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Abstract

Many studies that use instrumental variables are based on a first stage linear in the instru-

ment. Using only linear first stages may miss important information about effect hetero-

geneity and instrument validity. Analyzing fifteen studies using linear first stages, we find

ten with significant nonlinearities. Six of these ten have statistically different second stage

estimates. Additional analysis is necessary when results are sensitive to first stage choice.

We provide a framework to reconcile these differences by determining those patterns of het-

erogeneity that are consistent with instrument validity. If these patterns violate economic

reasoning, then the validity of the instrument is questioned.
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1. Introduction

Economists often employ Instrumental Variable (IV) techniques when faced with the

difficult task of estimating causal effects in non-experimental settings. The first order issue

is to find plausibly exogenous instruments. Given that the necessary exogeneity assumption

is effectively untestable, in most cases instrument validity is argued on heuristic grounds.

On top of validity concerns, interpretation of IV estimates is made more difficult by allowing

for unmodeled heterogeneity in responses, a concept made popular in economics due to the
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influential work of Imbens and Angrist (1994) and Heckman and Vytlacil (1999).

While there are many ways to implement an IV strategy, one of the most common

among applied economists is to use Two Stage Least Squares (2SLS) with the first stage

linear in a single instrument.1 However, using only linear first stages may obscure important

information on the nature of heterogeneous effects that can, in turn, augment the heuristic

arguments made for instrument validity. We argue that the sensitivity of 2SLS estimates

to simple changes in the first stage is an important piece of information that should be

routinely reported along with other common diagnostics, like the first stage F-statistic. In

this paper, we adapt the heterogeneous effects framework in order to characterize and assess

previously undocumented dimensions of heterogeneity that result from using different first

stage functions of a single instrument.

To start, we identify cases where the results are sensitive to the first stage functional form

by following a basic textbook approach to overidentification testing. In particular, we start

by extending the first stage to include a squared term in the instrument.2 We then test for

significance of the quadratic first stage relative to the linear. Finally, we test the sensitivity

of the 2SLS estimates to the choice of linear or quadratic first stage using a standard

overidentification test— treating the squared instrument as an overidentification restriction.

Surprisingly, this simple and nearly costless to implement procedure proves to be empirically

relevant when applied to papers relying on first stages linear in a single instrument. Across

the fifteen papers we study here, we find evidence of significant nonlinearities in ten papers.

Six of these ten studies have cases where the significant quadratic first stage is associated

with a statistically significant difference in the 2SLS estimates of interest.

The obvious question- and primary focus of this paper becomes: what should we do

1This focus on linear first stages is understandable given that the properties of the estimator are well
understood relative to nonparametric approaches. For instance, Hansen (2009) notes the “worrisome”
issue that many nonparametric approaches are “incomplete” due to ambiguity over bandwidth selection,
an issue “critical to implementation.” In addition, it is closely connected to the counter factual outcomes
framework used in program evaluation with binary treatment and instruments. Furthermore, in traditional
treatments of IV first stage choice only impacts efficiency and not consistency, while with heterogeneous
effects different first stages estimate arbitrarily different weighted average partial effects. Researchers may
also be cautious of the “forbidden regression” problem of using fitted values from a nonlinear, say Probit,
first stage directly in the second stage (Angrist and Pischke, 2009). Coupled with concerns over weak
instruments with overidentification, these considerations make the linear first stage choice appealing.

2While the arguments we make will also hold for higher order polynomials (and other functional forms),
we find that the quadratic first stage is sufficient to uncover evidence of nonlinearity in most cases even
when higher order terms would improve the fit. Furthermore, by choosing the quadratic first stage we avoid
generating weak instrument problems by adding only one overidentification restriction and we have a simple
test that can be uniformly applied across cases to avoid data mining.
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when our results are sensitive to the choice of functional form for a single instrument in the

first stage?

In a classic treatment of 2SLS with homogeneous effects, different functions of the in-

strument will affect efficiency, but should identify the same population parameter (Angrist,

Graddy, and Imbens, 2000; Heckman, Urzua, and Vytlacil, 2006; Wooldridge, 2010). There-

fore, the sensitivity can be cast as evidence of an invalid instrument.3 Alternatively, the

sensitivity may be evidence of unmodeled heterogeneity with different first stages identi-

fying different weighted averages of underlying responses (Angrist, Graddy, and Imbens,

2000; Heckman, Urzua, and Vytlacil, 2006). Such heterogeneity may come from a number

of sources including nonlinearity in the second stage relationship, as well as more complex

forms due to non-separable errors, or individual level functional form differences.

We provide a framework for extracting information about potential heterogeneity from

using different first stages. Building on prior work by Angrist, Graddy, and Imbens (2000),

we show that the difference in the estimators (linear and quadratic first-stage) is driven

completely by applying different weights to the underlying heterogeneous partial effects at

different values of the instrument. Furthermore, we show that the weight ratio at each value

of the instrument is easily estimated using only the first stage fitted values without imposing

any additional assumptions on the most general heterogeneous effect models. Combined with

subsample estimation, the weight ratios allow the researcher to infer the relative pattern of

the average partial effects across the distribution of the instrument that would be consistent

with a valid instrument.

We argue that the pattern of heterogeneity uncovered by our approach should be checked

for a reasonable economic explanation. If it can be matched to a sensible economic story,

then we can strengthen our understanding of the question being studied. The results

may also justify pursuing more complex estimation approaches, such as nonparametric IV

(Newey, 2013) or Local IV (Heckman and Vytlacil, 1999), that tackle effect heterogeneity

head on. However, if the pattern does not match a sensible economic story, then the results

should be interpreted with caution as it raises concerns over the validity of the instrument.

To illustrate the usefulness of the proposed approach, we compare linear and quadratic

first stages for two well-published papers relying on continuous instruments for identification:

3This interpretation can be extended to more general cases where heterogeneous effects are independent
of the instrument (Heckman, Urzua, and Vytlacil, 2006).
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Becker and Woessmann’s 2009 paper on the effects of Protestantism on economic prosperity

and Acemoglu, Johnson, and Robinson’s influential 2001 paper exploring the relationship

between institutions and growth. We highlight these two papers as, in each case, we find

evidence that adding the square of the instrument to the first stage is important for the final

estimates. When exploring the heterogeneous effects explanation for Becker and Woessmann

(2009), we find that the implied effects actually change sign (from positive to negative) across

the instrument distribution suggesting a very important pattern of heterogeneity. Again this

pattern should be matched with a sensible economic story to help bolster the argument for

instrument validity.

Since the key papers were chosen to illustrate the important conclusions that may be

drawn when non-linear first-stages seem to matter, we also present a survey exercise applying

our approach to an objectively chosen set of thirteen papers drawn from American Economic

Association journals. That we find rejections in over half of the papers underscores the

importance of applying this approach generally.

We readily note that while the use of nonlinear transformations of instruments is not,

in-and-of-itself, novel, our approach is. This paper is the first to compare estimates from dif-

ferent first stages to show how nonlinearity in the first stage can be exploited to enhance the

heuristic arguments for instrument choice by uncovering patterns of heterogeneity with re-

spect to the instrument. Importantly, the patterns of heterogeneity uncovered here typically

go unnoticed in empirical work. Our approach also compliments recent work by Lochner

and Moretti (2011) and Løken, Mogstad, and Wiswall (2012) that considers the importance

of nonlinear second stages for typical instrumental variable estimators. The key point of

distinction here is our focus on using the nonlinearity in the first stage to test the sensitivity

of 2SLS estimates.

The paper proceeds as follows: section 2 discusses the motivation for considering higher

order terms in the homogeneous effects setting; section 3 applies this approach to the two

key examples; section 4 shows how to characterize the weight ratios in a heterogeneous

effects framework and applies this to the Becker and Woessmann (2009) example; section 5

summarizes the literature survey exercise; and section 6 concludes.
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2. Quadratic Overidentification Test

To motivate our approach, we begin with a simple text-book treatment of instrumental

variables. Later, we will consider the implications under a more general heterogeneous

effects setting. Following Wooldridge (2010), start with a linear model for y in terms of x

in the population:

y =xβ + u (2.1)

where x = (1, x2, ..., xK) is a vector of covariates

Further denote our instrument vector by z = (1, x2, ..., xK−1, z), where we assume one

endogenous regressor (xK) and a single excluded instrument (z).4 Under the following

conditions the Two-Stage Least Squares (2SLS) estimate, β̂, is consistent for β:

[A1 ] E(u|z) = 0

[A2 ] rank E(z′x) = K

Assumption [A1]— mean independence— is the key assumption needed for consistent

2SLS estimation.5 Here we opt for the mean independence assumption instead of assuming

that z and u are uncorrelated. While mean independence is a stronger assumption, when

arguing for the validity of an instrument the distinction between uncorrelatedness and mean

independence is seldom pursued by researchers. Indeed, when relying on a “natural exper-

iment” for identification it is typical to rely on arguments that implicitly evoke a notion

of independence. Further, it is often difficult in such cases to derive a sensible economic

argument for why an instrument is plausibly uncorrelated with the error term, but may not

be mean independent. For instance, in the Acemoglu, Johnson, and Robinson (2001) paper

we study in Section 3.2 the authors discuss the required exogeneity assumption by stating

the following:

“The exclusion restriction implied by our instrumental variable regression is that,

conditional on the controls included in the regression, the mortality rates of Eu-

4Throughout, we will generally refer to the outcome, endogenous explanatory variable, and instrument
as y, x, and z, respectively.

5[A2] is the rank condition requiring z to be linearly related to the endogenous regressor (xK).
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ropean settlers more than 100 years ago have no effect [emphasis added] on GDP

per capita today, other than their effect through institutional development.”

This statement is much stronger than simply suggesting uncorrelatedness. In contrast,

arguments for an instrument that is uncorrelated but not mean independent would likely

require a more particular discussion of the data generating process.6

Under mean independence, not only is z a valid instrument, but so is any function of z.

This fact motivates a simple test of the sensitivity to first stage choice based on a standard

overidentification test. Namely, replace the linear-in-z first stage with a quadratic-in-z and

conduct the overidentification test. Obviously, one could consider other first stage functions

of z,7 however we chose to focus on the quadratic-in-z first stage as it is simple to implement

uniformly across cases (i.e. low cost to the researcher and avoids data-mining) while still

capturing a key component of potential nonlinearities.8

Rejecting the null in this case implies that the two instruments lead to statistically dif-

ferent estimates of β.9 Formally, this is a rejection of the linear-homogeneous-effects model

in equation (2.1) under the mean independence assumption. If the source of the rejection is

a violation of mean independence, then following our discussion on the distinction between

mean independence and the weaker uncorrelatedness assumption needed for identification

the validity of the instrument would be questioned. However, given that the rejection may

come from either a failure of mean independence or misspecification in equation (2.1), we

prefer to interpret the result more generally as evidence of sensitivity to first stage choice.

Regardless of the source of the rejection, this sensitivity is very important for understanding

6For instance, a common statistical example of uncorrelated but dependent variables is if X is symmet-
rically distributed around the origin and Y = X2,then X and Y are clearly dependent but Cov(Y,X) =
E[Y X] = E[X3] = 0 and Y and X are uncorrelated.

7One could use higher order polynomials, creating categorical dummy variables, or account for a non-
continuous x (Probit fitted values as the instrument when x is binary).

8If the second stage is properly specified, one could choose the “best” fitting first stage for efficiency
reasons. However, in the heterogeneous effects framework, the concept of the “best” (rather than best
fitting) first stage function becomes much less clear.

9An important consideration for our test is the bias of 2SLS. It is well known that 2SLS estimates are
consistent but not unbiased and that this bias is most severe when instruments are weak and there are
several overidentification restrictions (Angrist and Pischke, 2009). In our context, we might be concerned
that adding z2 may introduce or exacerbate a weak instrument problem. To account for weak instruments,
we follow two common approaches. Following Stock, Wright, and Yogo (2002), we report first stage F-stats.
We also estimate β by Limited Information Maximum Likelihood (LIML). In overidentified models LIML
and 2SLS estimates have the same probability limit but different small sample properties. In particular,
under certain assumptions 2SLS is biased toward OLS while LIML is roughly “median-unbiased” (Angrist
and Pischke, 2009). A comparison of the 2SLS and LIML estimates provides a useful “eyeball test” of the
weak instrument problem.
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the economic conclusions that can be drawn from the estimates. Robustness to first stage

choice is just as interesting, as it provides additional justification for estimating model (2.1)

under mean independence.

A particularly important form of misspecification could come from unmodeled heteroge-

neous response to x. Unmodeled heterogeneity could take many forms including nonlinearity,

non-separable errors, or individual differences in functional relationship between y and x.

This leads directly to the modern heterogeneous effect interpretations of linear 2SLS esti-

mates found in Imbens and Angrist (1994) and Heckman and Vytlacil (1999). In Section 4,

we will use a heterogeneous effects framework in order to characterize the implied patterns

of heterogeneity that are consistent with the difference in coefficient estimates when using

a linear-in-z or quadratic-in-z first stage. At this point, we simply want to emphasize the

fact that sensitivity to the first stage warrants additional investigation.

As a final note, it is worth clarifying two features of our approach. First, as will become

clear in the heterogeneous effects framework, we are not suggesting that the quadratic first

stage is “preferred” in any way to the linear. In the homogeneous effects setting, it would

likely be best to follow the literature on identifying the optimal instrument vector in order to

improve efficiency. In the heterogeneous effects framework in section 4, preference for a par-

ticular first stage is much less clear as they provide, arguably arbitrarily, different weighted

averages of heterogeneous effects. Rather, we will show that even in the heterogeneous ef-

fects world, there is valuable information to be learned by considering the quadratic-in-z

result along with the commonly used linear first stage results when the two results differ.

Second, it is helpful to distinguish the role of functional form and the precise specification in

the first stage versus the second stage. In the second stage, functional form is directly tied

to the economics of the relationship of interest. The first stage, however, is used to isolate

plausibly exogenous variation in x. In the homogeneous effects framework, choosing the

first stage based on best fit or on economic grounds will simply affect the efficiency, while

with heterogeneous effects it will simply identify a different, and not necessarily preferred,

weighted average of the effect of interest.

3. Key Examples

In this section, we provide two examples to illustrate the potential for using a quadratic

of continuous instruments as discussed in section 2 to push forward economic analysis. The
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two papers considered, Becker and Woessmann (2009) and Acemoglu, Johnson, and Robin-

son (2001) were both well published (The Quarterly Journal of Economics and the American

Economic Review, respectively), utilize clever and innovative approaches to answer impor-

tant causal questions in economic development based on a continuous instrument, and have

data that is readily available to other researchers.

