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Abstract

We analyze personalized pricing by a monopsonist facing a finite number of ex

ante identical, capacity constrained suppliers with privately known costs. When

the distribution of costs is suffi ciently smooth and regular, the buyer chooses to

make the same offer to all suppliers, leading to a posted price. When demand is

suffi ciently concave (convex) this price is lower (higher) than the classical monopsony

price. In the limit as the seller capacities tend to zero, we obtain the classical

monopsony price. Therefore, our model provides a decentralized micro-foundation

for monopsony.
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1 Introduction

In this paper we put forward a new model of decentralized pricing in monopsony1 and

identify “mild”conditions under which the buyer’s optimal price vector is a common price

offered to all (ex ante identical) suppliers, independently of their number. This lack of

qualification is important, as in our model the buyer faces uncertainty about the realized

supply for any given price vector. It is thus reasonable to think that even a risk-neutral

buyer would want to manage this uncertainty by using a heterogeneous price vector.

The classical model of monopsony postulates a single buyer who faces a deterministic

supply curve resulting from the aggregation of suppliers’ (marginal) costs. It is well-

known that the optimal linear (posted) price equates the “mark-down”2 to the reciprocal

of this supply’s elasticity. Note that, even if the monopsonist could offer different prices

to different —but indistinguishable —suppliers with independent, random costs, setting

this common price would still be optimal as long as the suppliers were many, each able to

supply only an infinitesimal fraction of the monopsonist’s demand. This is so, because the

Law of Large Numbers ensures a deterministic aggregate supply, so that the monopsonist

knows with certainty the quantity purchased at each price vector. Thus, in the classic

scenario, the assumption of posted prices is without loss of generality.

Instead of this idealized situation, we are interested in the more realistic scenario,

where the monopsonist is uncertain about the total supply he receives for a given vector

of price offers. Think of an agricultural firm buying the crop of smallholders, not knowing

at which price each of them would prefer to consume her crop rather than sell it.3 To

manage this uncertainty, there is a potential role for personalized price offers to ex-ante

homogeneous suppliers. In addition, we also wish to restrict attention to a selling mecha-

nism that is decentralized, in the sense that the monopsonist contract with each supplier

is “negotiated”independently.

1Needless to say, the entire analysis goes through equally for a monopoly.
2This is the eqivalent of the Lerner index for monopsony, the difference between the buyer’s valua-

tion of the marginal unit and the price as a proportion of the price: P (S(p))−pp .
3Or a dominant supemarket buying milk from farms. While an oligopsony, an interesting example

is the market for freshly minted Assistant Professors: the department makes the offers but has only a

vague idea how many will be accepted.

2



To address the above, we study the optimal (static) personalized pricing policy for

a monopsonist that faces a finite number of ex ante identical, unit-capacity suppliers of

privately known costs. Thus, the monopsonist may offer personalized (take-it-or-leave-

it) prices to each supplier, but he must commit to trade at those prices if accepted.

That is, agreements/commitments are bilateral: the terms of trade with each supplier is

independent of the terms of trade with other suppliers. As we discuss in the conclusions,

this personalized-pricing procedure has proven to be particularly useful for modeling price

competition between oligopsonists, where it leads to novel insights.

Restricting the monopsonist strategy set to personalized pricing is, of course, not

without loss of generality. As argued by Bulow and Roberts (1989), in the optimal

mechanism for a monopsonist with full commitment power he announces a demand curve

and solicits ask prices by sellers. The resulting aggregate supply schedule together with

the announced demand is used to establish the market clearing price at which all the

suppliers with ask prices below it trade.4 In such an auction, the terms of trade between

the monopsonist and any individual seller depend on the bids of the other suppliers.

