ play.

Finding 7. There is a notable heterogeneity in subjects’ choices to cooperate or defect. Only
two out of 100 subjects always followed the theoretically optimal strategy, and four more
did so in 22 out of 23 supergames. Two (one) subjects are fully biased towards cooperation
(defection), while one (four) are biased in 22 out of 23 supergames. The rest of the subjects
appear to pursue strategies that are neither theoretically optimal nor purely biased.

17



To get more insights into subjects’ play, we perform factor analysis of these patterns of
play. Due to singularity of correlation matrix, we dropped the Sniping pattern (DaC).!®
Factor analysis retains two latent factors, which can be meaningfully interpreted based on
the interpretations of factor loadings (see Table 1).

Factors Factor Cooperation | Factor Rationality | Uniqueness
Optimal All-C 0.7455 0.5361 0.1568
Sub-Optimal All-C 0.8675 -0.3920 0.0937
Optimal All-D -0.8449 0.4724 0.0629
Sub-Optimal All-D -0.6372 -0.2289 0.5416
Error/CaD -0.3398 -0.5701 0.5595
Eigenvalues 2.5437 1.0417

Table 1: Factor loadings on the five patterns. Snipe/DaC pattern is excluded due to singularity of corre-
lation matrix of 6 patterns.

The first factor, “Cooperation”, explains 68.6% of variation and can be interpreted as
subjects’ bias towards cooperation, with its negative interpreted as bias towards defection.
The second factor, “Optimality”, explains 28.1% of variation and can be interpreted as
subjects’ tendency to make theoretically optimal choices, with its negative being tendency
to make strategic errors and suboptimal choices.'® As Table 2 shows, these two latent factors
are strongly correlated with overall point totals, with Factor Optimality having more than
twice greater effect on overall point totals than Factor Optimality - as one would expect.
(See also Figure C4 for the distribution of these two latent factors.)

Point Totals (1) (2)

Factor Cooperation 63.48%F** 61.80****
(15.93) (15.99)

Factor Optimality 155.82%%** 157.81****
(15.34) (16.21)

Order Long 17.73 20.96
(27.46) (44.78)

Constant 3826.18%*** | 3813.11%***
(20.04) (37.66)

Controls No Yes

F 49.89 16.65

p 0.00 0.00

Observations 100 100

Table 2: Overall point totals and factors. (Significance * 0.10 ** 0.05 *** 0.01 **** 0.001.)

Finding 8. Subjects’ patterns of play of indefinitely repeated prisoner’s dilemma can be cap-
tured by two latent factors, with the stronger factor being bias towards cooperation/defection
and the other factor being tendency to make theoretically optimal choices/errors. These
factors are correlated with overall point totals, with Factor Optimality having stronger effect.

15Singularity of correlation matrix is a common issue for compositional data analysis. Because of the high
prevalence of zero-value problem, standard transformations (e.g., logarithmic) cannot be applied here.

16Excluding Snipe/DaC pattern results in the highest Kaiser-Meyer-Olkin (KMO) measure of sampling
adequacy of 0.50. We are aware that this value of KMO measure is at the border of acceptability, pointing at
the limits of our analysis. Nevertheless we believe that using this dimensionality-reducing technique provides
us with useful insights into subjects’ play.
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4.7 The Effect of Cognitive Abilities

As noted earlier, we asked all of our subjects to answer 7 cognitive reflection test (CRT)
questions as part of the study. Subjects’ total score on this 7-item, cognitive reflection test,
CRT7, was used as a proxy for cognitive ability. The mean (st.dev.) of the CRT7 score was

3.78 (2.26) with a median of 4.

Overall Point Totals Dominated(CaD) Theor.Optimal Sniping(DaC) Th.Opt.+Snipe(DaC)
(OLS) (Tobit, 11=0) (Tobit, ul=24) (Tobit, 11=0) (Tobit, ul=24)
€3] (2 (3) 4 () (6) (M (®) 9 (10)
Order Long 57.11 84.46 -0.22 0.66 0.87 2.33* 0.34 0.12 1.01 2.13
(38.27) (78.57) (0.68) (1.22) (0.79) | (1.37) || (0.59) | (1.08) (0.78) (1.56)
Female -65.92 -21.23 1.40%* 0.92 0.09 1.52 -0.88 -0.63 -0.52 1.13
(41.98) (53.92) (0.69) (0.80) (0.80) | (0.96) (0.59) (0.78) (0.82) (1.15)
Age -4.85 -5.42 0.12 0.13 0.25 0.20 -0.24* -0.23 0.07 0.04
(9.17) (9.72) (0.14) (0.12) (0.18) | (0.17) || (0.14) | (0.14) (0.18) (0.18)
CRT7 26.37*** 26.25%** -0.51%** 0.52%** 0.32* 0.29 0.11 0.14 0.46** 0.47*%*
(9.32) (9.28) (0.16) (0.16) (0.19) | (0.18) (0.14) (0.14) (0.19) (0.17)
Constant 3845.38**** 3806.58%*** -1.03 -1.25 7.46* 6.76* T.47F* 6.73%* 13.78%** 12.38%***
(212.24) (235.42) (3.06) (2.91) (3.95) | (4.00) || (3.09) | (3.24) (4.19) (4.42)
Controls No Yes No Yes No Yes No Yes No Yes
F 5.47 2.80 4.52 2.78 1.44 2.26 1.80 0.93 2.72 4.04
p 0.00 0.00 0.00 0.00 0.23 0.02 0.14 0.51 0.03 0.00
Observations 100 100 100 100 100 100 100 100 100 100

Table 3: Individual differences in rationality. (Significance: * 0.10 ** 0.05 *** 0.01 **** 0.001). (See also
Table ?77.)