3.1. Becker and Woessmann (2009): Prussia, Protestants, and Prosperity

In Becker and Woessmann (2009) (BW), the authors explore the link between Protes-

tantism and economic prosperity in 19th century Prussia. In order to identify the causal

effect of Protestantism on economic outcomes, the authors take the innovative approach of

using the distance from Wittenberg as an instrument for Protestantism.

BW provide a set of 2SLS estimates based on the following general specification with

county-level data:

yi = α+ βPROTi + xiφ+ ui (3.1)

where yi is one of four human capital/economic outcomes

PROTi is the share of Protestants

xi is a set of demographic controls

The four outcomes they consider are: the Literacy Rate in 1871, the Income Tax per capita in

1877, Log Average Annual Income for Male Teachers in 1886, and the Average Population

Share in Non-agriculture in 1882. The instrument for the share of Protestants is always

the Distance from Wittenberg. Using this approach, BW find statistically and practically

significant effects of Protestantism on each outcome. The results are replicated in column

(1) of Table 3.1. For the literacy outcome, the coefficient implies an 18.9 percentage point

increase in literacy by moving from a county with no Protestants to all Protestants. BW note

that the effect on per capita Income Tax is roughly equivalent to 29.6% of the average income

tax in their data. Finally, an all-protestant county is estimated to have Log Teacher Pay

10.5% higher and have 8.2 percentage points higher non-agricultural workforce. These effects

are quite large and signify a meaningful role for Protestantism in 19th century economic

development for Prussia. Importantly for their identification strategy, the first stage F-

statistic for the instrument is over 74, which is suggestive of a strong first stage and is well
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above the Stock and Yogo (2002) rule of thumb of 10.

Table 3.1

Becker and Woessmann (2009) Replication and Extension
Linear Quadratic

Outcome Statistic 2SLS 2SLS LIML

Literacy Rate β̂ 0.1885*** 0.0932*** 0.0898***
s.e. (0.0280) (0.0205) (0.0246)
First Stage F 74.19 64.75
Overid p-value 0.0000
Z2 p-value 0.0000

Income Tax β̂ 0.5865** -0.0219 -0.0647
Per Capita s.e. (0.2326) (0.1829) (0.1996)

First Stage F 75.07 66.02
Overid p-value 0.0000
Z2 p-value 0.0000

Log Teacher Salary β̂ 0.1047** 0.0165 0.0123
s.e. (0.0493) (0.0392) (0.0406)
First Stage F 75.07 66.02
Overid p-value 0.0033
Z2 p-value 0.0000

Manufacturing β̂ 0.0821** 0.0336 0.0335
& Service Workers s.e. (0.0381) (0.0299) (0.0304)

First Stage F 75.07 66.02
Overid p-value 0.0337
Z2 p-value 0.0000

BW provide a number of sensitivity checks to support the validity and robustness of their

results. Here we add our proposed quadratic overidentification test. To help motivate the

potential for the quadratic first stage to provide additional information, Figure 3.1 provides

a scatter plot of the first stage relationship—Protestantism on Distance to Wittenberg—

as well as both linear and quadratic fitted lines. Clearly, the quadratic fit implies a very

different first stage relation than the linear suggesting that the two rely on different variation

in Protestantism for identification.

Starting with the Literacy outcome, we see the estimated effect of Protestantism fall

by half, from 18.9 percentage points to 9.3. Importantly, the overidentification test easily

rejects with a p-value zero to four decimal points. As we argued in the previous section,

this sensitivity to the choice of first stage requires additional investigation and caution when

interpreting the results. For the literacy outcome, the estimated effect using the quadratic

first stage is meaningfully different from the linear first stage; however, it is still positive and
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Figure 3.1: Becker and Woessmann (2009) First Stage Scatter Plot
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statistically different from zero. In the heterogeneous effects framework of the next section,

this may lead us to conclude that there is some heterogeneity in the return to Protestantism

but that the overall relationship is still intact. The quadratic-in-z 2SLS estimates for the

other outcomes are perhaps more worrisome, as they become much smaller and are no longer

statistically different from zero at conventional levels. For instance, the estimated effect on

per capita Income Tax changes sign and is only 3% as large as the linear-in-z estimate.

Allowing for heterogeneous effects in this case will lead to a very inconclusive picture of the

relationship between Protestantism and Income Tax in 19th century Prussia.

It is important to highlight three key points regarding the relevance and strength of the

added instrument, Distance to Wittenberg Squared. While the first stage F-stat does fall

when including the squared instrument, at 64.75 it is still well above 10 and indicative of

a strong first stage. In addition, the t-test for the coefficient on the squared distance is

a further test of the relevance of the squared term. The p-value for that test is 0.0000,

indicating that the squared term does help in predicting Protestantism. Finally, in column
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(3) we present the Quadratic LIML estimate as well. That the LIML estimate of 8.98

percentage points is very close to the 2SLS estimate is also suggestive that we have not

introduced a weak instrument problem.

3.2. Acemoglu, Johnson, and Robinson (2001): Settler Mortality, Institutions, and Devel-

opment

Acemoglu, Johnson, and Robinson (2001) (AJR) explore the role institutions play in

shaping economic development. AJR approach the problem of identifying the causal link

from institutions to growth by trying to isolate variation in present day institutions that is

driven by different conditions, measured by mortality rates, at the time of colonial settle-

ment.10

Using cross-sectional data on 64 countries, AJR estimate a series of regressions based on

the following second stage:

GDPi = α+ βRISKi + φLATi + ui (3.2)

where GDPi is Log GDP per Capita in 1995

RISKi is a measure of the protection from expropriation

LATi is the Latitude of the country

The key explanatory variable, the protection from expropriation, is measured on a scale from

0 (lowest protection) to 10 (highest protection) with a sample mean and standard deviation

of 6.5 and 1.5, respectively. Given the small sample size, AJR explore the robustness of

their results by considering different subsamples and additional, albeit limited, controls.

Column (1) of Table 3.2 displays the replication of a select set of AJR’s baseline estimates.

AJR present results both with and without the Latitude control showing little difference

in the estimates of β, however for space considerations we only display the estimates when

including Latitude. The coefficient estimate of 0.9957 found in row (1) for AJR’s base case

implies that a one standard deviation (1.5) increase in protection from expropriation leads

10The original AJR paper has been highly influential and has spurred a lengthy debate centered on the
quality of the data used and methodological considerations (See Albouy (2012) and Acemoglu, Johnson, and
Robinson (2012) for the published comment and reply). We focus here on the original data and estimation
methodology. In Appendix C, we comment on the broader debate by exploring the implications of using
higher order polynomials of the instrument with the alternative data and methods described in Albouy
(2012).
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to over a three-and-a-half-fold increase in per capita GDP (e(1.5)(0.9957) − 1 ≈ 3.5). This is

certainly a sizable difference driven by institutional differences. Rows (2) and (3) display

estimates based on subsamples excluding “NeoEuropes” (United States, Canada, Australia,

and New Zealand) and African countries, respectively. The coefficient estimate is larger

than the base case when excluding NeoEuropes and smaller when excluding Africa. Finally,

the relationship remains largely intact when including continent dummy variables. In all,

the estimates imply anywhere from a 75% to over a five fold increase in GDP per capita

from a one standard deviation increase in protection from expropriation.

Table 3.2

Acemoglu, Johnson, and Robinson (2001) Replication and Extension
Sample & Linear Quadratic
Specification Statistic 2SLS 2SLS LIML

Base β̂ 0.9957*** 0.7356*** 0.8740***
s.e. (0.2164) (0.1356) (0.1806)
First Stage F 13.09 11.33
Overid p-value 0.0098
Z2 p-value 0.0062

Excluding β̂ 1.2118*** 0.9938*** 1.1501***
Neo-Europes s.e. (0.3453) (0.2491) (0.3202)

First Stage F 7.83 5.25
Overid p-value 0.1151
Z2 p-value 0.1214

Excluding β̂ 0.5757*** 0.5698*** 0.5701***
Africa s.e. (0.1124) (0.1083) (0.1084)

First Stage F 21.61 11.75
Overid p-value 0.8386
Z2 p-value 0.2222

Base w/ β̂ 1.1071** 0.7019*** 0.8194***
Continent s.e. (0.4413) (0.1712) (0.2240)
Indicators First Stage F 3.46 5.28

Overid p-value 0.0760
Z2 p-value 0.0119

All specifications include latitude as an additional covariate

Figure 3.2 plots the first stage relationship from AJR, again showing scope for the

quadratic to provide a different source of variation from the linear first stage. In column

(2) of Table 3.2 we present our results from using the quadratic of the mortality rate in the

first stage. The overidentification test rejects at the 10% level for the base sample both with

and without continent dummies. In both cases the estimated coefficient is considerably
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Figure 3.2: Acemoglu, Johnson, and Robinson (2001) First Stage Scatter Plot
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smaller. For the base sample, the change in the point estimate suggests a drop from a

350% to roughly a 300% increase in per capita GDP for a one standard deviation increase

in protection from expropriation. The test for the sample excluding NeoEuropes does not

reject at common significance levels, but with a p-value of 0.12, it is not surprising that

the point estimates from the linear- and quadratic-in-z first stages are still quite different.

In all three cases, the results of the overidentification test and the comparison between the

original linear-in-z and quadratic-in-z estimates raises concerns over the interpretation of

the results However, there are questions about the first-stage strength, with F-stats either

below or barely above 10. Furthermore, the LIML estimates are all noticeably different from

2SLS, suggesting further caution.

Interestingly, the overidentification test fails to reject the null at any reasonable level

(p-value=0.84) for the subsample excluding Africa. In this case, the first stage F-stat is

just above 10 and the three estimates are all very close to 0.57 (corresponding to a 75%

increase in per capita GDP for a one standard deviation increase in protection). In this
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sense, the results for the Non-African subsample are perhaps the most robust to possible

violations of mean independence or misspecification. More generally, the fact that the

smallest estimates from the original set of sample sensitivity checks are the most robust to

first stage specification may be important for the conclusions that can be drawn. However,

overidentification tests can be misleading in the sense that we will tend to fail to reject the

null in the presence of bad instruments if the two instruments lead to similar biases. In this

case, we might fail to reject the null when the instrument is invalid if the true first-stage

relationship is approximately linear (i.e. the squared term is irrelevant once we control

for the linear effect). Indeed, the p-value for the test for the coefficient on the squared

instrument in the first stage is 0.22, although the small sample size certainly contributes to

the weaker results.

4. Heterogeneous Treatment Effects

In this section, we analyze our proposed overidentification test within the modern het-

erogeneous effects framework used to interpret IV estimates. In this setting, a rejection

of the overidentification test could result from estimating a different average partial effect.

Generally, this has led people to conclude that “overidentification testing...is out the window

in a fully heterogeneous world” (Angrist and Pischke (2009), pg. 166). However, in this

case, we only change the weights applied to each partial effect in a particular way that can

be estimated quite generally. If we proceed under the assumption that z is valid, we can

consider the particular nature of the heterogeneous effects needed to explain the change in

the point estimates. Explicitly, we derive and estimate the ratio of weights placed on partial

effects at different values of the instrument by the linear- and quadratic-in-z estimates. We

then use the estimated change in the weights at each value of z to uncover the pattern of

heterogeneous effects that would be needed to account for the change in the point estimates.

At the very least the required patterns may be economically interesting. Alternatively if the

patterns are inconsistent with economic theory, then it may raise doubts over the validity

of the instrument.
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4.1. General Framework

Our discussion will follow closely from the framework laid out in Angrist, Graddy, and

Imbens (2000) for continuous instruments.11 Adapting the Angrist, Graddy, and Imbens

(2000) setup to a more general case, we are interested in the effect of a possible endogenous

x on some outcome y and hope to use an instrument, z. At this point we adopt a very

general model for y and x:12

yi = yi(x, z) (4.1)

xi = xi(z)

where y, x, and z are scalars

Note, that this setup allows for individual specific relationships between y, x, and z. Our

interest lies in interpreting the 2SLS estimates found in section 2 based on the following

linear specification for y when the true model is given by (4.1):

yi = βxi + ui (4.2)

If we denote the first stage function of the instrument by g(z), then under the assumptions

outlined in Appendix B.1, Angrist, Graddy, and Imbens (2000) show that the IV estimator

based on the ratio of covariances between y and g(z) and x and g(z)— the probability

limit of a 2SLS estimate of β from (4.2)— can be expressed as the weighted average of

heterogeneous partial effects:

βg =
Cov(yi, g(zi))

Cov(xi, g(zi))
=

∫
β(z) · λg(z)dz (4.3)

11We chose to follow the Angrist, Graddy, and Imbens (2000) setup over the alternative heterogeneous
effects framework of Heckman, Urzua, and Vytlacil (2006) for a few reasons. First, our main goal in the
current paper is to add to the heuristic arguments for instrument choice commonly made in applied literature,
rather than provide an alternative heterogeneous effects estimate. The Heckman, Urzua, and Vytlacil (2006)
approach may be better suited for the latter. However their approach is framed in terms of heterogeneity
across the distribution of unobservables in an underlying selection equation, while the Angrist, Graddy,
and Imbens (2000) setup is based on heterogeneity across the instrument distribution. This focus on the
heterogeneity in terms of the instrument is clearly better suited to our goal. Additionally, the Heckman,
Urzua, and Vytlacil (2006) focus on the propensity score for binary treatment is less appropriate for the
current setting given our examples with continuous endogenous variables.

12Here we work through the case with no additional covariates. In Appendix B.4, we discuss the extension
with covariates.
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The partial effects, β(z) take the following form:

β(z) = E

[
∂y

∂x
(xi(z))

]

Note that the average partial effect β(z) is the expectation over the partial effects of x on

y across all units for a given value of z. That is, β(z) is an average of unit-specific partial

effects at potentially different levels of x. The motivation for Angrist and Pischke’s comment

that overidentification testing is uninformative in the heterogeneous effects setting can be

seen here. In the traditional use of overidentification tests, researchers compare two distinct

instruments. As a result, the β(z) that we are averaging over will be different, implying a

completely different estimand. By focusing on different functions of the same instrument the

underlying partial effects we are averaging, the β(z), are unchanged allowing us to extract

useful information from an overidentification test.