Putting it differently, for any given supplier, the buyer commits not only to the way in

which he will use the information she reveals, but also to how he will use the information

revealed by all the other suppliers. Such a mechanism could not be implemented, for

example, by delegated bargaining, where the monopsonist employs agents to bargain

independently with different subsets of suppliers. Also, to verify that the monopsonist

has delivered according to his promises to a single supplier, one would have to check the

prices offered by all suppliers. Such a verification procedure may be highly impractical,

especially when the suppliers would not want to reveal their costs to competitors. To

capture situations where some verification might be necessary —say, because of suspicion

of corruption —but a full verification is unworkable, we investigate monopsony pricing

when the buyer is not able/willing to commit to a centralized mechanism.5

4Of course, in order to reduce the sellers’information rents, the announced demand schedule is dis-

torted relative to the monopsonist’s true demand function.
5For empirical evidence of firms using second-best organizational form (and thus pricing) see, for

example, Thomas (2011) and references therein. See also McElheran (2014) on delegation. For a theo-

retical overview of decentralization see Mookherjee (2006).
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Our main result is that, under “mild”conditions on the distribution function of costs,

posted prices are constrained optimal. The condition we identify is a strengthening of the

traditional “regularity” condition in problems of trade under asymmetric information,

which requires that the virtual cost6 of an arbitrary supplier be increasing. Roughly, we

need the increase in virtual cost to be higher than the density of the cost distribution.

Additionally, we show that the range of possible costs is also relevant. When there is a gap

between the lowest possible cost and the buyer’s lowest marginal valuation, the monop-

sonist may prefer to make fewer (serious) offers than there are traders (and demand). If

on the other hand, there is a gap between the highest possible cost and the highest mar-

ginal valuation, the monopsonist may prefer to make some offers that are surely accepted

in addition to different offers at lower prices. Notably, however, if the slope condition is

met, all interior prices (that is, prices that will be refused and accepted both with positive

probability) are the same. It is only when the cost distribution of suppliers is particularly

convex that we observe heterogeneous interior prices offered to homogeneous suppliers.

We also show that even though the buyer offers a posted price, this price can be

lower or higher than the corresponding classical monopsony price (roughly depending on

whether the demand function is concave or convex, respectively). The reason is that

the monopsony price is determined by a point elasticity, while the personalized price is

optimized by taking expectations over the aggregate uncertainty.

Finally, we establish our convergence result: as aggregate supply is broken up into more

and more suppliers, the outcome of our mechanism converges to the textbook monopsony

pricing against a continuous supply function and the conditions for posted prices to be

optimal are eventually always satisfied. That is, our model is a micro-foundation of the

“invisible hand”in monopsony.

Following our concluding remarks, in Appendix A, we introduce heterogeneity in cost

distributions and show that, contrary to the classic result, it is not necessarily the case

that the less elastic market is offered the lower price. We find conditions for the standard

insight to prevail. Just as the ones for the optimality of posted prices, these conditions

6If costs are random draws from the distribution function F (c), the virtual cost function is given by

c+ F (c)/f(c) (c.f. Myerson, 1981).
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are a strenthening of the standard condition with a term related to the slope of the

monopsonist’s demand function.

1.1 A brief review of the literature

The literature on optimal trading mechanisms7 is not directly relevant, as our interest

here is in a second best. Another strand of the literature makes pairwise comparisons

between bargaining, auctions and posted prices.8 Again, this is very different from our

approach, where we stay with the standard pricing mechanism and investigate the benefits

of discrimination in a hitherto unexplored context. Let us discuss some of the papers that

are more closely related to our proposed mechanism.

Riley and Zeckhauser (1983) consider a seller with commitment power who is visited

by buyers in sequence until she sells her unit. They show that the optimal strategy is

a common take-it-or-leave-it price. Of course, due to the sequential resolution (and the

unique item on offer) the aggregate uncertainty is minimal in this model.

In our setting, and assuming regularity, Bulow and Roberts (1989) showed that the

mathematical problem of setting the optimal monopsony price is the same as setting the

optimal reserve price in an auction, independently of the number of bidders. In other

words, the optimal auction for ex ante identical suppliers involves a (common) reserve

price, which equals the optimal take-it-or-leave-it offer to a single supplier: the monopsony

price. Since Bulow and Roberts allow for supply uncertainty and obtain uniform (reserve)

prices, one might consider that posted prices continue to be optimal. We show that this

is not necessarily the case.9 Kotowski (2018) shows the contrapositive: when the demand

function is not regular, personalized reserve prices may be optimal.