As Table 3 shows, CRT7 predicts the rational aspects of subjects’ behavior rather well.
Specifically, it is positively correlated with their overall point payoft total (specifications 1-2)
and negatively with a count of the number of supergames with strategic errors (dominated
CaD) (specifications 3-4). Interestingly, neither the count of theoretically optimal choices
(specifications 5-6), nor the count of apparent sniping (consistent DaC) (specifications 7-
8) are correlated with the CRT7 score. By construction, these two counts are mutually
exclusive. However, as discussed above, some choices which are consistent with following the
theoretically optimal strategy, could instead be part of an intended sniping strategy. Thus,
it is not a surprise that the combined count of whether subjects follow the theoretically
optimal strategy (which involves either All-D for § < 0.5 or All-C for § > 0.5), or engage
in sniping (which involves consistent defection after cooperation, or DaC) is correlated with
the CRT7 score (see specifications 9-10).

In contrast, CRT7 on its own has no effect on choice to cooperate. This can be seen
in the specifications 3-4 in Table 4, which contains average marginals (dy/dx) for mixed-
effects probit regressions of the choice to cooperate or defect in all 48 rounds of prisoners’
dilemma, controlling for demographics, CRT7, and personal characteristics.!” Note that
while the coefficient on the female dummy in that specification is significantly negative, and
the CRT7 score is negatively correlated with being female (r = —0.2365, pvalue = 0.0178),
the coefficient on the CRT7 score remains insignificant if we exclude the age and gender

1"Note that Table 4 presents marginals, rather than odds, so that the same explanatory variable in different
models can have different statistical significance despite similar coeflicients and robust errors.
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demographic variables (results available on request).

Finding 9. Subjects with higher proxy values for cognitive ability are more likely to behave
n a payoff-maximizing fashion, and engage in sniping.

4.8 Inattention

Recall the main hypotheses of the simple inattention theory presented in Section 2.1. Specifi-
cally, that in their choices whether to cooperate or defect, the individuals with lower cognitive
ability will tend to be influenced more by their default values. In contrast, those with higher
cognitive ability will tend to be influenced by the structure of the game.

To explore these hypotheses, we split the sample according based on the median CRT7
score. We find that subjects with relatively high proxies for cognitive ability (CRT7> 4),
tend to respond more strongly to the continuation probability § (particularly for the highest
9 value 0.7) and exhibit a stronger tendency for following the “sniping” strategy, as their
coefficients on the round dummies tend to be more strongly significant. Subjects with rela-
tively lower proxies for cognitive ability (CRT7< 4) do not exhibit any systematic sensitivity
to the round number.

As Figure 8 shows, the two groups of subjects exhibit different patterns of play. Relatively
more subjects from the lower CRT7 group make frequent strategic errors (CaD) and engage
in suboptimal consistent defecting (Suboptimal All-D). In contrast, more subjects in the
higher CRT'7 group behave close to theoretical optimality and snipe more often.

As Table 4 shows, in addition to the differential effects of the structure of the game,
the two group each have a single strongly significant correlate of their choices cooperate. In
the lower CRT7 group (Table 4, specifications 5-6), those with higher self-reported patience
tend to cooperate more frequently (and, vice versa, those with higher self-reported impatience
tend to defect more).'® Importantly, the Patience measure was marginally higher for higher
CRT7 group (¢t = 1.3718, p = 0.0866).

In contrast, in the higher CRT7 group (Table 4, specifications 7-8), there are no personal
characteristic which explains their choices cooperate - as a rational inattention theory would
predict. Instead, their choices in Round 1 are correlated with their proxy for posterior
“Prediction/10” (elicited from subjects before any choices were made - see 3), possibly
reflecting their understanding of the task.

The differences between these two groups can further be seen in the Table 5 which presents
individual correlates of the two latent factors, for all subjects, as well as split by the median
CRTT7.

18The proxy for patience is taken from Falk et al. (2018): “How willing are you to give up something that
is beneficial for you today in order to benefit more from that in the future?” (see Appendix D).

19“Prediction/10” was elicited from the subjects before any choices were made by asking about what share
of their Round 1 choices across all 24 supergames would be cooperative.