To simplify notation, we normalize x and z to have mean zero. We show in Appendix

B.1 that after demeaning we can write the weights, λ(z), as follows:

λg(z) =
∂x
∂z (z) · E [g(ζ)|g(ζ) > g(z)]Pr (g(ζ) > g(z))

Cov(xi, g(zi))
(4.4)

Expressed this way, the weight consists of two main components, one determined by the form

of the chosen first stage, g(z), and the other the true partial effect of z on x. This second

term, ∂x/∂z, represents the heterogeneous responses to the instrument. Larger responses

are given more weight, a concept closely tied to the characterization of Always Takers,

Never Takers, and Compliers in the binary treatment and instrument setting. Just as in the

binary case, the IV estimate (regardless of first stage choice) will be a weighted average for

compliers only (∂x/∂z 6= 0). Always Takers and Never Takers, units not induced to change

x when z changes (∂x/∂z = 0), will not contribute to the estimates no matter the choice of

g(·) as can be seen from equation (4.4).

From here we can derive a very general result for the ratio of the weights when using

two different first stage functions, g1(z) and g2(z):

λ2(z)

λ1(z)
=

[
Cov (xi, g1(zi))

Cov (xi, g2(zi))

] [
E [g2(ζ)|g2(ζ) > g2(z)] · Pr(g2(ζ) > g2(z))

E [g1(ζ)|g1(ζ) > g1(z)] · Pr(g1(ζ) > g1(z))

]
(4.5)

Since we consider different functions of the same instrument, ∂x/∂z, cancels out in the
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ratio. With different instruments, the other components of the estimator, β(z) and ∂x/∂z,

would change as well. Importantly, since these two components represent the very general

relationships that underlie our estimates, this implies we do not need to make any further

assumptions on the true model in order to compare the weights using different first stage

functions.

Estimating the weight ratio is fairly straight forward.13 We simply calculate the sample

analogue to the conditional expectations, probabilities, and covariances. For any value of z

we can use the fitted values from the first stage, denoted ĝ(z), to estimate each component.

We must order the observations by ĝ(z) to estimate the conditional expectation as the mean

of ĝ(z) for all observations with a larger ĝ(z). We can also estimate the probability as the

fraction of observations with a larger fitted value. Finally, we can estimate the covariances

quite generally by using the corresponding sample covariances.

Once more, we are not asserting a preference for the quadratic over the linear first stage.

In the current context, it is not clear which set of weights are preferred, rather we simply

want to exploit the differences to learn more about the instrument and the economic effect

of interest in the second stage.

4.2. Empirical Example: Distance to Wittenberg

In order to illustrate the usefulness of the above approach, we return to the the example

in section 3 from Becker and Woessmann (2009) looking at how the spread of Protestantism

affected social and economic outcomes in 1800s Prussia. Once more, the key to the identi-

fication strategy is to use the distance from Wittenberg as an instrument for the fraction

of a county that was protestant. We start with a simplified case using the basic setup from

BW to estimate the effect of Protestantism on literacy, but omitting the additional control

variables. To be clear, this does not represent BW’s preferred approach and is done to

provide a cleaner interpretation and illustration of the information that can be gathered by

estimating the weight ratios.14 Without covariates, the linear-in-z estimate is β̂1 = 0.42

while the quadratic-in-z is β̂2 = 0.15.

13Both Angrist, Graddy, and Imbens (2000) and Heckman, Urzua, and Vytlacil (2006) provide estimates
of IV weights in the discrete case, but not in the continuous case. Our focus on the weight ratios avoids
making semi-parametric assumptions on the x-z relationship. For instance, in the supplementary material
for Heckman, Urzua, and Vytlacil (2006), they use a series of linear projections and Probit models to
approximate and estimate weight components in the binary treatment case.

14Appendix B.4 discusses the case with covariates.
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In Figure 4.1,15 we plot the estimated weight ratio for all observed values of z, omitting

those in the far right tail as they are quite large and obscure the general pattern.16 The

figure is helpful for making comparisons between the two estimators at a given value of z.

If the weight ratio is above one, the quadratic-in-z estimate places more weight on the β(z)

at that value of the instrument while if it is below one the opposite is true. Comparisons

across values of the instrument are more difficult since the absolute magnitudes of the

weights depend on ∂x/∂z, a term that cancels out in the ratio.

Figure 4.1: Becker and Woessmann (2009) IV Weight Ratio without Covariates
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Estimated weight ratios based on the sample analogue of equation (4.5). For each observed value of z, we
use the fitted values for the linear and quadratic first stages— ĝ1(z) and ĝ2(z)— to estimate the sample
mean, probabilities, and covariances.

15Figure B.1 in Appendix B.2 depicts the same weight ratios with bootstrapped 95% confidence intervals
(CI).

16Note that very large weight ratios are not, in-and-of-themselves a sign of unreasonable weights. For
instance, the very small weight ratios in Figure 4.1 near 425km would be very large if we presented the linear-
to-quadratic ratio instead. Indeed, in Appendix B.3 we provide evidence that the large quadratic-to-linear
weight ratios are not due to particularly unreasonable weights for either estimator based on a comparison
of the components of the weight ratio.
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Here we see that the quadratic first stage puts more weight on partial effects of Protes-

tantism on literacy for counties that are either less than 100km or more than 525km from

Wittenberg than the linear first stage. For instance, partial effects tied to counties 600km

from Wittenberg are given roughly double the weight by the quadratic-in-z estimate than

the linear-in-z. The overall impact of this doubling of the weights on the final estimate de-

pends on the level of “compliance” with the instrument, captured by ∂xi/∂z, at 600km from

Wittenberg.17 Considering the overall pattern of weights seen in Figure 4.1 and assuming

z is a valid instrument, it must be the case that the partial effects are on average smaller

for counties when they are either very close to or farther away from Wittenberg in order

to explain why β̂2 < β̂1. An interesting question that emerges from this is whether there

is a sensible economic rationale for such a relationship to exist. That is, why might the

changes in Protestantism driven by changes in distance from Wittenberg have more bite at

intermediate distances? The following section discusses a procedure to further exploit first

stage nonlinearities to uncover more about the pattern of heterogeneity to better address

this issue.

4.3. Exploring the Pattern of Heterogeneity

While the pattern implied by the weight ratios begins to provide insight into the nature

of heterogeneity, ideally we would like to be able to identify partial effects at different values

of the instrument. This can be difficult when allowing fully for heterogeneity, however we

propose a simple procedure to reveal more about the structure of heterogeneity. We view

this as an exploratory descriptive approach, rather than a more formal estimation technique.

Our goal is to help inform the heuristic arguments for instrument choice by describing and

assessing the economic sensibility of the implied pattern of partial effects that is consistent

with instrument validity.

One way to explore heterogeneity in partial effects of x on y at different z is to partition

the sample based on the instrument and estimate separate 2SLS regressions in each region

of the instrument distribution. Choosing how to partition the data is the key consideration.

Rather than making an arbitrary choice, we choose to divide the data into equal size groups

until the squared instrument is no longer significant at the 5% level within any of the regions.

17For instance, if these counties are approximately Always or Never Takers (∂x/∂z ≈ 0), then doubling
the weight will have no effect on the final estimate.
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That is, we first split the data at the median of the instrument distribution and test the

hypothesis that the coefficient on z2 in each region is zero. If it is significant in either

region (above or below the median), we then split the sample again into terciles and so on.

In the BW case, this leads us to partition the sample into quartiles of the distance from

Wittenberg. This approach is appealing as it separates the sample into equal sized groups

where the first stage is approximately linear so that the choice of first stage becomes less

likely to yield different results. Of course, estimating by 2SLS still gives a weighted average

of the partial effects within each region.

Figure 4.2 displays the 2SLS coefficient estimates and 95% confidence intervals for three

outcomes: Literacy Rate, Log Teacher Salary, and the Share of Manufacturing and Service

workers.18 Across all three outcomes, we find positive estimated effects of Protestantism in

areas very close to Wittenberg. However, the point estimate is only statistically significant

from zero at the 5% level for the Literacy Rate. In each case, the estimated effects become

negative and imprecise at intermediate distances.19 Farthest from Wittenberg, the estimates

are smaller in magnitude but still negative and statistically significant.

Importantly these patterns are consistent with the estimated weight ratios and the orig-

inal linear and quadratic-in-z estimates. For example, if we consider the Log Teacher Salary

outcome, the original linear-in-z estimate was large and positive and the quadratic-in-z was

close to zero. Panel B of Figure 4.2 suggests that the effects of Protestantism are positive

close to Wittenberg and negative farther way. By placing more weight on counties far away

(see figure 4.1) the quadratic puts more weight on the negative partial effects and less on

the positive, resulting in a weighted average much closer to zero.

The main point of this section has been to ascertain patterns of heterogeneous effects that

are consistent with the significant difference we found in the quadratic-in-z versus linear-

in-z 2SLS estimates. A key question now is whether these patterns make economic sense.

Much like the case when the difference between IV and OLS estimates goes in the opposite

direction of what was expected (e.g IV returns to education are larger than presumably

upward biased OLS estimates), it is important to consider a sensible economic story for

18The fourth outcome, Income Tax per Capita, is excluded as missing data leads to a smaller sample and
different first stage.

19Note that the imprecisely estimated relationship in the third quartile is not driving any of the full sample
results. Indeed, omitting the third quartile of the instrument distribution yields very similar linear- and
quadratic-in-z estimates of 0.48 and 0.19— compared to the estimates with no covariates of of 0.42 and 0.15
noted above.
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why this is the case (e.g. instruments used for returns to schooling affect those with the

highest marginal cost of schooling and, therefore, the highest return on the margin). Here,

it would be necessary to explain why counties close to Wittenberg had positive effects from

Protestantism while those farthest away were, contrary to the motivating story, adversely

affected.
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5. Literature Survey and Extension

The examples discussed in Section 3 were chosen because they illustrate cases in which

using the quadratic in a continuous instrument lead to qualitatively different results. Here,

we survey the results of replicating and applying our procedure to a larger set of objectively

chosen examples. This survey will help to establish the relevance of our procedure more

broadly and help to highlight the range of results one might find in applying the quadratic

overidentification test.

In order to collect a sufficient set of papers in an objective way, we used the American

Economic Association (AEA) online journal search. This search includes the American

Economic Review and the four American Economic Journal field journals: Applied, Macro,

Micro, and Policy. The papers considered were chosen based on the following criteria:

1. Found by searching“instrument”

2. Have at least one estimate using 2SLS where there was one endogenous regressor and

one continuous instrument

3. Data was available on the AEA website

This selection criteria yielded thirteen separate papers published between 2008 and 2013,

each containing multiple examples.

For each paper, an estimate was replicated if it met our key criteria. However, since it

is common to explore different sets of control variables while trying to estimate the same

fundamental relationship with the same instrument, we only replicated one estimate for

every y-x-z pairing. We attempted to select a “baseline” or preferred specification for each

y-x-z pair. As a caveat, when a preferred specification was not made explicit in the paper,

we used our own judgment. For instance, we might choose a specification as the baseline

if it was used in subsequent sensitivity analysis. Importantly, the choice of specification

was made before any replication was done to avoid making selections based on the results

of the overidentification test. We argue that this procedure, while requiring some, possibly

subjective, decisions on our part maintains objectivity for the purposes outlined above.

5.1. Replication and Extension Results

Appendix A provides brief summaries of each paper, highlighting the IV strategy used

and main findings. Appendix Table A.1 displays the results of our replication and extension
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exercise. Despite limiting the analysis to one estimate per y-x-z pair, the table contains 148

separate examples relying on 54 unique first stages.20 The 148 estimates are based on 105

outcome variables, 24 endogenous regressors, and 18 instruments across the thirteen papers.

Rather than discuss each paper in depth, we choose to provide summary measures of the

test results and to discuss a few cases that highlight a range of interesting results and key

considerations for applying the quadratic overidentification test.

5.1.1. Overidentification Test Rejects

The motivating point of this exercise is to use the overidentification test to find cases

in which the quadratic-in-z first stage gives statistically different estimates of the effect of

interest. We see several cases of this across papers. The following papers have at least one

specification in which the p-value for the overidentification test is less than 0.10: Alesina and

Zhuravskaya (2011), Ananat (2011), Becker, Hornung, and Woessmann (2011), Brown and

Laschever (2012), Chou et al. (2010), Dinkelman (2011), Lipscomb, Mobarak, and Barham

(2013), and Werker, Ahmed, and Cohen (2009). Table 5.1 summarizes the results across the

thirteen papers. Of the 148 separate estimates, there were 29 rejections of the null for the

overidentification test at the 10% level. Of these 29 rejections, 18 occurred in conjunction

with the residualized squared instrument being statistically significant in the first stage

at the 10% level. These 18 cases are found across four separate papers and represent

the strongest cases for using the quadratic first stage. That 11 of the overidentification

rejections are not associated with a statistically significant residualized squared instrument

undermines the results in these cases. However, overidentification rejection still implies that

the introduction of the squared instrument does alter the first stage enough to change the

estimate of the coefficient of interest in a statistically significant way and warrants additional

attention.21

Note that the total number of possible tests of z2 is equal to the number of unique first

stages. That is, in 24 of 54 cases we find evidence that the additional instrument helps

20The number of unique first stages in a paper will depend on the number of x-z pairs, as well as the
number of different samples in which that pair was used. The samples may differ for economic reasons, for
instance running separate regressions on Black and White subsamples, or due to differential missing data
when considering different outcome variables.

21Note that these 11 cases stem from only 7 unique first stages and the list is based on the strict cut-off
at the 10% level. Interestingly, the overidentification rejections not associated with a statistically significant
z2 do not seem to be due purely to adding a weak instrument as the tests also reject when using the LIML
estimates.
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in predicting the endogenous regressor.22 Of these 24 cases, eleven are associated with at

least one overidentification rejection. The 24 unique first stages come from seven of the

thirteen papers. In turn, four of the seven papers have a statistically significant squared

term associated with an overidentification rejection. Importantly, this summary does not

take into account that many of the outcome variables may be highly correlated with each

other, yielding similar overidentification test results.

Table 5.1

Summary of Test Results by Paper
Test Rejections 10%

Total First Variables Overid
Paper Estimates Stages Y X Z Overid Z2 & Z2

Acemoglu et al. 2 2 1 1 2 0 1 0
Alesina et al. 18 3 6 3 3 1 1 0
Ananat 24 3 24 1 1 2 2 1
Becker et al. 8 2 4 2 1 3 1 3
Brown et al. 6 6 1 6 1 1 3 0
Chodorow-Reich et al. 4 2 4 1 1 0 0 0
Chou et al. 8 8 4 2 1 1 0 0
Collins et al. 10 4 10 1 1 0 0 0
Dinkelman 13 5 13 1 1 3 5 3
Hunt et al. 2 2 1 2 2 0 0 0
Lipscomb et al. 20 4 20 1 1 5 0 0
Saiz et al. 1 1 1 1 1 0 1 0
Werker et al. 32 12 16 2 2 13 10 11

Total 148 54 105 24 18 29 24 18

Test results compiled from replication and extension exercise found in Appendix Table A.1.