7Harris and Raviv (1981) is the classical study of the best mechanism of a single price setter faced

with asymmetric information.
8Notable early contributions are Bester (1993) and Wang (1993, 1995).
9We knew that one had to be careful with extending the equivalence between setting optimal prices

and reserve prices beyond the environment of Bulow and Roberts (1989). Burguet and Sákovics (1999)

show that identical competing sellers will not set reserve prices equal to marginal cost in their auctions

despite what happens in Bertrand competition.

5



Winter (2004) also obtains that offering different prices to identical agents is useful.

However, in his case the principal is using (some of the) prices as a coordination device

in a multiple-equilibrium scenario.

Alonso et al. (2008) also look at the possibility of decentralized organizational struc-

ture but they assume that the monopsonist is constrained to name a single price. There-

fore, the issue that determines whether a centrally set price or delegation to one of the

local managers is optimal is how local managers are willing to report their private in-

formation about demand. As it turns out, when they are expected to widely disagree,

decentralization is optimal.

Chen and Ishida (2013) consider the benefits of personalized pricing in a dynamic

context. They show that price discrimination can increase a seller’s expected profit if she

can commit to dynamic price schedules. Otherwise, the ability to price discriminate not

only is useless but can even harm the seller.

Interestingly, the logic of calculating expected marginal valuations is reminiscent of

the analysis of Martin and Pindyck (2015) of the benefit of averting one catastrophe of

several impending ones.

Finally, observe that an alternative solution —to our insistence on bilateral commit-

ment —of dealing with a principal who cannot commit on how to represent the preferences

of other agents, is the approach of designing credible mechanisms where the principal does

not cheat only if his incentives are set right, as in Li (2017) and Akbarpour and Li (2018).

2 The set-up: personalized pricing

Consider a market with Q unit-supply sellers and a risk neutral monopsonist with —just

as in the classical monopsony model —a continuous,10 weakly decreasing (inverse) demand

function V (.) that we can normalize, so that V (0) = 1 and V (Q) = 0. Trade is restricted

10To highlight the consequences of indivisibilities in our model, we assume —as the textbooks —that

the underlying supply and demand are continuous. The consequences of discontinuities in the classical

context are standard.
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to be in integer units leading to (marginal) willingness to pay vl =
∫ l
l−1

V (x)dx ∈ [0, 1] for

the lth unit of the homogeneous good, l ∈ {1, 2, . . . , Q}, with vl ≥ vl+1.11 Seller i’s cost

(reservation price) is ci and it is i’s private information. From the monopsonist’s —and

the other sellers’—point of view, ci (Seller i’s “type”) is the realization of an independent

random variable, with —strictly increasing and common knowledge —distribution function

Fi(.) and (differentiable) density function fi(.) on [ci, c̄i], where 0 ≤ ci < c̄i. To retain

simplicity and focus, we assume that Fi(.) is regular : ci + Fi(ci)
fi(ci)

is monotone increasing.12

We study monopsony pricing as implemented by a simultaneous personalized offer to

each seller, with full commitment. Note that, since there is aggregate uncertainty, the

buyer risks having to acquire too many (or too few) units: he cannot adjust the prices and

quantities ex post. This is an additional ingredient to the usual trade-off under complete

information, between paying a low price and increasing the amount bought, that the

monopsonist needs to take into account.

For clarity’s sake, we first consider ex ante identical sellers, where each seller’s cost is

independently drawn from the same F (.). We will later relax the symmetry assumption

(c.f. Appendix 6).

Before continuing with our analysis, we first specify the benchmark case of classical

monopsony and relate it to our personalized pricing model.

2.1 The benchmark: classical monopsony

In the classical model, the buyer (with inverse demand V (q)) faces a differentiable, increas-

ing (inverse) supply function S(q). Our set-up reduces to the classical model if we remove

the uncertainty about the costs, so that the total supply at price p coincides with the

expected quantity that the Q suppliers are willing to sell at that price: S−1(p) = QF (p).