20



Cooperate All CRT7<4 CRT7 >4
(Marginals, dy/dz) @) (2) 3) 4) (5) (6) (M) (8)
0=0.25 0.23%*** 0.22%%** 0.22%%** 0.22%%** 0.24%%** 0.24%%** 0.18%*** 0.18%**x*
(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04)
6=0.33 0.31%*** 0.31%*%* 0.30%*** 0.30%*** 0.31%*** 0.31%*** 0.28%*** 0.28%***
(0.03) (0.03) (0.03) (0.03) (0.05) (0.05) (0.05) (0.04)
6=0.4 0.47%%%* 0.47%*%* 0.46%*** 0.46%*** 0.44%*%* 0.44%*%* 0.46%*** 0.46%***
(0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)
(0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.06) (0.06)
5=0.7 0.69**** 0.69%*** .68 ¥k 0.68*H** .62k 0.G2HH** .73k .73 %Kk
(0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.06) (0.06)
Round 2 -0.04 -0.03 -0.04 -0.04 -0.00 -0.00 -0.09%* -0.09%*
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04)
Round 3 S0 12%¥FF | (. 1 2%xH* S0 12%¥FF | _( 1 2kxH* -0.06 -0.06 -0.20%¥** | (. 20****
(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.05)
Round 4 S0.19%¥FF | (. 18FxH* S0 18*¥FF | (. 18**** -0.10* -0.10* -0.28*¥F* | _( 28 ¥H*
(0.04) (0.04) (0.04) (0.04) (0.05) (0.06) (0.06) (0.05)
Round 5 -0.17%%* -0.17%%* -0.17%%* -0.17%%* -0.13* -0.13* -0.23%*** -0.22%**
(0.05) (0.05) (0.05) (0.05) (0.07) (0.07) (0.08) (0.08)
Supergame -0.00*** -0.00%** -0.00%*** -0.00*** -0.00*** -0.00*** -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Order Long 0.05 0.04 0.06 -0.00 0.07 -0.02 0.04 -0.12
(0.04) (0.10) (0.04) (0.09) (0.06) (0.08) (0.04) (0.13)
Prior Defection -0.20%¥F* | (. 20%*** S0.20%¥F* | _( Q0% *** SQULTHERE | TR -0.23%¥H* | () 23 ¥H*
(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.05)
CRT7 -0.00 -0.00 0.01 0.00 0.01 0.00
(0.01) (0.01) (0.02) (0.02) (0.03) (0.03)
Female -0.08%** -0.10* -0.08 -0.08 -0.07 -0.10
(0.04) (0.06) (0.06) (0.08) (0.05) (0.10)
Age -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Prediction/10 0.02%*** 0.02%* 0.02 0.02 0.02%*** 0.03%***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Risk -0.00 -0.00 -0.01 -0.01 0.00 0.02
(0.01) (0.01) (0.02) (0.02) (0.02) (0.02)
Patience 0.02 0.02 0.04%** 0.04%*** -0.02 -0.03*
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)
Punishment 0.00 0.00 0.01 0.01 -0.00 -0.01
(0.01) (0.01) (0.02) (0.02) (0.01) (0.02)
Altruism -0.02 -0.02* -0.02 -0.03* -0.02 -0.01
(0.01) (0.01) (0.02) (0.02) (0.02) (0.01)
Reciprocity 0.02 0.02 0.01 0.02 0.05 0.03
(0.02) (0.02) (0.02) (0.02) (0.04) (0.03)
Retribution -0.01 -0.00 0.00 0.01 -0.02%* -0.01
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
Trust 0.00 -0.00 -0.01 -0.01 0.02* 0.02%*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Controls No Yes No Yes No Yes No Yes
chi2 266.09 276.82 406.22 399.69 226.64 337.74 209.58 506.67
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 4800 4800 4800 2688 2688 2112 2112

Table 4: Choices to cooperate: mixed-effects probit regressions, marginals (dy/dz), robust errors in paren-
theses. “Supergame” is the number of the supergame in the sequence of supergames, “Order Long” is a
dummy variable for whether the first supergame in the sequence had 6 = 0.67, “Prior Defection” is a dummy
variable for whether the subject defected in prior rounds of a given supergame, “Prediction/10” is the sub-
jects’ predictions of the share of their own cooperative choices in Round 1 across all 24 supergames. Controls
stands for session controls. Chi2 and corresponding p-values are from the odds regressions (see Table C3).
(Significance * 0.10 ** 0.05 *** 0.01 **** 0.001.)
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Behavioural Patterns within Supergames, by Median CRT7
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Figure 8: Inattention: subjects’ patterns of choices within supergames (out of 24 supergames), split by
median C'RT'7. Patterns are presented by subject, ordered by the count of supergames with All-Defect
choices (100 subjects total). The theoretically optimal strategy involves always defecting in 16 supergames
and always cooperating in the remaining 8 supergames (represented by a horizontal line).

Finding 10. Subjects behaviour is broadly consistent with a simple model of inattention.
Cooperative choices by subjects with lower prozy for cognitive ability (higher cognitive costs)
correlated with their proxy for patience. In contrast, cooperative choices by those with higher
proxy for cognitive ability (lower cognitive costs) are more affected by the structure of the
game, and do not correlate with their individual characteristics, but with the elicited proxy
for their posterior.