Allowing for heterogeneous effects, the importance of these rejections depends on the

change in the magnitudes of the point estimates. There are several cases where the difference

seems important, such as in Werker, Ahmed, and Cohen (2009), where the implied marginal

effect of foreign aid as a percent of GDP on Non-capital Imports increases by nearly 0.3

percent of GDP. To provide a sense of how important the difference in point estimates is, we

calculate the absolute value of the percentage change in the estimate going from the linear

to quadratic first stage. Figure 5.1 displays the distribution of these percentage changes

22Obviously, it may be possible for higher order terms of the instrument to be statistically significant even
when the squared term is not. We restrict focus here on the square to provide a uniform analysis across
cases. Importantly, the squared term tends to do well empirically at picking up nonlinearities even if higher
order terms may improve the fit.
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separately for cases where we do not (left hand figure) or do (right hand figure) reject the

null in the overidentification test. In each case, we present the fraction of estimates that fall

within ten percentage point bins.

Figure 5.1: Change in Estimates by Overidentification Rejection
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Absolute value of the percentage change in estimates going from a linear to quadratic first stage for the
thirteen papers presented in Table 5.1. The histograms depict the fraction of estimates falling in ten
percentage point bins separately for cases where the overidentification test rejects at the ten percent level
and does not reject.

Starting with the cases where the overidentification test rejects, displayed in the right

hand side of the figure, we see that in every case the change in the estimate is greater

than ten percent. In contrast, nearly sixty percent of the cases that do not reject the

overidentification test are associated with changes in the point estimate of less than ten

percent. We also see several cases where the percentage change is substantial, well over fifty

percent, when the overidentification test rejects the null. It is worth noting that we also

observe a few cases of quite large changes in the estimates (over one-hundred percent) even

when the overidentification test does not reject the null. Such cases likely deserve additional
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consideration, as the qualitative conclusions are not robust to the first stage specification.

In sum, the differences in estimates uncovered here due to a simple change in how the first

stage is specified may prove to be important more generally.

5.1.2. Significant z2 and Overidentification Test Does not Reject

It is equally interesting when a significant squared instrument is not associated with

overidentification rejection as this provides additional support for the linear-homogeneous

effects model estimated under mean independence. In addition, the inclusion of the sig-

nificant squared term may improve the precision of the 2SLS estimates. For example, in

Ananat (2011) the standard error for the estimate of β falls when looking at the “Median

Rent for Whites” outcome. This results in the estimate passing the threshold from a 5%

significance level to 1%, while the estimate itself stays relatively unchanged. Perhaps more

importantly, the 95% confidence interval shrinks from [-1170.948, -101.9589] to [-979.3989,

-277.4901]. Such a gain in precision is nontrivial when considering the conclusions that can

be drawn from the analysis.

5.1.3. Weak Instruments

It is important to consider whether we have introduced or exacerbated a weak instru-

ments problem by adding the squared instrument. If we consider the results for the Dinkel-

man (2011) paper, we see that for the outcome “Change in Household Electrical Use” the

estimate falls from 0.6350*** (0.2256) to 0.3576** (0.1408). However, we might be con-

cerned with weak instruments given the first stage F-stat of 6.02 in the quadratic-in-z case.

A quick glance at the LIML estimate confirms this concern, with β̂Q,LIML = 0.6724. Com-

paring all three point estimates, we see that the LIML estimate is quite close to the original

linear-first-stage 2SLS estimate.

Importantly, it is not always the case that a low quadratic first stage F-stat is associated

with large differences between 2SLS and LIML. For instance, the Brown and Laschever

(2012) estimate for the effect of current year peer retirement on retirement decisions is

0.0219*** (0.0051) when estimated by 2SLS and 0.0220*** (0.0051) when estimated by

LIML, despite a quadratic first stage F-stat of only 5.29.

Furthermore, even cases with a relatively strong first stage F-stat, may exhibit mean-

ingful differences in the point estimates between 2SLS and LIML. For instance, several

of the specifications in Lipscomb, Mobarak, and Barham (2013) are sensitive to the the
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2SLS/LIML choice despite a relatively strong F-stat of 41.77. It is important to note that

the F-stat is sensitive to the choice of standard error estimates.

5.1.4. Review Summary

While certainly not exhaustive, the above literature review illustrates the potential for

considering alternative first stage specifications as an additional sensitivity analysis. The

fact that eight out of thirteen papers had at least one rejection suggests that the application

of the quadratic overidentification test may be fruitful more generally. As we have argued

previously, such cases require additional caution and care in justifying the validity of the

instrument. When a strong case for validity can be made, a heterogeneous effects analysis

like that in section 4 can provide a more nuanced understanding of the economic relationship

being studied.

6. Conclusion

We have explored the use of quadratic first stages to generate overidentifying restric-

tions when using continuous instruments in order to test the sensitivity of IV results to

the choice of first stage. In applying this test to fifteen separate papers, we find many

cases in which the overidentification test is suggestive of both statistically and economically

meaningful differences in the estimated coefficients. We then show how to characterize the

difference between the two estimates by the ratio of weights applied to average partial effects

at different values of the instrument. Furthermore, these weight ratios are shown to be gen-

erally estimable without imposing additional assumptions. The estimated weight ratios can

then be combined with the point estimates to provide additional insight into the economic

relationship of interest.

Ultimately, how one should interpret the rejection is somewhat case specific. Regardless

of approach, finding that higher order terms alter the conclusions drawn is both statistically

and economically interesting. Either additional caution or justification for the instrument is

needed or there are interesting heterogeneous effects to explore. While a failure to reject the

null with the overidentification test is both encouraging, as it points to a potentially valid

instrument, and intriguing, as it suggests generally homogeneous effects, it is not foolproof.

Indeed, overidentification tests may fail to reject the null due to low power or if the two

estimates have similar biases. In this case, the test may fail to reject even with an invalid
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instrument if the underlying relationship between x and z is approximated well by a linear

specification, leaving little room for the higher order terms to predict x. Despite these

caveats, the incredibly low cost of implementing our approach coupled with the potential

benefits outlined here to further economic analysis make it appealing as a common sensitivity

check to be undertaken by researchers using 2SLS.
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Appendix A. AER and AEJ Replication Details

Appendix A.1. Brief Paper Summaries

We begin with a set of very brief summaries of each paper and then proceed to look at

the results of our exercise. In each summary, we highlight the relevant IV strategy.

Appendix A.1.1. Acemoglu et al. (2008)

Acemoglu et al. explore the relationship between income levels and measures of democ-

racy across countries. The pertinent IV strategy consists of regressing the Freedom House

measure of democracy on the log of GDP per capita from five years prior. They consider two

instruments: the savings rate from ten years prior and a measure of world income that has

been weighted based on the trade patterns for a particular country. On the whole, they find

little evidence of a causal link between income and democracy, despite the raw relationship

between the two in the data.

Appendix A.1.2. Alesina and Zhuravskaya (2011)

Alesina & Zhuravskaya consider the potential effect of ethnic, religious, and linguistic

segregation on the quality of government. The authors consider these segregation effects

separately and examine several different outcomes. The instruments used for the three segre-

gation measures are predicted segregation based on the composition of people’s background

in neighboring countries. They find evidence that countries that are more ethnically and

linguistically segregated also tend to have lower quality government.

Appendix A.1.3. Ananat (2011)

Ananat looks for causal evidence of the negative link between racial segregation and the

characteristics of the population. Ananat considers a range of economic outcomes related to

education, migration, and income. The instrument for segregation is a segregation Herfind-

ahl index derived from the alignment of train tracks in the 19th century. The author finds

that segregation leads to higher rates of poverty for Black and larger Black-White income

gaps, while lowering poverty rates for White and decreasing inequality within the White

population
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Appendix A.1.4. Becker, Hornung, and Woessmann (2011)

Becker et al. look at the role formal education may have played in the industrial revo-

lution using historical data from Prussia. The authors regress several measures of factory

employment (from 1849 or 1882) on contemporaneous measures of education (years of school-

ing or literacy rates), using school enrollment from 1816 as an instrument. They find that

education was strongly related to industrialization.

Appendix A.1.5. Brown and Laschever (2012)

Brown & Laschever estimate the effect of peer retirement decisions on ones own choice to

retire using administrative data on teachers from Los Angeles. The main empirical approach

is to regress a retirement indicator on various peer retirement measures. The authors use

the sum (across one’s peers) of unexpected changes in pension wealth driven by reforms as

an instrument for the peer retirement variables. They find evidence that peer retirement in

the previous year increases the probability of retirement for an individual.

Appendix A.1.6. Chodorow-Reich et al. (2012)

In this paper, Chodorow-Reich et al. look for evidence that transfer payments made

by the government during a recession have a positive impact on employment. Using trans-

fers summing to $88 billion made by the US government to states in 2009, they regress

employment outcomes for states on the per person payment associated with the transfer

scheme. To address the possible endogeneity of the payment amounts to current economic

conditions, the authors use prior Medicaid spending as an instrument for the transfer since

this spending determined a portion of the transfer. They find evidence that these transfers

did increase employment.

Appendix A.1.7. Chou et al. (2010)

Chou et al. focus on the connection between a child’s health and the education of their

parents in Taiwan. The authors regress measures of early child health on parent’s years of

schooling. They exploit the large scale building of over 150 new schools in 1968 to create

an instrument for parental schooling based on the local intensity of the school expansion

program experienced by the parent. Using this approach, the authors find evidence that

parental schooling does have a positive effect on health outcomes of young children.
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Appendix A.1.8. Collins, Shester et al. (2013)

This paper explores the effect of a program in the US that cleared poverty stricken urban

areas to allow for redevelopment after World War II. The main estimation technique involves

regressing local measures capturing labor market, housing, and population characteristics

on the amount of funding from the urban renewal program. As an instrument for the

funding variable, the authors use variation in the timing of State-level legislation allowing

for agencies to acquire property for private development via eminent domain. By adopting

this approach, the authors estimate positive effects of the program on the economic outcomes

they consider.

Appendix A.1.9. Dinkelman (2011)

Dinkelman estimates the effect of electrification on employment in a developing context

using data from South Africa. The author regresses measures of employment and home

production on the availability of electricity due to a large scale electrification program. In

order to address the possible endogeneity of the roll-out of electricity, Dinkelman uses a

measure of the land gradient as an instrument exploiting the fact that expansion of the

electrical grid is less costly on flatter terrain. Dinkelman finds evidence that the access

to household electricity increased hours worked while increasing male wages but reducing

female wages.

Appendix A.1.10. Hunt and Gauthier-Loiselle (2010)

Hunt & Gauthier-Loiselle consider the relationship between immigration and innovation

in the US by regressing log patents per capita on the population share of skilled immigrants.

To instrument for the skilled immigrant share, the authors predict the skilled immigrant

share based on the historical distribution of immigrants across states from 1940. The authors

find a large, positive effect of increasing the population share of skilled immigrants on

patents.

Appendix A.1.11. Lipscomb, Mobarak, and Barham (2013)

Lipscomb et al. look at the effect of electrification on a host of economic outcomes

in Brazil. The pertinent regressions involve regressing one of these economic measures on

electric availability using predicted availability as an instrument. The predicted availability
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is based on differences in the infrastructure investment costs due to geographic concerns.

This approach leads to positive estimates of electrification on economic outcomes.

Appendix A.1.12. Saiz and Wachter (2011)

Saiz & Wachter are interested in estimating the relationship between immigration and

neighborhood-level economic outcomes. To do so, they regress a measure of neighborhood

property value on the foreign born population using the predicted population based on

a geographic diffusion “gravity pull” model as an instrument. The results suggest that

increased immigration leads to slower increases in housing prices.

Appendix A.1.13. Werker, Ahmed, and Cohen (2009)

Werker et al. look at how foreign aid is spent by receiving countries by examining

transfers from oil-rich OPEC countries to poorer Muslim countries. The authors consider a

large number of trade, production, consumption, and price outcomes and focus on the effect

of both current and lagged foreign aid as a percentage on GDP. As an instrument for foreign

aid, they use oil prices interacted with a Muslim country indicator. Using this approach,

they find a positive effect of aid on GDP but little effect on growth or prices.
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Appendix A.2. Replication Tables

As a space-saving measure, we adopt the convention of referring to dual-authored papers

with “et al.” in the table. We identify each estimate by the Authors, the outcome (Y), the

endogenous explanatory variable (X), and the instrument (Z). For each y-x-z pair, we report

the coefficient estimates (β̂) and standard errors (SE) for the linear-in-z 2SLS, quadratic-

in-z 2SLS, and quadratic-in-z LIML estimators. We also report the first stage F-stat (F),

the p-value from the overidentification test (Overid p), and the p-value from the t-test for

the coefficient on the squared instrument (Z2 p).

Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Acemoglu Y: Democracy Measure β̂ -0.1196 -0.1238 -0.1247

et al. (2008) X: Lag Ln GDP/Cap SE (0.0968) (0.1017) (0.1026)

Z: Trade Wghtd World Inc F 26.53 58.9

Overid p 0.4797

Z2 p 0.7699

Y: Democracy Measure β̂ -0.0205 -0.0119 -0.012

X: Lag Ln GDP/Cap SE (0.0743) (0.0716) (0.0717)

Z: 2nd Lag Savings Rate F 24.68 15.99

Overid p 0.6834

Z2 p 0.0064

Alesina Y: Control Corruption β̂ -1.7725*** -1.7648*** -1.7650***

et al. (2011) X: Ethnic Segregation SE (0.5911) (0.6433) (0.6433)

Z: Predict X: Border Comp F 15.59 8.17

Overid p 0.9428

Z2 p 0.5518

Y: Control Corruption β̂ -1.2882 -0.9533 -0.9612

X: Linguistic Segregation SE (0.8916) (0.9089) (0.9450)

Z: Predict X: Border Comp F 8.39 5

Overid p 0.3163

Z2 p 0.0572

Y: Control Corruption β̂ -1.1084 -0.5165 -0.5514

X: Religious Segregation SE (1.7828) (1.5146) (1.5704)

Z: Predict X: Border Comp F 16.08 9.77

Overid p 0.3375

Z2 p 0.1588

Y: Gov Effectiveness β̂ -2.1435*** -2.1875*** -2.1962***

X: Ethnic Segregation SE (0.5973) (0.6621) (0.6651)

Z: Predict X: Border Comp F 15.59 8.17

Overid p 0.676

Z2 p 0.5518
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Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Y: Gov Effectiveness β̂ -1.4740* -1.241 -1.2582

X: Linguistic Segregation SE (0.7698) (0.7847) (0.7993)

Z: Predict X: Border Comp F 8.39 5

Overid p 0.3715

Z2 p 0.0572

Y: Gov Effectiveness β̂ -1.1385 -0.5208 -0.5767

X: Religious Segregation SE (1.8206) (1.5319) (1.6033)

Z: Predict X: Border Comp F 16.08 9.77

Overid p 0.3187

Z2 p 0.1588

Y: Political Stability β̂ -3.6463*** -3.6662*** -3.6674***

X: Ethnic Segregation SE (1.3067) (1.2817) (1.2824)

Z: Predict X: Border Comp F 15.59 8.17

Overid p 0.8919

Z2 p 0.5518

Y: Political Stability β̂ -2.9193*** -3.1224*** -3.1428***

X: Linguistic Segregation SE (0.7932) (0.8758) (0.8867)

Z: Predict X: Border Comp F 8.39 5

Overid p 0.5199

Z2 p 0.0572

Y: Political Stability β̂ -2.1257 -3.0109 -3.1913

X: Religious Segregation SE (2.1052) (2.3062) (2.4634)

Z: Predict X: Border Comp F 16.08 9.77

Overid p 0.0877

Z2 p 0.1588

Y: Regulatory Quality β̂ -2.0962* -2.2975** -2.4452**

X: Ethnic Segregation SE (1.1122) (1.0959) (1.1650)

Z: Predict X: Border Comp F 15.59 8.17

Overid p 0.1663

Z2 p 0.5518

Y: Regulatory Quality β̂ -1.9511 -1.9745* -1.9748*

X: Linguistic Segregation SE (1.1878) (1.1040) (1.1042)

Z: Predict X: Border Comp F 8.39 5

Overid p 0.9427

Z2 p 0.0572

Y: Regulatory Quality β̂ 0.9667 1.1392 1.1403

X: Religious Segregation SE (1.8284) (1.7249) (1.7303)

Z: Predict X: Border Comp F 16.08 9.77

Overid p 0.741

Z2 p 0.1588
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Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Y: Rule Law β̂ -2.4666*** -2.5561*** -2.5896***

X: Ethnic Segregation SE (0.6145) (0.6746) (0.6888)

Z: Predict X: Border Comp F 15.59 8.17

Overid p 0.4133

Z2 p 0.5518

Y: Rule Law β̂ -1.7969** -1.7456** -1.7464**

X: Linguistic Segregation SE (0.7048) (0.7472) (0.7479)

Z: Predict X: Border Comp F 8.39 5

Overid p 0.8134

Z2 p 0.0572

Y: Rule Law β̂ -0.8699 -0.5569 -0.5669

X: Religious Segregation SE (1.7784) (1.6053) (1.6235)

Z: Predict X: Border Comp F 16.08 9.77

Overid p 0.5756

Z2 p 0.1588

Y: Voice & Accountability β̂ -1.2805 -1.258 -1.2581

X: Ethnic Segregation SE (0.9487) (0.9170) (0.9180)

Z: Predict X: Border Comp F 15.59 8.17

Overid p 0.8507

Z2 p 0.5518

Y: Voice & Accountability β̂ -2.6487*** -2.3073*** -2.3588***

X: Linguistic Segregation SE (0.8268) (0.8144) (0.8518)

Z: Predict X: Border Comp F 8.39 5

Overid p 0.2559

Z2 p 0.0572

Y: Voice & Accountability β̂ 0.5506 0.7959 0.7989

X: Religious Segregation SE (1.8802) (1.6262) (1.6371)

Z: Predict X: Border Comp F 16.08 9.77

Overid p 0.6862

Z2 p 0.1588

Ananat (2011) Y: College Grads: Blk β̂ -0.2969 -0.2997 -0.2997

X: Segregation SE (0.2153) (0.2040) (0.2040)

Z: Segregation Herf F 13.18 11.7

Overid p 0.9626

Z2 p 0.2164

Y: College Grads: Wht β̂ -0.1403 -0.2131 -0.2158

X: Segregation SE (0.1496) (0.1568) (0.1611)

Z: Segregation Herf F 15.07 12.58

Overid p 0.2463

Z2 p 0.0974
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Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Y: HS Dropouts: Blk β̂ 0.4310** 0.3262* 0.3259*

X: Segregation SE (0.1979) (0.1932) (0.1966)

Z: Segregation Herf F 13.18 11.7

Overid p 0.0879

Z2 p 0.2164

Y: HS Dropouts: Wht β̂ -0.144 -0.0852 -0.0919

X: Segregation SE (0.1466) (0.1064) (0.1115)

Z: Segregation Herf F 15.07 12.58

Overid p 0.3408

Z2 p 0.0974

Y: HS Grads: Blk β̂ 0.6520** 0.5930* 0.5945*

X: Segregation SE (0.3281) (0.3350) (0.3363)

Z: Segregation Herf F 13.18 11.7

Overid p 0.5181

Z2 p 0.2164

Y: HS Grads: Wht β̂ 0.4580*** 0.4445*** 0.4447***

X: Segregation SE (0.1719) (0.1347) (0.1349)

Z: Segregation Herf F 15.07 12.58

Overid p 0.8667

Z2 p 0.0974

Y: In-migrants: Blk β̂ -0.2705** -0.2835*** -0.2835***

X: Segregation SE (0.1132) (0.0794) (0.0795)

Z: Segregation Herf F 16.57 20.47

Overid p 0.8567

Z2 p 0.0000

Y: In-migrants: Wht β̂ -0.1550** -0.1855*** -0.1863***

X: Segregation SE (0.0719) (0.0545) (0.0553)

Z: Segregation Herf F 16.57 20.47

Overid p 0.4657

Z2 p 0.0000

Y: Inequality: 10 Wht/10 Blk β̂ 2.7269*** 2.2749*** 2.3177***

X: Segregation SE (0.8563) (0.5658) (0.5892)

Z: Segregation Herf F 16.57 20.47

Overid p 0.4149

Z2 p 0.0000

Y: Inequality: 90 Blk/10 Wht β̂ -0.8073** -0.6824** -0.6887**

X: Segregation SE (0.3796) (0.2831) (0.2868)

Z: Segregation Herf F 16.57 20.47

Overid p 0.5558

Z2 p 0.0000
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Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Y: Inequality: 90 Wht/10 Blk β̂ 1.7887** 1.7048*** 1.7055***

X: Segregation SE (0.7487) (0.5418) (0.5424)

Z: Segregation Herf F 16.57 20.47

Overid p 0.8609

Z2 p 0.0000

Y: Inequality: 90 Wht/90 Blk β̂ -0.1308 0.1123 0.1115

X: Segregation SE (0.3082) (0.1878) (0.2036)

Z: Segregation Herf F 16.57 20.47

Overid p 0.2955

Z2 p 0.0000

Y: Ln Gini: Blk β̂ 0.8751** 0.6057*** 0.6256***

X: Segregation SE (0.4040) (0.1614) (0.1787)

Z: Segregation Herf F 16.57 20.47

Overid p 0.4774

Z2 p 0.0000

Y: Ln Gini: Wht β̂ -0.3345*** -0.2263*** -0.2519***

X: Segregation SE (0.0980) (0.0785) (0.0929)

Z: Segregation Herf F 16.57 20.47

Overid p 0.0118

Z2 p 0.0000

Y: Median Rent % Inc: Blk β̂ -3.4159 -4.8608 -4.8686

X: Segregation SE (5.3199) (4.7785) (4.8003)

Z: Segregation Herf F 16.57 20.47

Overid p 0.5883

Z2 p 0.0000

Y: Median Rent % Inc: Wht β̂ -16.6657*** -14.6675*** -14.8829***

X: Segregation SE (3.5978) (3.1242) (3.2410)

Z: Segregation Herf F 16.57 20.47

Overid p 0.2132

Z2 p 0.0000

Y: Median Rent: Blk β̂ -623.6425*** -624.7007*** -624.7015***

X: Segregation SE (155.0110) (140.3437) (140.3441)

Z: Segregation Herf F 16.57 20.47

Overid p 0.9887

Z2 p 0.0000

Y: Median Rent: Wht β̂ -636.4534** -628.4445*** -628.4822***

X: Segregation SE (272.7063) (179.0617) (179.0827)

Z: Segregation Herf F 16.57 20.47

Overid p 0.9639

Z2 p 0.0000
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Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Y: Poverty Rate: Blk β̂ 0.2584** 0.2911*** 0.2917***

X: Segregation SE (0.1069) (0.0973) (0.0978)

Z: Segregation Herf F 16.57 20.47

Overid p 0.6347

Z2 p 0.0000

Y: Poverty Rate: Wht β̂ -0.1957*** -0.1694*** -0.1715***

X: Segregation SE (0.0640) (0.0483) (0.0493)

Z: Segregation Herf F 16.57 20.47

Overid p 0.4345

Z2 p 0.0000

Y: HH w/ >1 Person/Room: Blk β̂ -0.1650*** -0.1529*** -0.1532***

X: Segregation SE (0.0463) (0.0419) (0.0421)

Z: Segregation Herf F 16.57 20.47

Overid p 0.5934

Z2 p 0.0000

Y: HH w/ >1 Person/Room: Wht β̂ -0.1161*** -0.1025*** -0.1030***

X: Segregation SE (0.0365) (0.0283) (0.0286)

Z: Segregation Herf F 16.57 20.47

Overid p 0.5106

Z2 p 0.0000

Y: Some College: Blk β̂ -0.7862** -0.6196** -0.6330**

X: Segregation SE (0.3159) (0.2879) (0.3000)

Z: Segregation Herf F 13.18 11.7

Overid p 0.1368

Z2 p 0.2164

Y: Some College: Wht β̂ -0.1737 -0.1462 -0.1461

X: Segregation SE (0.1087) (0.0935) (0.0940)

Z: Segregation Herf F 15.07 12.58

Overid p 0.4992

Z2 p 0.0974

Becker Y: Factory Employ 1849: All β̂ 0.1317* 0.1316* 0.1316*

et al. (2011) X: Yrs Sching 1849 SE (0.0767) (0.0769) (0.0769)

Z: Sch Enroll 1816 F 6206.97 3132.35

Overid p 0.9416

Z2 p 0.2617

Y: Factory Employ 1849: Oth β̂ 0.1351*** 0.1361*** 0.1360***

X: Yrs Sching 1849 SE (0.0436) (0.0441) (0.0441)

Z: Sch Enroll 1816 F 6206.97 3132.35

Overid p 0.3047

Z2 p 0.2617
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Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Y: Factory Employ 1849: Metal β̂ 0.0447 0.0437 0.0437

X: Yrs Sching 1849 SE (0.0465) (0.0462) (0.0462)

Z: Sch Enroll 1816 F 6206.97 3132.35

Overid p 0.1758

Z2 p 0.2617

Y: Factory Employ 1849: Textile β̂ -0.0481 -0.0482 -0.0482

X: Yrs Sching 1849 SE (0.0334) (0.0335) (0.0335)

Z: Sch Enroll 1816 F 6206.97 3132.35

Overid p 0.8819

Z2 p 0.2617

Y: Factory Employ 1882: All β̂ 0.1360*** 0.1183*** 0.1160***

X: Literacy 1871 SE (0.0357) (0.0333) (0.0339)

Z: Sch Enroll 1816 F 69.85 37.26

Overid p 0.0865

Z2 p 0.0043

Y: Factory Employ 1882: Oth β̂ 0.0689*** 0.0576*** 0.0568***

X: Literacy 1871 SE (0.0127) (0.0113) (0.0122)

Z: Sch Enroll 1816 F 69.85 37.26

Overid p 0.0029

Z2 p 0.0043

Y: Factory Employ 1882: Metal β̂ 0.0930*** 0.0807*** 0.0795***

X: Literacy 1871 SE (0.0248) (0.0233) (0.0237)

Z: Sch Enroll 1816 F 69.85 37.26

Overid p 0.0327

Z2 p 0.0043

Y: Factory Employ 1882: Textile β̂ -0.0259 -0.02 -0.0202

X: Literacy 1871 SE (0.0247) (0.0227) (0.0228)

Z: Sch Enroll 1816 F 69.85 37.26

Overid p 0.3041

Z2 p 0.0043

Brown Y: Retirement β̂ 0.1823** 0.1795** 0.1796**

et al. (2012) X: Rate Retirement Last Yr SE (0.0913) (0.0909) (0.0910)

Z: Unexpected Pension ∆ F 81.85 45.74

Overid p 0.4951

Z2 p 0.7676

Y: Retirement β̂ 0.0098*** 0.0096*** 0.0096***

X: Peer RetireesLast 2 Yr SE (0.0026) (0.0026) (0.0026)

Z: Unexpected Pension ∆ F 34.19 26.41

Overid p 0.7208

Z2 p 0.399
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Y: Retirement β̂ 0.0271*** 0.0219*** 0.0220***

X: Peer RetireesThis Yr SE (0.0063) (0.0051) (0.0051)

Z: Unexpected Pension ∆ F 7.2 5.29

Overid p 0.0593

Z2 p 0.43

Y: Retirement β̂ 0.0151*** 0.0122*** 0.0122***

X: Peer RetireesSpr/Sum SE (0.0057) (0.0045) (0.0045)

Z: Unexpected Pension ∆ F 31.31 34.56

Overid p 0.4121

Z2 p 0.0001

Y: Retirement β̂ 0.0191*** 0.0137*** 0.0138***

X: Peer RetireesLast Sum SE (0.0072) (0.0051) (0.0052)

Z: Unexpected Pension ∆ F 24.23 29.67

Overid p 0.3133

Z2 p 0.0003

Y: Retirement β̂ 0.0153*** 0.0124*** 0.0124***

X: Peer RetireesLast Yr SE (0.0058) (0.0045) (0.0045)

Z: Unexpected Pension ∆ F 28.59 32.49

Overid p 0.4106

Z2 p 0.0001

Chodorow-Reich Y: Rainy Day Fund 2009 β̂ 0.0122 0.0107 0.0107

et al. (2012) X: FMAP Payout/Person SE (0.2251) (0.2276) (0.2276)

Z: Prior Medicaid Spending F 96.67 56.05

Overid p 0.9155

Z2 p 0.3718

Y: Rainy Day Fund 2010 β̂ 0.0835 0.0659 0.0682

X: FMAP Payout/Person SE (0.1787) (0.1744) (0.1765)