11As we allow for vi = 0 and as the demand for a higher number of units than there are available

sellers would never be satisfied, it is without loss of generality to assume that both maximum aggregate

supply and maximum demand are Q units.
12This is the assumption that ensures that the first-order conditions imply the second-order condi-

tions in the standard auction design problem (c.f. Myerson, 1981).
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With this analogue, the optimal monopsony quantity, qM , calculated by equating

marginal valuation with marginal expenditure, would be the solution to

V (qM) =
dqMS(qM)

dqM
= S(qM) + qMS ′(qM). (1)

The optimal monopsony price would then be pM = S(qM), which gives us a translation

of (1) into prices:

V (S−1(pM)) = pM + S−1(pM)S ′(S−1(pM)) = pM +
S−1(pM)

(S−1)′ (pM)
. (2)

Substituting QF (pM) for S−1(pM), we obtain13

pM +
F (pM)

f(pM)
= V (QF (pM)). (3)

That is, the classical monopsonist posts a price that equates his marginal valuation

with what in our model is the virtual cost of an arbitrary seller.14

3 Interior offers

The prices offered by the monopsonist can be classified into three groups: i) those that will

surely be accepted; ii) those that will never be accepted (non-serious offers); and iii) those

that may or may not be accepted with positive probability. We start by characterizing

the first two types and then make an assumption on the cost distribution that rules them

out, leaving us with all prices being interior.

Let us start with the option of making surely accepted offers. For the monopsonist,

these have the obvious advantage of reducing uncertainty on the extensive margin.

13Given regularity, this equation has a unique solution.
14Note that equation (3) can also be written as the equality between the inverse of supply elasticity

and the markdown:
V (QF (pM ))− pM

pM
=

1

εs(pM )
,

where

εs(pM ) =

(
d [QF (p)]

dp

p

QF (p)

)−1
=

(
f(p)

F (p)
p

)−1
.
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The intuition here is reminiscent of the setting of a reserve price in a standard auction,

where the lowest buyer valuation is much higher than the seller’s. In that case, a sale

for the lowest possible valuation is so valuable that the marginal gain in price does not

compensate for risking to lose the sale, resulting in no reserve price set. In the procurement

context, we have the same scenario: if a unit can be bought for certain for a price that is

a fraction of its valuation by the buyer, the expected gain from a more aggressive price

offer may not outweigh the expected loss from possibly not buying it. The key factor

therefore is the expected valuation of the unit minus the highest possible cost. When this

difference is suffi ciently large, it is optimal to make an offer that cannot be refused.

The following example illustrates.

Example 1 Assume that v1 = 1, v2 = 0.2, there are only two sellers, and F (x) = 4x with

support [0, .25]. The best single price for the buyer is p = 5/26 ≈ .192 and corresponding

profit π = 10/13 ≈ .769 (details on how this price is obtained are in Subsection 3.1). If

instead, the buyer sets one price equal to .25 (which is accepted for certain) and the price

of .1 for the other seller, his expected profit is .75 + .1 .1
.25

= .79. Note that the optimal

monopsony price without uncertainty of costs, as in Subsection 2.1, would be .125, buying

one unit and expecting a profit of .875.

When c > 0, any serious offer entails a price bounded away from zero. That is, if

the buyer makes a number of offers above the number of units for which he has positive

willingness to pay, then he risks incurring a loss that is also bounded away from zero.

As the expected value of the marginal unit is not bounded away from zero, it may be

optimal to make serious offers to only some of the potential sellers. The following example

illustrates this possibility.

Example 2 Assume that v1 = 1 and v2 = 0, and that there are only two sellers. Let

F (x) = x−c
1−c with support [c, 1]. If only one serious offer is made then Π1(p) = (1−p)F (p),

and the first-order condition is 1 = F (p)/f(p) + p. Substituting in for F , we obtain

p = 1+c
2
and thus Π1 = 1−c

4
. If two (equal) serious offers are made, then the expected

profit is Π2(b) = 1− (1− F (b))2 − 2F (b)b, leading to the first-order condition 1− F (b) =
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F (b)/f(b) + b. Substituting in for F , we obtain b = 1+c−c2
3−2c

and thus Π2 = (1−c)2
3−2c

. It is

straightforward to see that Π1 > Π2 if (and only if) c > 1/2.