5 Conclusions

In this paper, we report on an experiment in which subjects play the repeated prisoner’s
dilemma against a robot player known to play the Grim trigger strategy. This design con-
verts the original strategic situation into a single-person decision problem, for which there
is a unique optimal strategy. We use a within-subject design in which subjects play many
different supergames with differing continuation probabilities. Our design also allows us to
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Factor All CRT7<4 CRT7 >4
Cooperation (1) (2) (3) (4) (5) (6)
Order Long 0.16 -0.10 0.16 -0.43 0.15 -0.31
(0.20) (0.46) (0.28) (0.47) (0.26) | (0.70)
CRT7 -0.00 -0.01 -0.01 -0.05 0.08 0.01
(0.05) (0.05) (0.12) (0.10) (0.17) | (0.19)
Female -0.50** | -0.59%* -0.45 -0.38 -0.44 -0.65
(0.24) (0.32) (0.33) (0.41) (0.36) | (0.61)
Age -0.03 -0.03 -0.04 -0.02 -0.05 -0.05
(0.04) (0.04) (0.07) (0.07) (0.06) | (0.05)
Risk -0.00 0.01 -0.00 -0.00 0.01 0.07
(0.07) (0.07) (0.11) (0.10) (0.09) | (0.09)
Patience 0.09 0.08 0.17%%*% | 0.17%** -0.09 -0.13
(0.05) (0.06) (0.06) (0.06) (0.10) | (0.11)
Punishment -0.00 -0.01 -0.03 -0.05 0.02 -0.01
(0.06) (0.06) (0.10) (0.11) (0.08) | (0.10)
Altruism -0.05 -0.09 -0.07 -0.11 -0.09 -0.08
(0.06) (0.06) (0.08) (0.09) (0.10) | (0.09)
Reciprocity 0.08 0.08 0.03 0.08 0.28 0.17
(0.09) (0.09) (0.13) (0.14) (0.19) | (0.14)
Retribution -0.03 -0.01 0.06 0.11 -0.14* -0.12
(0.05) (0.06) (0.08) (0.08) (0.07) | (0.09)
Trust -0.01 -0.01 -0.05 -0.07 0.08 0.09
(0.04) (0.04) (0.05) (0.06) (0.06) | (0.07)
Constant 0.06 0.53 0.16 -0.21 -0.36 1.55
(1.05) (1.19) (1.66) (1.92) (2.32) | (2.41)
Controls No Yes No Yes No Yes
F 1.86 1.75 1.41 2.08 2.36 1.60
P 0.06 0.05 0.20 0.03 0.03 0.14
Observations 100 100 56 56 44 44
Factor All CRT7<4 CRT7 >4
Optimality [ (1) [ (@ ® @ B [ ©
Order Long 0.25 0.57* 0.05 0.68 0.56* 0.32
(0.18) (0.34) (0.27) (0.49) (0.30) | (0.64)
CRT7 0.08* 0.08%* 0.10 0.14 -0.21 -0.17
(0.04) (0.04) (0.09) (0.08) (0.14) | (0.16)
Female -0.08 0.18 0.23 0.60* -0.28 -0.50
(0.22) (0.26) (0.27) (0.34) (0.35) | (0.56)
Age 0.04 0.04 0.10 0.09* -0.00 -0.00
(0.05) (0.04) (0.07) (0.05) (0.10) | (0.08)
Risk 0.00 0.00 -0.02 -0.03 0.06 0.05
(0.07) (0.06) (0.10) (0.08) (0.09) | (0.11)
Patience 0.06 0.06 0.05 0.04 0.10 0.05
(0.04) (0.04) (0.05) (0.05) (0.10) | (0.12)
Punishment 0.04 0.05 0.04 0.05 0.01 0.00
(0.05) (0.05) (0.10) (0.09) (0.07) | (0.10)
Altruism -0.06 -0.02 -0.09 -0.01 -0.00 0.04
(0.05) (0.05) (0.07) (0.08) (0.07) | (0.08)
Reciprocity 0.03 0.01 0.07 -0.04 -0.09 -0.04
(0.09) (0.07) (0.10) (0.08) (0.16) | (0.16)
Retribution -0.05 -0.07 -0.02 -0.07 -0.06 -0.12
(0.07) (0.07) (0.11) (0.09) (0.09) | (0.11)
Trust 0.00 0.00 -0.02 -0.02 0.03 0.00
(0.05) (0.05) (0.07) (0.06) (0.08) | (0.10)
Constant -1.63 -1.93* -2.91 -2.63 1.08 0.95
(1.20) (1.13) (1.84) (1.80) (2.23) | (2.46)
Controls No Yes No Yes No Yes
F 1.29 2.04 0.94 1.94 1.26 2.08
P 0.24 0.02 0.51 0.04 0.29 0.05
Observations 100 100 56 56 44 44

Table 5: Correlates of the two latent factors. OLS regressions. (Significance * 0.10 ** (.05 *** (.01 ****
0.001.)
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classify the within-supergame play into 6 mutually exclusive patterns, and separate theo-
retically optimal behaviour from bias. We can therefore identify systematic errors made by
subjects and relate them to individual characteristics, and, in particular, cognitive abilities.