Z: Prior Medicaid Spending F 96.67 56.05

Overid p 0.2313

Z2 p 0.3718

Y: Employ: Gov, Edu, Hlth β̂ 1.1949*** 1.1528*** 1.1743***

X: FMAP Payout/Person SE (0.3728) (0.3858) (0.3879)

Z: Prior Medicaid Spending F 120.28 54.02

Overid p 0.1752

Z2 p 0.2466

Y: Employ: Nonfarm β̂ 4.6136*** 4.5040*** 4.5379***

X: FMAP Payout/Person SE (1.5664) (1.6447) (1.6477)

Z: Prior Medicaid Spending F 120.28 54.02

Overid p 0.4275

Z2 p 0.2466
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Chou Y: Infant Mortality β̂ -0.4288* -0.4192* -0.4209*

et al. (2010) X: Father’s Sching SE (0.2387) (0.2332) (0.2409)

Z: New Sch Build Intensity F 5.6 3.09

Overid p 0.3091

Z2 p 0.8389

Y: Infant Mortality β̂ -0.5050*** -0.5156*** -0.5174***

X: Mother’s Sching SE (0.1948) (0.1940) (0.1966)

Z: New Sch Build Intensity F 13.8 7.18

Overid p 0.4167

Z2 p 0.6041

Y: Low Birth Weight β̂ -0.1890*** -0.1916*** -0.1914***

X: Father’s Sching SE (0.0730) (0.0678) (0.0679)

Z: New Sch Build Intensity F 8.58 3.98

Overid p 0.7021

Z2 p 0.7464

Y: Low Birth Weight β̂ -0.1936** -0.1938** -0.1938**

X: Mother’s Sching SE (0.0775) (0.0753) (0.0753)

Z: New Sch Build Intensity F 12.72 9.19

Overid p 0.9691

Z2 p 0.7

Y: Neonatal Mortality β̂ -0.2434 -0.1829 -0.1577

X: Father’s Sching SE (0.2615) (0.2358) (0.2558)

Z: New Sch Build Intensity F 2.76 1.68

Overid p 0.0753

Z2 p 0.6333

Y: Neonatal Mortality β̂ -0.3183** -0.3292** -0.3283**

X: Mother’s Sching SE (0.1496) (0.1464) (0.1478)

Z: New Sch Build Intensity F 10.16 5.6

Overid p 0.4

Z2 p 0.6416

Y: Post Neonatal Mortality β̂ -0.5837* -0.5508* -0.5560*

X: Father’s Sching SE (0.3400) (0.3121) (0.3275)

Z: New Sch Build Intensity F 5.17 3.31

Overid p 0.3816

Z2 p 0.5926

Y: Post Neonatal Mortality β̂ -0.6412*** -0.6505*** -0.6551***

X: Mother’s Sching SE (0.2439) (0.2443) (0.2500)

Z: New Sch Build Intensity F 13.75 7.42

Overid p 0.3454

Z2 p 0.7271
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Collins Y: Employ Rate β̂ 0.0034* 0.0033 0.0033

et al. (2013) X: Urban Renewal Funding SE (0.0020) (0.0022) (0.0022)

Z: Yrs Since Legislation F 13.79 7.85

Overid p 0.9579

Z2 p 0.2165

Y: Ln Housing Units β̂ 0.0011** 0.0011** 0.0011**

X: Urban Renewal Funding SE (0.0005) (0.0005) (0.0005)

Z: Yrs Since Legislation F 13.21 7.37

Overid p 0.8645

Z2 p 0.1918

Y: Ln Median Family Inc β̂ 0.0002** 0.0002** 0.0002**

X: Urban Renewal Funding SE (0.0001) (0.0001) (0.0001)

Z: Yrs Since Legislation F 13.79 7.85

Overid p 0.8033

Z2 p 0.2165

Y: Ln Median Property Value β̂ 0.0007** 0.0009*** 0.0011**

X: Urban Renewal Funding SE (0.0003) (0.0003) (0.0004)

Z: Yrs Since Legislation F 14.02 7.95

Overid p 0.1863

Z2 p 0.2192

Y: Ln Pop β̂ 0.0009* 0.0010* 0.0010*

X: Urban Renewal Funding SE (0.0005) (0.0005) (0.0005)

Z: Yrs Since Legislation F 12.88 7.19

Overid p 0.8173

Z2 p 0.1878

Y: Median Sching β̂ 0.0000 0.0003 0.0003

X: Urban Renewal Funding SE (0.0004) (0.0004) (0.0005)

Z: Yrs Since Legislation F 13.79 7.85

Overid p 0.2357

Z2 p 0.2165

Y: % Blk β̂ 0.0112 0.0091 0.0091

X: Urban Renewal Funding SE (0.0100) (0.0096) (0.0097)

Z: Yrs Since Legislation F 13.79 7.85

Overid p 0.4478

Z2 p 0.2165

Y: % No Plumbing β̂ -0.0017 -0.0013 -0.0015

X: Urban Renewal Funding SE (0.0012) (0.0012) (0.0013)

Z: Yrs Since Legislation F 13.79 7.85

Overid p 0.3278

Z2 p 0.2165
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Y: % Old Units β̂ -0.0330** -0.0279** -0.0301**

X: Urban Renewal Funding SE (0.0130) (0.0131) (0.0147)

Z: Yrs Since Legislation F 13.79 7.85

Overid p 0.1097

Z2 p 0.2165

Y: Poverty Rate β̂ -0.0061 -0.005 -0.0052

X: Urban Renewal Funding SE (0.0051) (0.0052) (0.0054)

Z: Yrs Since Legislation F 13.79 7.85

Overid p 0.2575

Z2 p 0.2165

Dinkelman (2011) Y: ∆ Female Employ: Nonmigrant β̂ 0.1157* 0.0761 0.0899

X: Electrification Program SE (0.0682) (0.0483) (0.0591)

Z: Land Gradient F 8.26 6.02

Overid p 0.168

Z2 p 0.0995

Y: ∆ Male Employ: Nonmigrant β̂ 0.086 0.0245 0.0355

X: Electrification Program SE (0.0685) (0.0548) (0.0736)

Z: Land Gradient F 8.26 6.02

Overid p 0.0423

Z2 p 0.0995

Y: ∆ Female Employ β̂ 0.0951* 0.057 0.0664

X: Electrification Program SE (0.0548) (0.0424) (0.0506)

Z: Land Gradient F 8.26 6.02

Overid p 0.1608

Z2 p 0.0995

Y: ∆ Flush Toilets β̂ 0.067 0.0694 0.0695

X: Electrification Program SE (0.0670) (0.0599) (0.0599)

Z: Land Gradient F 8.34 6.06

Overid p 0.9331

Z2 p 0.098

Y: ∆ HH Cook w/ Electric β̂ 0.2275** 0.1279** 0.1868

X: Electrification Program SE (0.1003) (0.0646) (0.1341)

Z: Land Gradient F 8.26 6.02

Overid p 0.0097

Z2 p 0.0995

Y: ∆ HH Cook w/ Wood β̂ -0.2754* -0.2156** -0.2265**

X: Electrification Program SE (0.1457) (0.1026) (0.1106)

Z: Land Gradient F 8.6 6.24

Overid p 0.3536

Z2 p 0.0976
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Y: ∆ HH Electric β̂ 0.6350*** 0.3576** 0.6724

X: Electrification Program SE (0.2256) (0.1408) (0.5999)

Z: Land Gradient F 8.26 6.02

Overid p 0.0075

Z2 p 0.0995

Y: ∆ HS Matric: Female β̂ 0.1297** 0.1028** 0.1093**

X: Electrification Program SE (0.0577) (0.0492) (0.0535)

Z: Land Gradient F 9.77 6.99

Overid p 0.2707

Z2 p 0.0729

Y: ∆ HS Matric: Male β̂ 0.0767 0.0477 0.0526

X: Electrification Program SE (0.0503) (0.0416) (0.0466)

Z: Land Gradient F 9.77 6.99

Overid p 0.1349

Z2 p 0.0729

Y: ∆ Male Employ β̂ 0.0355 -0.0118 -0.0121

X: Electrification Program SE (0.0654) (0.0574) (0.0668)

Z: Land Gradient F 8.26 6.02

Overid p 0.1677

Z2 p 0.0995

Y: ∆ Water Close β̂ -0.3722 -0.3626* -0.3628*

X: Electrification Program SE (0.2466) (0.1930) (0.1931)

Z: Land Gradient F 8.34 6.06

Overid p 0.943

Z2 p 0.098

Y: Ln Non-inmigrant Pop β̂ 4.3489*** 3.4156*** 4.1645***

X: Electrification Program SE (1.5732) (1.0381) (1.5171)

Z: Land Gradient F 8.26 6.02

Overid p 0.1239

Z2 p 0.0995

Y: Ln Pop β̂ 3.8970*** 3.1736*** 3.6460***

X: Electrification Program SE (1.4158) (0.9747) (1.2666)

Z: Land Gradient F 8.26 6.02

Overid p 0.1934

Z2 p 0.0995

Hunt Y: Ln Patents/Cap β̂ 17.6333*** 17.5881*** 17.6455***

et al. (2010) X: Skill Immigrant: College SE (5.3499) (5.3239) (5.3559)

Z: Predict X: Hist Immigrant F 26.74 13.6

Overid p 0.7372

Z2 p 0.9633
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Y: Ln Patents/Cap β̂ 18.9134 19.0753 19.0771

X: Skill Immigrant: Post Coll SE (13.5348) (13.6413) (13.6440)

Z: Predict X: Hist Immigrant F 18.03 9.47

Overid p 0.9518

Z2 p 0.7316

Lipscomb Y: < 4 Yrs Edu β̂ -21.2534*** -23.3515*** -31.3959**

et al. (2013) X: Electric Availability SE (7.7510) (8.5506) (12.6881)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.106

Z2 p 0.757

Y: Economically Active β̂ 0.1728*** 0.1750*** 0.1763***

X: Electric Availability SE (0.0499) (0.0538) (0.0544)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.7784

Z2 p 0.757

Y: Formal Employ β̂ 0.1836*** 0.1881*** 0.1933***

X: Electric Availability SE (0.0514) (0.0562) (0.0584)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.6052

Z2 p 0.757

Y: Formal Employ: Rural β̂ 0.1647*** 0.1617*** 0.1634***

X: Electric Availability SE (0.0545) (0.0576) (0.0584)

Z: Predict X: Geo Invest Cost F 18.37 9.53

Overid p 0.7357

Z2 p 0.7575

Y: Formal Employ: Urban β̂ 0.1762*** 0.1874*** 0.2270***

X: Electric Availability SE (0.0507) (0.0565) (0.0748)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.2038

Z2 p 0.757

Y: Gross Inc/Cap β̂ 0.1115** 0.1194** 0.1357**

X: Electric Availability SE (0.0455) (0.0509) (0.0583)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.3611

Z2 p 0.757

Y: HDI: Education β̂ 0.1878*** 0.1891*** 0.1893***

X: Electric Availability SE (0.0573) (0.0618) (0.0619)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.8804

Z2 p 0.757
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Y: HDI: Inc β̂ 0.4499*** 0.4647*** 0.4866***

X: Electric Availability SE (0.1533) (0.1649) (0.1736)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.5478

Z2 p 0.757

Y: HDI: Longrevity β̂ -0.0046 -0.0198 -0.0284

X: Electric Availability SE (0.0502) (0.0540) (0.0796)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.0204

Z2 p 0.757

Y: Housing Value β̂ 8.8111*** 9.6949*** 14.4719**

X: Electric Availability SE (3.0253) (3.3639) (6.0446)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.087

Z2 p 0.757

Y: Human Capital β̂ 11.5415 10.1088 10.7157

X: Electric Availability SE (7.2985) (8.6715) (9.4379)

Z: Predict X: Geo Invest Cost F 3.5 1.8

Overid p 0.6533

Z2 p 0.5099

Y: Human Development Index β̂ 0.1093** 0.1250*** 0.2025**

X: Electric Availability SE (0.0439) (0.0470) (0.0902)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.019

Z2 p 0.757

Y: Illiteracy β̂ -8.3495* -10.2461* -16.3831

X: Electric Availability SE (4.7794) (5.3543) (10.4555)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.0211

Z2 p 0.757

Y: In-Migration β̂ 0.1019 0.1313 0.1561

X: Electric Availability SE (0.0936) (0.0826) (0.1074)

Z: Predict X: Geo Invest Cost F 1.98 1.03

Overid p 0.4495

Z2 p 0.5838

Y: Infant Mortality β̂ -11.973 -17.0172 -22.8713

X: Electric Availability SE (18.0789) (18.5353) (30.6285)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.0096

Z2 p 0.757
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Y: Life Expectancy β̂ -1.0339 -1.0853 -1.0866

X: Electric Availability SE (2.3939) (2.4463) (2.4512)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.8513

Z2 p 0.757

Y: % Pop Urban β̂ 0.2379** 0.2635** 0.3594**

X: Electric Availability SE (0.1110) (0.1221) (0.1787)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.1674

Z2 p 0.757

Y: Pop Density β̂ -23.6182 -23.3398 -23.3439

X: Electric Availability SE (19.1952) (19.9019) (19.9060)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.8556

Z2 p 0.757

Y: Poverty β̂ -42.1649*** -45.7629*** -60.2197***

X: Electric Availability SE (13.8406) (15.6227) (22.6310)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.1583

Z2 p 0.757

Y: Yrs Edu β̂ 2.0216*** 1.9929*** 2.0099***

X: Electric Availability SE (0.6686) (0.7039) (0.7111)

Z: Predict X: Geo Invest Cost F 18.44 9.56

Overid p 0.7662

Z2 p 0.757

Saiz Y: ∆ Ln Neighborhood Value β̂ -0.3227** -0.2739*** -0.2740***

et al. (2011) X: ∆ Foreign Born Pop SE (0.1361) (0.1029) (0.1029)

Z: Gravity Pull F 30.71 165.22

Overid p 0.3347

Z2 p 0.0002

Werker Y: Auto Import: % GDP β̂ 0.2785*** 0.2847*** 0.2848***

et al. (2009) X: Foreign Aid: % GDP SE (0.0846) (0.0676) (0.0676)

Z: Muslim x Oil Price F 28.12 20.73

Overid p 0.8801

Z2 p 0.0094

Y: Auto Import: % GDP β̂ 0.2816*** 0.2644*** 0.2663***

X: Lag Foreign Aid: % GDP SE (0.0817) (0.0633) (0.0639)

Z: Lag Muslim x Oil Price F 31.82 23.21

Overid p 0.6125

Z2 p 0.0156
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Y: Auto Import: % Import β̂ -0.0479 -0.0929 -0.0988