The above discussion indicates that having a cost distribution such that with positive

probability i) the cost is at least as high as the highest marginal valuation and ii) the

cost is no more than the lowest valuation should ensure that all offers are interior. This

is indeed the case, as we show next.

Definition 1 F (.) has full support when its support includes that of the demand (c = 0,

c̄ ≥ 1).

Lemma 1 When F (.) has full support, all price offers are interior: pi ∈ (c, c̄) = (0, 1).

Proof. See Appendix B.

The optimality of committing to buy from all comers may be somewhat surprising.

Consider, for example, the extreme case when the buyer is looking for a single unit (and

so vl = 0 for all l > 1) from a large number Q of suppliers. The intuition for making a

serious offer to each seller even in this situation is, nonetheless, simple. If the buyer did

not make a serious offer to some seller then his profit made on her would be zero. On the

other hand, as long as the expected marginal valuation of the unit offered by this seller —

conditional on the offers made to the other sellers —is positive, by making an offer below

this value, the monopsonist would receive a positive expected net marginal payoff. The

expected marginal valuation of that seller’s unit could be zero only if the entire demand is

satisfied with probability one with the offers to the other sellers. However, in equilibrium

that cannot happen. It would entail making an offer of 1 to (at least) one seller, leading to

non-positive profits (on that seller). As a result, the optimal policy for the monopsonist

must include serious offers to all sellers.

In the remainder of the paper we assume that F (.) has full support.
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3.1 Common interior offers

The crucial question is whether personalized pricing in the presence of supply uncertainty

will result in identical individual price offers. As we will argue, the answer is affi rmative if

the probability distribution of costs satisfies a condition that is stronger than regularity.

In Section 3.3, we discuss what might happen when the assumption is not satisfied.

Unlike in the case of regularity, where the restriction on the allowable cost (i.e., supply)

distribution is exogenous, in our definition the constraint depends on the demand function

as well.15

Definition 2 The distribution of costs, F (.), is super-regular relative to {vl}l=1,2,...,Q if:
16 c+ F (c)

f(c)
− F (c) max

l∈{1,2,...,Q}
{vl − vl+1} is strictly increasing in c ≤ 1.

The constraint on the slopes of the cost distribution and the demand is stronger

than regularity as −F (c) is strictly decreasing. Also, the condition is the stronger the

smaller the number of suppliers, as max
l∈{1,2,...,Q}

{vl − vl+1} is strictly decreasing in Q (i.e.,

the number of steps from V (0) = 1 to V (Q) = 0). As an example, consider the family of

power function probability distributions, where F (c) = cz for c ∈ [0, 1], for some positive

value of z. All members of this family are log-concave (i.e., regular). However, for

max
l∈{1,2,...,Q}

{vl − vl+1} = ∆, F (.) is super-regular relative to {vl}l only when z < 1+
√

1+4∆
2∆

.

This constraint is strictest, when ∆ = 1 : z < 1+
√

5
2
≈ 1.618 (recall that the uniform

distribution corresponds to z = 1). On the other hand, it is satisfied by any z for

suffi ciently small ∆. That is, when the demand function, V (.), is smooth and the number

of suppliers is suffi ciently large.

Super-regularity ensures that the system of first-order conditions has a unique, uni-

form solution, making it suboptimal for the buyer to target different parts of the supply

separately —à la third-degree price discrimination (e.g. in case of a multi-peaked supply

15It is straightforward to strengthen the assumption to be independent of V (.): just substitute 1 for

max
l∈{1,2,...,Q}

{vl − vl+1}.
16We let vQ+1 = 0.
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density). For l ∈ {0, 1, ..., Q− 1}, let

χl(x) =

(
Q− 1

l

)
F (x)l(1− F (x))Q−l−1

denote the probability that l out of Q − 1 (independent) draws from the distribution F

are below x.

Proposition 1 When the cost distribution has full support and is super-regular relative

to the buyer’s demand, the optimal personalized pricing strategy is a unique (posted) price

pD satisfying

pD +
F (pD)

f(pD)
=

Q−1∑
l=0

χl(p
D)vl+1. (4)

Proof. See Appendix B.