Our novel design has revealed several important and interesting findings. First, we find
that a majority (52%) of our subjects make at least one strategic error of cooperating after
defection. Second, some subjects employ a sniping strategy, consistently defecting after
initially choosing to cooperate (DaC) in the same supergame that can yield them higher
payoffs than the theoretically optimal strategy. Third, we show that these different behaviors
are correlated with our proxy measure for cognitive ability. Finally, we find a qualitative
difference between subjects with high and low proxies of cognitive abilities, and this is
consistent with a simple model of inattention. We hope that these findings will be useful in
differentiating intentional strategies from errors in repeated games more generally.
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Appendices (Not Intended for Publication)

A Continuation Probabilities and Realizations

OrderShort OrderLong
Sequence | p= | No.Rounds | p= | No. Rounds
1 0.33 1 0.67 4
2 0.7 4 0.33 1
3 0.1 1 0.4 2
4 0.67 2 0.25 1
5 0.4 3 0.7 3
6 0.7 2 0.33 2
7 0.25 1 0.7 5
8 0.33 2 0.4 1
9 0.67 4 0.67 2
10 0.4 1 0.1 1
11 0.1 1 0.25 1
12 0.25 2 0.1 1
13 0.1 1 0.25 2
14 0.25 1 0.1 1
15 0.1 1 0.4 1
16 0.67 2 0.67 4
17 0.4 1 0.33 2
18 0.7 5 0.25 1
19 0.33 2 0.7 2
20 0.7 3 0.4 3
21 0.25 1 0.67 2
22 0.4 2 0.1 1
23 0.33 1 0.7 4
24 0.67 4 0.33 1
Totals 48 48

Table A1l: Continuation probabilities, p, and the number of rounds played for each of the 24
sequences, both treatment orders (one order is just the reverse of the other).

Delta Duration Duration (Rounds) Number of
4] Expected (%_6) realized (Ave.) | 1| 2| 3| 4| 5 | Supergames | Choices
1 1.11 1.00 4 10]0]01|O0 4 4
.25 1.33 1.25 311]010]0 4 5
.33 1.49 1.50 21210(07]0 4 6
A4 1.67 1.75 211 11(10]0 4 7
.67 3.03 3.00 0121|0210 4 12
7 3.33 3.50 011|111 1 4 14
Total Supergames 1712131 24
Total Choices 2411316 | 4|1 48

Table A2: The distribution of the supergames, split by continuation probability 6. The average theoretical
and realized supergame durations are 1.99 rounds and 2 rounds, respectively.
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B Order Effects

As was documented recently by Mengel et al. (2021) early exposure to relatively long
sequences could affect subsequent behavior in the prisoner’s dilemma. While the mean
(st.dev.) first round per-subject counts of cooperation in the long and reverse orders are
10.96 (6.48) and 12.10 (4.86), respectively (out of 24), this difference is insignificant (¢ = 1.00,
Kolmogorov-Smirnov one-sided p-value= 0.278). The corresponding mean (st.dev.) overall
counts are, respectively, 25.52 (9.29) and 22.66 (12.83) (out of 48), with the difference re-
maining insignificant (¢t = 1.28, Kolmogorov-Smirnov one-sided p-value= 0.198).

As for the optimal choices, the first round counts are higher in the long treatment,
with mean (st.dev.) being, respectively, 16.2 (3.49) and 17.42 (3.91), but this difference is
marginally significant only according to the Kolmogorov-Smirnov test (one-sided p-value=
0.034), but not according to t-test (t = 1.65, p-value= 0.051). The overall optimal choice
counts are, again, higher in the long order treatment (with mean (st.dev.) of 32.54 (8.16) in
long order, and 29.56 (7.76) in reverse), but this is marginally significant only according to
t-test (t = 1.87, p-value= 0.032), but not according to Kolmogorov-Smirnov test (one-sided
p-value= 0.135. The order effect disappears in mixed effects panel regressions in Table 4.

C Further Results

As Figure C1 shows, there is a significant heterogeneity is subjects’ behavior, without any
clear “representative” pattern. The top right panels of each figure provide two-dimensional
distributions of the cooperative and optimal choices, where the possible choice combinations
are restricted to the polygons delineated by the dashed lines. The shape of the polygon for
the overall choices in the bottom panel is due to the possibility of dominated choices).