X: Foreign Aid: % GDP SE (0.1042) (0.1023) (0.1062)

Z: Muslim x Oil Price F 53.16 34.49

Overid p 0.0997

Z2 p 0.0656

Y: Auto Import: % Import β̂ -0.1383 -0.1818* -0.1919*

X: Lag Foreign Aid: % GDP SE (0.0990) (0.0961) (0.1005)

Z: Lag Muslim x Oil Price F 54.97 35.44

Overid p 0.0695

Z2 p 0.0863

Y: Capital Import: % GDP β̂ 0.2070*** 0.2508*** 0.2571***

X: Foreign Aid: % GDP SE (0.0754) (0.0709) (0.0735)

Z: Muslim x Oil Price F 28.12 20.73

Overid p 0.3251

Z2 p 0.0094

Y: Capital Import: % GDP β̂ 0.2210*** 0.2530*** 0.2578***

X: Lag Foreign Aid: % GDP SE (0.0674) (0.0650) (0.0668)

Z: Lag Muslim x Oil Price F 31.82 23.21

Overid p 0.3772

Z2 p 0.0156

Y: Capital Import: % Import β̂ -0.2676** -0.3050** -0.3121**

X: Foreign Aid: % GDP SE (0.1193) (0.1198) (0.1228)

Z: Muslim x Oil Price F 53.16 34.49

Overid p 0.2143

Z2 p 0.0656

Y: Capital Import: % Import β̂ -0.3565*** -0.3540*** -0.3540***

X: Lag Foreign Aid: % GDP SE (0.1123) (0.1114) (0.1115)

Z: Lag Muslim x Oil Price F 54.97 35.44

Overid p 0.9224

Z2 p 0.0863

Y: Exports β̂ 0.1077 0.2243 0.2423

X: Foreign Aid: % GDP SE (0.1447) (0.1397) (0.1513)

Z: Muslim x Oil Price F 45.8 32.15

Overid p 0.0156

Z2 p 0.0326

Y: Exports β̂ 0.1801 0.2063* 0.2075*

X: Lag Foreign Aid: % GDP SE (0.1245) (0.1246) (0.1253)

Z: Lag Muslim x Oil Price F 49.64 35.23

Overid p 0.4464

Z2 p 0.0484
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Y: Gov Final Consumption β̂ 0.1061 0.0498 0.0477

X: Foreign Aid: % GDP SE (0.1256) (0.1232) (0.1305)

Z: Muslim x Oil Price F 45.8 32.15

Overid p 0.1779

Z2 p 0.0326

Y: Gov Final Consumption β̂ 0.0061 0.0018 0.0017

X: Lag Foreign Aid: % GDP SE (0.1022) (0.1083) (0.1083)

Z: Lag Muslim x Oil Price F 49.64 35.23

Overid p 0.8914

Z2 p 0.0484

Y: Gross Capital Formation β̂ 0.3054** 0.3877*** 0.4027***

X: Foreign Aid: % GDP SE (0.1356) (0.1284) (0.1357)

Z: Muslim x Oil Price F 45.8 32.15

Overid p 0.0568

Z2 p 0.0326

Y: Gross Capital Formation β̂ 0.4158*** 0.4337*** 0.4347***

X: Lag Foreign Aid: % GDP SE (0.1138) (0.1144) (0.1148)

Z: Lag Muslim x Oil Price F 49.64 35.23

Overid p 0.5582

Z2 p 0.0484

Y: Gross Domestic Savings β̂ -0.9573*** -0.8994*** -0.9097***

X: Foreign Aid: % GDP SE (0.1653) (0.1567) (0.1596)

Z: Muslim x Oil Price F 45.8 32.15

Overid p 0.2398

Z2 p 0.0326

Y: Gross Domestic Savings β̂ -0.7334*** -0.7068*** -0.7093***

X: Lag Foreign Aid: % GDP SE (0.1497) (0.1466) (0.1474)

Z: Lag Muslim x Oil Price F 49.64 35.23

Overid p 0.5132

Z2 p 0.0484

Y: HH Final Consumption β̂ 0.8512*** 0.8496*** 0.8496***

X: Foreign Aid: % GDP SE (0.1891) (0.1915) (0.1915)

Z: Muslim x Oil Price F 45.8 32.15

Overid p 0.9774

Z2 p 0.0326

Y: HH Final Consumption β̂ 0.7273*** 0.7050*** 0.7067***

X: Lag Foreign Aid: % GDP SE (0.1727) (0.1740) (0.1745)

Z: Lag Muslim x Oil Price F 49.64 35.23

Overid p 0.6351

Z2 p 0.0484
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Y: Import β̂ 1.3704*** 1.5115*** 1.5655***

X: Foreign Aid: % GDP SE (0.2125) (0.1977) (0.2103)

Z: Muslim x Oil Price F 45.8 32.15

Overid p 0.0578

Z2 p 0.0326

Y: Import β̂ 1.3292*** 1.3468*** 1.3478***

X: Lag Foreign Aid: % GDP SE (0.1997) (0.1870) (0.1873)

Z: Lag Muslim x Oil Price F 49.64 35.23

Overid p 0.7639

Z2 p 0.0484

Y: Ln Inflation β̂ -0.0666 -0.0437 -0.0525

X: Foreign Aid: % GDP SE (0.0885) (0.0848) (0.0992)

Z: Muslim x Oil Price F 14.87 12.86

Overid p 0.0828

Z2 p 0.62

Y: Ln Inflation β̂ -0.0469 -0.033 -0.0382

X: Lag Foreign Aid: % GDP SE (0.0800) (0.0778) (0.0899)

Z: Lag Muslim x Oil Price F 16.67 13.09

Overid p 0.0822

Z2 p 0.7296

Y: Ln Undervaluation β̂ 0.0283 0.0530* 0.0565*

X: Foreign Aid: % GDP SE (0.0246) (0.0280) (0.0309)

Z: Muslim x Oil Price F 26.58 16.14

Overid p 0.0261

Z2 p 0.0017

Y: Ln Undervaluation β̂ 0.0295 0.0426 0.047

X: Lag Foreign Aid: % GDP SE (0.0249) (0.0272) (0.0305)

Z: Lag Muslim x Oil Price F 27.65 14.86

Overid p 0.0452

Z2 p 0.0881

Y: Net Errors & Omissions β̂ -0.3649*** -0.3497*** -0.3502***

X: Foreign Aid: % GDP SE (0.1178) (0.1102) (0.1104)

Z: Muslim x Oil Price F 26.21 21.17

Overid p 0.8098

Z2 p 0.009

Y: Net Errors & Omissions β̂ -0.3242*** -0.3397*** -0.3404***

X: Lag Foreign Aid: % GDP SE (0.0908) (0.0851) (0.0854)

Z: Lag Muslim x Oil Price F 29.48 23.43

Overid p 0.7499

Z2 p 0.0216
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Table A.1

AER and AEJ Replications
Linear Quadratic

Paper Variable Stat 2SLS 2SLS LIML

Y: Noncap Import: % GDP β̂ 0.3780** 0.6329*** 0.7486***

X: Foreign Aid: % GDP SE (0.1528) (0.1576) (0.2138)

Z: Muslim x Oil Price F 28.12 20.73

Overid p 0.0055

Z2 p 0.0094

Y: Noncap Import: % GDP β̂ 0.5007*** 0.6514*** 0.7103***

X: Lag Foreign Aid: % GDP SE (0.1532) (0.1541) (0.1755)

Z: Lag Muslim x Oil Price F 31.82 23.21

Overid p 0.0000

Z2 p 0.0156

Y: Noncap Import: % Import β̂ 0.3155* 0.3979** 0.4211**

X: Foreign Aid: % GDP SE (0.1842) (0.1873) (0.1971)

Z: Muslim x Oil Price F 53.16 34.49

Overid p 0.0785

Z2 p 0.0656

Y: Noncap Import: % Import β̂ 0.4948*** 0.5358*** 0.5444***

X: Lag Foreign Aid: % GDP SE (0.1732) (0.1747) (0.1775)

Z: Lag Muslim x Oil Price F 54.97 35.44

Overid p 0.3173

Z2 p 0.0863

Y: per Cap GDP Growth β̂ 0.2145 0.2777** 0.2873**

X: Foreign Aid: % GDP SE (0.1346) (0.1329) (0.1385)

Z: Muslim x Oil Price F 45.8 32.15

Overid p 0.1286

Z2 p 0.0326

Y: per Cap GDP Growth β̂ 0.2203* 0.2903** 0.3009**

X: Lag Foreign Aid: % GDP SE (0.1188) (0.1200) (0.1290)

Z: Lag Muslim x Oil Price F 49.64 35.23

Overid p 0.0322

Z2 p 0.0484
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Appendix B. Weight Ratio Details

Appendix B.1. Weight Derivation

Angrist, Graddy, and Imbens (2000) set-out the following assumptions needed to inter-

pret IV estimates of equation (4.2) in the presence of unmodelled heterogeneity:

[A1 ] Independence: zi ⊥ yi(x, z), xi(z)

Importantly, this is not saying that y and x are unrelated to z, but rather that the

particular functional forms for yi(x, z) and xi(z) are independent of the realized value

of the instrument. For instance, while y and x should vary with z, when thinking

about the counterfactual differences in y and x when z takes on different values for the

same individual, it can not be the case that individuals with larger differences between

the two states are systematically more likely to have a particular value of z.

[A2 ] Exclusion: yi(x, z) = yi(x, z
′) for z 6= z′

Assumption [A2] simply states that the instrument effects y only through its effect

on x. Assumptions [A1] and [A2] are akin to the mean independence assumption—

E(u|z) = 0— in section 2.

[A3 ] Relevance: xi(z) is a non-trivial function of z

This assumption states that the instrument does influence x and is akin to the rank

condition in the linear case.

[A4 ] Monotonicity: Either ∂xi

∂z (z) ≤ 0 or ∂xi

∂z (z) ≥ 0 for all units (defined by i) at any

value of the instrument

Importantly, this does not assume that xmust always be either increasing or decreasing

in z. Rather, if at a particular z increasing z increases x for some units, then it must

not decrease x for other units.23

23For instance, in Figure 3.1 the quadratic fit suggests that x is not monotonic in z (decreasing then
increasing in z), but this does not imply a violation of the monotonicity assumption needed here. The
monotonicity assumption requires that at any particular Distance from Wittenberg, the level of Protes-
tantism in all counties would weakly respond in the same direction to a change in distance.
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Angrist, Graddy, and Imbens (2000) express the weights from Equation (4.3) as:

λg(z) =

∂x
∂z (z) ·

∫ ∞
z

(g(ζ)− E [g(zi)]) · fz(ζ)dζ∫
∂x
∂z (ν) ·

∫ ∞
ν

(g(ζ)− E [g(zi)]) · fz(ζ)dζdν

(B.1)

Following directly from the proof of Theorem 4 in Angrist, Graddy, and Imbens (2000), the

denominator in equation (B.1) is simply Cov(xi, g(zi)). The integral representation is help-

ful for establishing that the weights sum to one. However, for our purposes it is instructive

to revert back to the covariance representation as it makes for a more straightforward esti-

mation of the ratio of weights from the two different estimators. Specifically, this covariance

is directly estimable from the data with no further assumptions, while estimating the ∂x/∂z

component of the denominator would require making assumptions about x(z).

For the numerator, we can start by noting that by demeaning x and z, we have that

E [g(zi)] = 0, simplifying the expression slightly. Next, Angrist, Graddy, and Imbens (2000)

derive their result as the limiting case of a multi-valued discrete instrument where the

discrete values of z are ordered by the implied value of x— that is they are ordered by

g(z). Since 2SLS is equivalent to using the first stage fitted values as the instrument in

an IV estimation, we can rewrite the integral as going over values of g(z). Then we can

rewrite the integral as the product of a conditional expectation and a probability based on

the fact that the truncated density— conditional on being larger than some value a— for a

random variable X can be written as f(X)/Pr(X > a). For a given value of z, say z∗, the

conditional expectation is simply the expected value of the first stage fitted values, given

by g(z), conditional on having a value of g(z) greater than g(z∗). The probability is simply

the probability that the value of g(z) is greater than g(z∗). It follows that we can write the

weight as:

λg(z) =
∂x
∂z (z) · E [g(ζ)|g(ζ) > g(z)]Pr (g(ζ) > g(z))

Cov(xi, g(zi))

Appendix B.2. Weight Ratio with Confidence Intervals

Figure B.1 displays the same estimated weight ratios as in figure 4.1, but with boot-

strapped confidence intervals. For each value of z, the CI is based on a separate (specific

to the value of z) 1000 replication bootstrap procedure of estimating the two first stages

and constructing the weight ratios. The confidence intervals presented are based on the
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percentiles of the weight ratio estimate distribution across the bootstrapped samples. We

use the percentiles rather than a normal approximation to respect the fact that the weight

ratio must be nonnegative.

Figure B.1: Becker and Woessmann (2009) IV Weight Ratio with Bootstraped 95% Confidence Intervals

0
1

2
3

4
5

W
ei

gh
t R

at
io

0 200 400 600 800
Distance to Wittenberg in KM

Weight Ratio  95% CI: Bootstrap Percentile

No Covariates
IV Weight Ratio: Quadratic/Linear

We see that the estimated weight ratio is much more precise at intermediate values.

The precision depends on two main factors: the precision of the estimated parameters of

g1(z) and g2(z) and how sensitive the ranking within the fitted value distribution is for a

particular value of z across different draws. The precision of the estimated parameters affects

the weight ratio estimates at all values of z similarly, while the placement in the ranking will

differ by values of z. The relative precision at intermediate values is due to the fact that the

distribution of z is denser at intermediate values. In particular, this implies that the relative

ranking in the g(z) distribution is less sensitive across different bootstrap replications where

the density is higher and therefore the conditional expectations and probabilities are also

less sensitive.
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Appendix B.3. Weight Ratio Decomposed

As argued previously, the appeal of analyzing the weight ratios instead of the weights

is the fact that the component due to the true underlying relationship between x and z,

∂x/∂z, cancels out in the ratio. However, in order to provide more insight into why the

weight ratio evolves the way it does, we can decompose it into the contribution due to the

quadratic and linear first stages. That is, we can consider the following components of the

weight ratio:

λ̃g(z) =
E [g(ζ)|g(ζ) > g(z)]Pr (g(ζ) > g(z))

Cov(xi, g(zi))

λ̃1(z) and λ̃2(z) are simply the denominator and numerator of the weight ratio— or they

can be thought of as the weights for the linear- and quadratic-in-z 2SLS estimators if ∂x/∂z

were constant (i.e. if all units complied with the instrument in the same way). Plotting

these components separately helps provide more intuition on how the two estimators— using

a linear-in-z or quadratic-in-z first stage— differ.