In other words, under super-regularity, the buyer does not (ab)use his ability to price

discriminate: he offers to buy at the same price from all sellers. Thus, even under (aggre-

gate) uncertainty of supply, our model offers a well-founded, game-theoretic foundation

for posted prices. This qualitative feature replicates what is an assumption in the classical

monopsony model. It is of particular note that this is not a convergence result: the one

price result holds for any number of sellers.

3.2 Posted prices and uncertainty

The fact that, under super-regularity, the buyer names the same price for all sellers does

not imply that this price coincides with the classical monopsony price. The decentralized

posted price, pD in (4), differs from the classical monopsony price, pM in (3), construed as

the optimal posted price when supply is (deterministic and) smooth and equals QF (p).

The left-hand side of (3) and (4), the marginal expenditure (or virtual cost), is com-

mon to both expressions. However, the optimal price in the classic monopsony problem

equates this marginal expenditure to the (marginal) willingness to pay at the optimal

quantity. On the contrary, the optimal monopsony price under uncertainty, pD, equals

that marginal expenditure to the expectation of the marginal willingness to pay. That is,
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pM depends only on the demand function evaluated at the optimal quantity (the trade-off

that determines it is local), whereas pD in (4) depends on the entire demand function.

Not surprisingly, there is no general ranking of these prices. The following example

illustrates.

Example 3 Assume that F (x) = x in [0, 1] and there are three sellers. Consider the

following family of demand functions:17 v1 = 1, v2 = y, and v3 = 0. Using (3) it is

straightforward to verify that for y < 2/3, pM = 1/3. On the other hand, (4) becomes

2p = (1− p)2 + 2(1− p)py, leading to p2(1− 2y)− (4− 2y)p+ 1 = 0. For y > .5 this leads

to pD > 1/3, and for y < .5 it leads to pD < 1/3.

Note that in the above example the threshold value of y = .5 corresponds to V (.)

being “linear”. This is not a coincidence. We can show that the intuition approximately

holds in general.18

Proposition 2 If V (.) is suffi ciently concave (convex) then pM ≥ (≤)pD.

Proof. See Appendix B.

In other words, when the cost distribution has full support and is super-regular, and

the demand function is suffi ciently concave, the Bulow-Roberts intuition19 holds in our

model: the price under uncertainty is lower than in the classical model. However, when

either of these conditions is violated, the situation can change: we can have multiple

prices and/or the price(s) offered can exceed pM (c.f. Example 3).

17For simplicity we work with discontinuous demand functions, it is trivial to see that the results

would hold with arbitrarily close continuous approximations.
18The proof of Proposition 2 makes use of Jensen’s inequality. Indeed, if it weren’t for the fact that

we are comparing a continuous function and a discrete function, Jensen’s inequality would be all there

would be behind that proposition.
19Recall that they say that the optimal reserve price in the procurement auction is same as the

monopsony price and thus the actual price resulting from competitive bidding is (weakly) lower.
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3.3 Prescinding from super-regularity

While super-regularity is a reasonable assumption, it is clearly not always satisfied, in

particular when the number of suppliers is not large. It is therefore pertinent to investigate

the consequences of the failure of its components. In Subsection 4 we will show that,

nonetheless, all the complications that might result from the failure of super-regularity

disappear in the limit as the number of suppliers gets large (and their capacities decrease

to zero). Indeed, for any V (.), super-regularity will be satisfied by all cost distributions

when the number of sellers is suffi ciently large.

When super-regularity fails, the monopsonist may optimally price-discriminate be-

tween otherwise symmetric sellers, even if “classical”regularity is maintained. Note that

this discrimination is different from third-degree price discrimination in that all suppliers

are still assumed ex ante identical. That is, the endogenous price discrimination does not

depend on any exogenous characteristic of suppliers.