As Figure C1 (top panel) shows, subjects tend to excessively cooperate in the first round
of each supergame, with the largest number of subjects choosing to start half of the su-
pergames by cooperating. This early excessive cooperation in the first round is followed by
the subsequent defection, represented in Figure C1. As the top right of bottom panel of
Figure C1 shows, there are three equally sized clusters at each of the three corners of the
polygon. There are only two subjects at the far right corner, who behaved fully theoreti-
cally optimally (all 48 rounds) and three subjects who made only 2 theoretically suboptimal
choices. In the top corner, there are two subjects who always cooperated, and two sub-
jects who defected only once and three times, respectively. In the bottom corner, there is
a single subject who always defected, and one, two, and one subjects who cooperated once,
twice, and three times, respectively. The presence of strategic errors (CaD) complicates the
interpretation of the remaining 85% of subjects, most of whom are located away from the
boundaries, in the center of the figure. Many of those observations represent the overall
early excessive cooperation in the first rounds followed by the subsequent defections within
a supergame, possibly due to some form of a sniping strategy.
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Cooperation vs Optimality: Round 1
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Cooperation vs Optimality: All Rounds
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Figure C1: Polygons of Rationality: choices in the first rounds (top panel) and all rounds (bottom panel)
across all 24 supergames. In each panel: Distributions of counts of cooperation (top left), of optimal choices
(bottom right), and combination of these two distributions (top right). Bubble size is proportional to the
share of subjects, 100 subjects total.
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Cooperate All CRT7<4 CRT7 >4
(Odds) @) (2) €) (4) ©) (6) () (®)
5=0.25 0.90%*** 0.90**** 0.89%*** 0.89%*** 0.92%*** 0.92%*** 0.87FF** 0.88F*¥**
(0.14) (0.14) (0.13) (0.14) (0.17) (0.17) (0.23) (0.24)
(0.15) (0.15) (0.15) (0.15) (0.20) (0.20) (0.25) (0.26)
(0.17) (0.17) (0.17) (0.17) (0.20) (0.20) (0.33) (0.33)
(0.21) (0.21) (0.21) (0.21) (0.25) (0.25) (0.40) (0.41)
(0.22) (0.22) (0.22) (0.22) (0.26) (0.26) (0.44) (0.44)
Round 2 -0.14 -0.14 -0.14 -0.14 -0.02 -0.02 -0.43** -0.43%*
(0.10) (0.10) (0.10) (0.10) (0.12) (0.12) (0.20) (0.20)
Round 3 S0.47HFFK | Q. 4Tk S0.47HFFK | Q. 4THHRk -0.22 -0.22 -0.98%FF* | (. gTHHAK
(0.14) (0.14) (0.14) (0.14) (0.17) (0.17) (0.26) (0.26)
Round 4 SQ. TR |, T4HHRE SQ.7HFRHRR |, T4RHRE -0.39* -0.39* S1.37RRRR ] g7k
(0.17) (0.17) (0.17) (0.17) (0.21) (0.21) (0.30) (0.30)
Round 5 -0.69%** -0.69%** -0.70%** -0.70%** -0.48% -0.48%* -1.09%** -1.09%**
(0.22) (0.22) (0.22) (0.22) (0.28) (0.28) (0.40) (0.40)
Supergame -0.01%** -0.01%** -0.01%** -0.01%** -0.01%** -0.01%** -0.01 -0.01
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
Order Long 0.18 0.15 0.22 -0.01 0.27 -0.08 0.20 -0.58
(0.17) (0.39) (0.16) (0.38) (0.21) (0.30) (0.21) (0.64)
Prior Defection | -0.81%¥¥* | _Q.81%*¥** || _Q.80%¥** | _0.80%**** || -0.64%¥¥* | _0.65%*¥* || _1.13%¥%* | _] J3%*kxx
(0.12) (0.12) (0.12) (0.12) (0.14) (0.14) (0.22) (0.22)
CRT7 -0.00 -0.01 0.03 0.00 0.07 0.02
(0.04) (0.04) (0.08) (0.07) (0.13) (0.15)
Female -0.33* -0.41 -0.32 -0.32 -0.33 -0.50
(0.17) (0.25) (0.23) (0.32) (0.26) (0.51)
Age -0.03 -0.02 -0.03 -0.02 -0.05 -0.05
(0.02) (0.02) (0.04) (0.04) (0.04) (0.04)
Prediction/10 0.10%** 0.09%* 0.07 0.08 0.11%%* 0.13%***
(0.04) (0.04) (0.05) (0.05) (0.04) (0.04)
Risk -0.01 -0.00 -0.03 -0.03 0.02 0.08
(0.06) (0.06) (0.09) (0.08) (0.09) (0.08)
Patience 0.07 0.06 0.13%** 0.14%*x* -0.10 -0.16*
(0.04) (0.04) (0.04) (0.04) (0.09) (0.09)
Punishment 0.01 0.00 0.03 0.02 -0.02 -0.06
(0.05) (0.05) (0.07) (0.07) (0.06) (0.08)
Altruism -0.06 -0.09* -0.09 -0.12%* -0.09 -0.06
(0.05) (0.05) (0.06) (0.07) (0.08) (0.07)
Reciprocity 0.07 0.08 0.04 0.08 0.25 0.16
(0.07) (0.07) (0.08) (0.09) (0.18) (0.12)
Retribution -0.04 -0.02 0.00 0.03 -0.10%* -0.07
(0.04) (0.04) (0.06) (0.06) (0.05) (0.07)
Trust 0.01 -0.00 -0.03 -0.04 0.09%* 0.10*
(0.03) (0.03) (0.04) (0.04) (0.05) (0.05)
Constant B ) ol I B ool -2.05%%* -1.69* -1.66 -2.02 -2.61 -0.74
(0.19) (0.39) (0.78) (0.92) (1.08) (1.25) (1.97) (1.96)
Controls No Yes No Yes No Yes No Yes
chi2 266.09 276.82 406.22 399.69 226.64 337.74 209.58 506.67
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 4800 4800 4800 2688 2688 2112 2112