Figure B.2 displays the weight ratio components for the Distance to Wittenberg example.

Loosely speaking, the quadratic-in-z estimator shifts some weight to counties further from

Wittenberg that have similar first stage fitted values to those at intermediate distance. This

is directly related to the idea of ordering the counties by the values of g(z) when calculating

the weight ratios and reflects the quadratic fit presented in Figure 3.1. Once again, the

importance of these differences for the final estimates is driven by the level of compliance

(∂x/∂z) at each value of the instrument. The patterns in Figure B.2 also confirm that the

difference in weighting is not due to shifting all the weight to high values of z, rather it

reflects placing similar weight on distances that imply similar first stage fitted values.

Appendix B.4. Weight Ratios with Covariates

Since the argument is often made that an instrument is “as good as randomly assigned”

once other factors are controlled for, it is necessary to introduce other covariates into the

model. Here, we will denote the other covariates by w. Following Angrist, Graddy, and

Imbens (2000), we assume that the additional covariates enter additively and linearly:
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Figure B.2: Becker and Woessmann (2009) IV Weight Ratio Components
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Estimated weight ratio components based on the sample analogue of equation (4.5). For each observed value
of z, we use the fitted values for the linear and quadratic first stages— ĝ1(z) and ĝ2(z)— to estimate the
sample mean, probabilities, and covariances.

(A5) Linear and Additive Covariates

y(z|w) = y0(z) + θw

x(z|w) = x0(z) + κw

This assumption requires that the partial effect of z on either x or y does not depend

on w.

With the addition of (A5), Angrist, Graddy, and Imbens (2000) show that the IV estimator

based on the ratio of the coefficient on z from the second stage reduced form to the coefficient

on z from the first stage does not depend on w. The formal proof is in the appendix of

Angrist, Graddy, and Imbens (2000) (Lemma 2), however intuitively we are interested in

the effect of a change in z on either y or x holding w fixed. With w fixed at w∗, the difference
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between y(z|w∗) and y(z′|w∗) will not depend on θw∗ under (A5): y(z|w∗) − y(z′|w∗) =

y0(z) + θw∗ − y0(z′)− θw∗ = y0(z)− y0(z′). The same argument can be made for x(z, w∗).

What is important for us is that the addition of other covariates does not change the

basic setup of the problem. Certainly, g(·) is now also a function of w, but the conditional

expectation is still based on the fitted values that take into account the relationship between

z and w in the sample:

λ2(z, w)

λ1(z, w)
=A

[
E [g2(ζ, w)|g2(ζ, w) > g2(z, w)] · Pr(g2(ζ, w) > g2(z, w))

E [g1(ζ, w)|g1(ζ, w) > g1(z, w)] · Pr(g1(ζ, w) > g1(z, w))

]
where A =

Cov (xi, g1(zi, wi))

Cov (xi, g2(zi, wi))

We could estimate weight ratios for different values of w. Instead, we simply use the con-

ditional expectations of g(z, w) using the realized values of w that are associated with each

observation. This is the natural extension of viewing 2SLS as IV using the first stage fitted

values as the instrument. In practice we use the residual from a regression of z on w as the

instrument. Empirically this introduces the complication that there is not a simple mapping

from our weight ratio to the original z.

Now we return to BW’s main result for the Literacy outcome when including other

covariates. Recall from Table 3.1, BW get a statistically significant estimate of β̂1 = 0.1885,

but when we include the square of the distance from Wittenberg as an additional instrument,

the point estimate falls to β̂2 = 0.0932. To account for covariates, we regress each instrument

on the other covariates and use the residual as the instrument. This does not change the

2SLS estimate, but is helpful for focusing on the the role the instruments play once the

other covariates have been partialled out. In Figure B.3, we plot the weight ratio with

respect to the residualized distance to Wittenberg where we have added the mean back in.

Here, it is helpful to consider the residualized distance as an “effective” distance. That is,

there are other factors (mostly demographic in this case) that are correlated with distance

whose effect can be cast in terms of an equivalent change in the distance from Wittenberg.

Figure B.3 also plots a local polynomial smoothing line to help summarize the results.

The quadratic tends to place more weight on counties with a residualized distance from

Wittenberg that is either at the low (<200km) or high end (>500km) while distances near

the middle are given less weight on average. In order to explain why β̂2 < β̂1, the partial

effects need to be smaller on average for counties when they are, in effective distance, either
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Figure B.3: Becker and Woessmann (2009) IV Weight Ratio with Covariates
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the closest to or farthest from Wittenberg.
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Appendix C. Albouy (2012) (2012) Critique of AJR

As was mentioned earlier, the original results from AJR have been called into question

due to data and methodological concerns. Most notably, these concerns appear in Albouy’s

2012 comment on the original AJR paper. Albouy (2012) makes several critiques, however

three particularly poignant concerns are aimed at the quality of the data collected, how

the standard errors and confidence intervals are determined, and potential issues due to not

distinguishing data collected based on soldiers on campaign or slave laborers. In terms of

data quality, Albouy notes that many of the country level observations are derived from

historical records for other countries with various adjustments made. Albouy refers to such

cases as having “Conjectured Mortality Rates” and estimates separate coefficients using the

subsample of countries without conjectured rates.

Albouy raises two issues with the implied precision of the estimates. The first is partially

related to the previous data concern. Namely, he chooses to cluster the standard errors so

that all the countries with a mortality rate derived from the same source are included in

the same cluster. Second, he proposes the use of Anderson-Rubin Confidence Intervals (AR

CI) for inference. While traditional confidence intervals based on the Wald statistic can be

susceptible to problems with weak instruments, the AR CI are more robust to the presence

of weak instruments (see Moreira (2009) for a discussion of the AR test statistic).

Table C.1 provides a partial replication of Albouy’s analysis. We choose the same baseline

samples and specifications as for our AJR replication and extension. Note that Albouy does

not present results for the subsample excluding NeoEuropes when including the latitude

control or for the Non-African subsample. For comparability to our AJR table, we present

those results using Albouy’s data and methodology. Panel A reflects Albouy’s replication

of AJR, Panel B checks the sensitivity to including indicators for data originating from

soldiers on campaign or slave laborers, Panel C removes all data points based on conjectured

mortality rates, and Panel D includes the campaign and slave labor dummies when using

the Non-Conjectured subsample.

Starting with Panel A, we see linear-in-z estimates very similar to the original AJR results

in Table 3.2. Note that the AR CI for the first three rows are not symmetric around the point

estimate, but do exclude zero. For the base sample when including continent indicators,

the AR CI is even more unorthodox consisting of two asymmetric and unbounded sets, a

potential outcome when using AR CI. As Albouy notes, since the IV estimate can be cast
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as the ratio of the the second stage reduced form coefficient on z to the first stage coefficient

on z, it makes sense that if zero cannot be ruled out for the first stage coefficient, infinity

can not be ruled out for the IV estimate. These unbounded and disjoint AR CI reflect

the underlying uncertainty for the estimates and represent one of the key criticisms of AJR

found in Albouy. Note that the analysis of the quadratic-in-z estimates follows that from

our AJR extension. However, the AR CIs provide another point of comparison. Namely,

the AR CI tend to be smaller, in some cases considerably so, when we include the squared

mortality rate as an additional instrument. For instance, the AR CI for the base sample

shrinks from an implied effect of a one standard deviation increase in protection between

160% and 3500% to between 135% and 315%. Perhaps more important, the AR CI for the

Continent Indicators specification becomes bounded (i.e. no longer includes positive and

negative infinity) and excludes zero. This marks an important improvement in inference

due to increased efficiency in the first stage. Abstracting from the change in the coefficient

estimate, this suggests that part of Albouy’s criticism may by ameliorated by choosing a

better fitting first stage function.

When controlling for campaign and slave labor dummies in Panel B, we see the linear-

in-z point estimates change from Panel A. However, as before the Non-African subsample

is somewhat robust to the inclusion of these additional regressors. The overidentification

results are more mixed, with a rejection in only one case, but with practically different

estimates for two cases. For the base sample, the quadratic first stage delivers a bounded

AR CI that excludes zero, while the linear first stage did not.

By removing observations with conjectured mortality rates in Panels C and D, we see

more instances where the AR CI are improved considerably by changing the first stage

function to include a quadratic in the instrument. Despite some very large differences in

point estimates between the linear- and quadratic-in-z cases, there are no cases were the

overidentification test rejects. This is likely due to the small sample size (between 13 and

28 countries) and resulting lack of power. Taken as a whole, the results of our Albouy

replication and extension suggest a role for instrument polynomials in the first stage to

greatly improve the precision of estimates. Coupled with our initial motivation to explore

the validity of the instrument, this suggests a broader role for considering higher order

polynomials of continuous instruments. The fact that this approach of adding the squared

instrument is simple to implement makes it appealing as a common sensitivity analysis to
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be undertaken.

Table C.1

Albouy (2012) Replication and Extension

Sample & Linear Quadratic

Specification Statistic 2SLS 2SLS LIML

Panel A: AJR Replication

Base β̂ 0.9620*** 0.7282*** 0.8343***

s.e. (0.2655) (0.1228) (0.1876)

AR CI [0.64, 2.39] [0.57, 0.95]

First Stage F 7.30 15.74

Overid p-value 0.0726

Z2 p-value 0.0217

Excluding β̂ 1.1647*** 0.9737*** 1.0905***

NeoEuropes s.e. (0.4219) (0.2345) (0.3280)

AR CI [0.70, 7.26] [0.61, 1.77]

First Stage F 4.56 5.03

Overid p-value 0.2577

Z2 p-value 0.1916

Excluding β̂ 0.5994*** 0.5796*** 0.5830***

Africa s.e. (0.1055) (0.0883) (0.0902)

AR CI [0.40, 0.89] [0.36, 0.82]

First Stage F 37.89 25.89

Overid p-value 0.6458

Z2 p-value 0.1630

Base w/ β̂ 1.0739* 0.7273*** 0.8139***

Continent s.e. (0.5330) (0.2049) (0.2558)

Indicators AR CI (-∞, -3.08]U[0.41, +∞) [0.18, 1.86]

First Stage F 2.72 5.70

Overid p-value 0.2500

Z2 p-value 0.0649
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Table C.1

Albouy (2012) Replication and Extension

Sample & Linear Quadratic

Specification Statistic 2SLS 2SLS LIML

Panel B: Add Campaign and Slave Labor Indicators

Base β̂ 1.1536** 0.7390*** 0.9969**

s.e. (0.5078) (0.2104) (0.4903)

AR CI (-∞, -17.59]U[0.60, +∞) [0.54, 1.60]

First Stage F 3.67 6.49

Overid p-value 0.0690

Z2 p-value 0.0696

Excluding β̂ 1.3043** 1.0814*** 1.2673**

NeoEuropes s.e. (0.6288) (0.3905) (0.5782)

AR CI (-∞, -5.80]U[0.64, +∞) (-∞, -1.92]U[0.54, +∞)

First Stage F 3.14 2.80

Overid p-value 0.3178

Z2 p-value 0.3621

Excluding β̂ 0.6589*** 0.6330*** 0.6383***

Africa s.e. (0.1490) (0.1310) (0.1354)

AR CI [0.40, 1.41] [0.34, 1.51]

First Stage F 17.30 9.47

Overid p-value 0.6984

Z2 p-value 0.2396

Base w/ β̂ 1.1866 0.7477*** 0.8882**

Continent s.e. (0.7311) (0.2478) (0.3639)

Indicators AR CI (-∞, -0.67]U[0.29, +∞) (-∞, -4.85]U[-0.67, +∞)

First Stage F 1.73 3.44

Overid p-value 0.2271

Z2 p-value 0.1219
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Table C.1

Albouy (2012) Replication and Extension

Sample & Linear Quadratic

Specification Statistic 2SLS 2SLS LIML

Panel C: Remove Conjectured Mortality

Base β̂ 0.8203** 0.7300*** 0.7595***

s.e. (0.3382) (0.2219) (0.2419)

AR CI (-∞, -7.92]U[0.38, +∞) [0.32, 1.89]

First Stage F 3.62 4.29

Overid p-value 0.4897

Z2 p-value 0.2255

Excluding β̂ 0.9464* 0.9461** 0.9461**

NeoEuropes s.e. (0.4996) (0.4500) (0.4500)

AR CI (-∞, -1.38]U[0.35, +∞) (-∞, -0.23]U[0.31, +∞)

First Stage F 2.37 1.83

Overid p-value 0.9964

Z2 p-value 0.7399

Excluding β̂ 0.9545*** 0.7490*** 0.8362**

Africa s.e. (0.2890) (0.2328) (0.3068)

AR CI [0.56, 3.55] [0.52, 3.95]

First Stage F 6.67 4.16

Overid p-value 0.3445

Z2 p-value 0.2040

Base w/ β̂ 1.2451 0.6586* 0.8840*

Continent s.e. (1.1815) (0.3538) (0.5115)

Indicators AR CI (-∞, +∞) [-1.58, 2.19]

First Stage F 0.91 4.37

Overid p-value 0.2001

Z2 p-value 0.1582
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Table C.1

Albouy (2012) Replication and Extension

Sample & Linear Quadratic

Specification Statistic 2SLS 2SLS LIML

Panel D: Remove Conjectured Mortality & Add Campaign and Slave Labor Indicators

Base β̂ 0.8997 0.6845 0.7780

s.e. (0.9326) (0.4899) (0.6300)

AR CI (-∞, +∞) (-∞, +∞)

First Stage F 0.67 1.35

Overid p-value 0.5674

Z2 p-value 0.4614

Excluding β̂ 0.8259 0.7779 0.8335

NeoEuropes s.e. (0.8117) (0.7899) (0.9472)

AR CI (-∞, +∞) (-∞, +∞)

First Stage F 0.65 0.35

Overid p-value 0.6044

Z2 p-value 0.8207

Excluding β̂ 1.0331* 0.5963 0.6922

Africa s.e. (0.4885) (0.4118) (0.5812)

AR CI [0.34, 6.61] (-∞, -47.25]U[0.09, +∞)

First Stage F 5.79 3.36

Overid p-value 0.1231

Z2 p-value 0.1871

Base w/ β̂ 1.4376 0.5134 0.8013

Continent s.e. (2.6149) (0.4478) (0.8753)

Indicators AR CI (-∞, +∞) (-∞, +∞)

First Stage F 0.29 2.88

Overid p-value 0.2306

Z2 p-value 0.2309
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