Table C3: Choices to cooperate: mixed-effects probit regressions, odds, robust errors in parentheses.
“Supergame” is the number of the supergame in the sequence of supergames, “Order Long” is a dummy
variable for whether the first supergame in the sequence had § = 0.67, “Prior Defection” is a dummy variable
for whether the subject defected in prior rounds of a given supergame, “Prediction/10” is the subjects’
predictions of the share of their own cooperative choices in Round 1 across all 24 supergames. Controls

stands for session controls. (Significance * 0.10 ** 0.05 *** 0.01 **** 0.001.)
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D Appendix: Experimental Design

Personality Questions

Subjects were asked to complete the following “questionnaire” by clicking on radio buttons
from 0,1,2,..10 to report their answers to each question.?’

Questionnaire

We now ask for your willingness to act in a certain way in 2 different areas. Please indicate
your answer on a scale from 0 to 10, where 0 means you are “completely unwilling to do so”
and a 10 means you are “very willing to do so”. You can also use any numbers between 0
and 10 to indicate where you fall on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

1. In general, how willing are you to take risks?

2. How willing are you to give up something that is beneficial for you today in order to
benefit more from that in the future?

3. How willing are you to punish someone who treats you unfairly, even if there may be
costs for you?

4. How willing are you to give to good causes without expecting anything in return?

How well do the following statements describe you as a person? Please indicate your answer
on a scale from 0 to 10. A 0 means “does not describe me at all” and a 10 means “describes
me perfectly”. You can also use any numbers between 0 and 10 to indicate where you fall
on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

5. When someone does me a favor I am willing to return it.

6. If I am treated very unjustly, I will take revenge at the first occasion, even if there is
a cost to do so.

7. 1 assume that people have only the best intentions.

CRT questions

Subjects were asked to provide numerical answers to the following cognitive reflection test
(CRT) questions.?!

20Taken from Falk et al. (2018).
21Based on Toplak et al. (2014) and Ackerman (2014).
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1. The ages of Anna and Barbara add up to 30 years. Anna is 20 years older than Barbara.
How old is Barbara?

2. If it takes 2 nurses 2 minutes to check 2 patients, how many minutes does it take 40
nurses to check 40 patients?

3. On a loaf of bread, there is a patch of mold. Every day, the patch doubles in size. If
it takes 24 days for the patch to cover the entire loaf of bread, how many days would
it take for the patch to cover half of the loaf of bread?

4. If John can drink one barrel of water in 6 days, and Mary can drink one barrel of water
in 12 days, how many days would it take them to drink one barrel of water together?

5. A man buys a pig for $60, sells it for $70, buys it back for $80, and sells it finally for
$90. How much profit has he made, in dollars?

6. Jerry received both the 15th highest and the 15th lowest mark in the class. How many
students are in the class?

7. A turtle starts crawling up a 6-yard-high rock wall in the morning. During each day it
crawls 3 yards and during the night it slips back 2 yards. How many days will it take
the turtle to reach the top of the wall?

Repeated PD Game Instructions

You will participate in 24 sequences. Each sequence consists of one or more rounds.
In each round, you play a game.

Specifically, you will have to choose between action X or action Y. Your opponent also
chooses between action X or action Y.

The combination of your action choice and that of your opponent results in one of the four
cells shown in the payoff table below (which will be the same table in each round).

X Y
X 75,75 15,120
Y 120, 15 30, 30

In this table, the rows refer to your action and the columns refer to your opponent’s actions.
The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is your opponent’s payoff in points. Thus for example, if you choose X
and your opponent chooses Y, then you earn 15 points and your opponent earns 120 points.

In all 24 sequences, you will play this game against the computer. That is, your opponent
is a computer program.

36



The rule the computer follows in choosing between action X or Y is this:

e In the first round of each sequence the computer will always choose X.

e Starting from the second round of each sequence, the computer’s choice will be com-
pletely determined by your previous choices in that sequence:

— If you have ever chosen Y in previous round(s) of the current sequence, the com-
puter will choose Y in all remaining rounds of the current sequence.

— Otherwise, the computer will choose X.

There is no randomness in the computer’s choice, and its choice does not depend on your
choices in any sequences other than the current one.

After choices are made by you and the computer, you learn the results of the round, specif-
ically, your point earnings and those earned by the computer. A random number generator
is used to determine whether the current sequence continues on with another round, or if
the current round is the last round of the sequence.

Whether the sequence continues with another round or not depends on the probability (or
chance) of continuation for the sequence. This continuation probability for a sequence is
prominently displayed on your decision screen and remains constant for all rounds of a
given sequence. However, this continuation probability can change at the start of each
new sequence, so please pay careful attention to announcements about the continuation
probability for each new sequence. Whether a sequence continues depends on whether at
the end of a round the random number generator drew a number in the interval [1,100] that
is less than or equal to the continuation probability (in percent).

For example, if the continuation probability in a sequence is 40%, then, after round 1 of
the sequence, which is always played, there is a 40% chance that the sequence continues
on to round 2 and a 60% chance that round 1 is the last round of the sequence. Whether
continuation occurs depends on whether the random number generator drew a number from
1 to 100 that is less than or equal to 40. If it did, then the sequence continues on to round
2. If it did not, then round 1 is the final round of the sequence. If the sequence continues on
to round 2, then after that round is played, there is again a 40% chance that the sequence
continues on to round 3 and a 60% chance that round 2 is the last round of the sequence,
again determined by the random number generator for that round. And so on.

Thus, the higher is the continuation probability (chance), the more rounds you should expect
to play in the sequence. But since the continuation probability is always less than 100%,
there is no guarantee that any sequence continues beyond round 1.

At the end of the experiment, you will be paid your point earnings from six sequences,
randomly selected so that each selected sequence has a different continuation probability.
Each point you earn over all rounds in each of the 6 randomly selected sequences is worth
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$0.01 in US dollars, that is, the greater are your point earnings, the greater are your money
earnings.

Comprehension quiz

Now that you have read the instructions, before proceeding, we ask that you answer the
following comprehension questions. For your convenience, we repeat the payoff table below,
which you will need to answer some of these questions. In this table, the rows indicate your
choice and the columns indicate the computer’s choices.

X Y
X 75,75 15,120
Y 120, 15 30, 30

The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is the computer’s payoff in points.

Questions

1. If, in a round, you chose X and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoft?

2. If, in a round, you chose Y and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoft?

3. If, in a round, you chose Y and the computer program chose Y, what is your payoff in
points for the round? What is the computer program’s payoft?

4. If you have chosen Y in any prior round of the current sequence, what will the computer
program choose in the current round of the sequence? Choose: X or Y

5. True or false: At the start of each sequence, you will know exactly how many rounds
will be played in the sequence. Choose: True or False

6. True or false: If, in a sequence, the continuation probability is 75%, then you can
expect that there will be more rounds in that sequence, on average, than in a sequence
with a continuation probability of 25%. Choose True or False

Repeated PD Games

After a subject had successfully completed all quiz questions, the experiment proceeded on
to the first indefinitely repeated PD game. For each such game, subjects were instructed
clearly about the continuation probability for that repeated game. For instance, Figures D5-
D9 show illustrative screenshots from the first indefinitely repeated game of the “orderlong”
treatment. Table A1l reports on the continuation probability for each of the 24 sequences
along with the actual number of rounds played for the two treatment orders.
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Sequence Start

Sequence 1 has begun.

In the first round of this and every sequence, the computer chooses X, but whether the computer continues to
choose X depends on the choices that you make.

In each round of this sequence, there is a 67.0% chance that the sequence
continues to another round, and a 33.0% chance that this round will be the last
round of the sequence.

Next

Figure D5: Start screen for a new sequence

Sequence 1, round 1

The chance of continuing to another round in this sequence is 67.0%.

Remember, in the payoff table below, the row indicates your choice and the column indicates the computer's
choice.

The first number in each cell in boldface is your payoff and the second number in italics is the computer
program's payoff.

X Y
120 75 30 30

Since this is the first round of a sequence, the computer will always choose X.

Please make your choice for this round by clicking the button "X" or "Y" in the table above.

Figure D6: Main decision screen for a period in the sequence

Results of sequence 1, round 1
You chose Y this round.

Following its rule, the computer has chosen X.

Therefore, your payoff this round is 120.0 points.

Based on the random number drawn, sequence 1 will CONTINUE with another
round.

Next

History of Rounds in this Sequence

Chance to ) Computer's
Sequence . Round Your choice . Payoff
Continue Choice
1 0.67 1 Y X 120.0 points

Figure D7: Results screen for a period in the sequence
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Sequence 1, round 2

The chance of continuing to another round in this sequence is 67.0%.

Remember, in the payoff table below, the row indicates your choice and the column indicates the computer's
choice.

The first number in each cell in boldface is your payoff and the second number in italics is the computer
program's payoff.

X Y
75 75 15 720
120 75 30 30

Based on your choices in previous rounds of this sequence, the computer will choose Y.

Please make your choice for this round by clicking the button "X" or "Y" in the table above.

History of Rounds in this Sequence

Chance to . Computer’'s
Sequence . Round Your choice . Payoff
Continue Choice
120.0
1 0.67 1 Y X .
points

Figure D8: Decision screen for a continuation period in the sequence, noting what the robot
player will do, based on the history of play

Results of sequence 1, round 4

You chose Y this round.
Following its rule, based on your choices in previous rounds, the computer has chosen Y.

Therefore, your payoff this round is 30.0 points.

Based on the random number drawn, sequence 1 has ENDED.

Next

History of Rounds in this Sequence

Chance to R Computer's
Sequence . Round Your choice A Payoff
Continue Choice
1 0.67 1 Y X 120.0 points
1 0.67 2 Y Y 30.0 points
1 0.67 3 Y Y 30.0 points
1 0.67 4 Y Y 30.0 points

Figure D9: Screen for the final period of a sequence noting that based on the random drawn,
the sequence has ended.
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