The expected value of the marginal lth unit that the buyer acquires increases by the

step size multiplied by the probability of trade with the last inframarginal trader. This

needs to be factored into the “regularity”of the virtual cost. When vl may be significantly

larger than vl+1, then given that a high offer is made to a seller, and so the probability

that the lth unit is acquired is high, the optimal offer to another seller may be low, and

vice versa: if the offer made to the former is low, the best offer to the latter may be

high. At the same time, super-regularity is far from necessary. The following example(s)

illustrate:

Example 4 Supose that v1 = 1 and v2 = 0, and that there are only two (identical) sellers.

consider F (x) = xn for x ∈ [0, 1] and n ∈ N. Note that d(x+F (x)/f(x))
dx

= 1 + 1/n > 0 but
d(x+F (x)/f(x)−F (x))

dx
= 1 + 1/n− nxn−1 < 0 for x > (n−1 + n−2)

1/(n−1)
< 1 and n > 1. With

the help of Mathematica it is immediate to see that for n < 6 there are only symmetric

positive real solutions to the system of first-order conditions (despite the cost function not

being super-regular for any n > 1). However for n = 6 (and higher) there are three positive

real solutions to the system of first-order conditions. A symmetric one with p = .728752

and two asymmetric ones with pi = .813675 and pj = .608395. Substituting them into
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the objective function, the first leads to an expected buyer profit of .0588231, while the

latter(s) to .0592148. Thus, the optimal price vector is asymmetric.

4 Large markets and convergence

One of the goals of this paper is to provide a micro-foundation for the classical monopsony

model that relies on the buyer being able to make personal commitments to individual

suppliers, but without having the ability to make these commitments contingent on deal-

ings with other sellers. Thus, we now show that indeed, in the limit, where the buyer

faces a large number of (capacity constrained) small suppliers, his optimal price vector

reduces to classical monopsony pricing (c.f. Section 2.1) without any additional assump-

tion. That is, without any strengthening of regularity needed, and also without the need

for full support.

Let’s fix an integer t and let δ = 1
t
. Also, to save in notation without losing any

generality, let Q = 1. Suppose that each seller has an indivisible supply of δ units to

sell with probability α, and let si be the per-unit price the monopsonist offers supplier

i for her supply. When t = 1, this is the model analyzed in the previous section, for

Q = 1. As t gets large, both the demand and the supply become a closer approximation

of the underlying continuous functions (V (.) and F (.)): vq
δ

=
∫ q
q−δ

1
δ
V (x)dx →t→∞ V (q)

and the realization of t draws from F (.) converges to tF (.) a.s. (by the Strong Law of

Large Numbers). In other words, as t increases without bound, our set-up converges to

the classical monopsony set-up. The question is whether our predictions converge as well.

The answer is affi rmative, and we will show it in two steps. First we will show that,

under symmetric pricing, (4) converges to (3). Next, we will argue that the optimal

solution to (4) near the limit must be symmetric, that is, a posted price, as long as F (.)

is regular (which eventually means also super-regular).

Lemma 2 For any posted-price p ∈ (0, 1),
∑t

j=1 vjχj−1(p)→t→∞ V (F (p)).

Proof. See Appendix B.
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Lemma 3 For t suffi ciently large, the optimal personalized pricing scheme is a posted

price.

Proof. See Appendix B.

Putting these two lemmas together, we have proved our main convergence result:

Proposition 3 For t suffi ciently large, the buyer-optimal personalized price vector con-

verges to the classical monopsonist’s posted price.

The assumption that the underlying (inverse) demand V (.) function is continuous

greatly simplifies the proof of these convergence results. We conjecture that it is possible

to extend the argument to an exogenously discontinuous demand, and to demonstrate

that our convergence results do not hinge on the continuity of V (.).

5 Conclusion

In this paper, we delve into the micro-structure of monopsony and provide a “decentral-

ized”mechanism, whose limit is the standard model. We show that there is no need for an

“invisible hand”: under mild conditions, optimal pricing with personalized commitment

leads to a posted price even far away from the limit.

For simplicity, we have restricted attention to ex-ante identical sellers. The analysis

can be straightforwardly extended to multiple types of sellers — that is, ex-ante asym-

metric sellers —and our results are robust to such a generalization. In fact, as we also

show in Appendix A, further insights arise: the standard result, that in multi-market

monopsony the price in the market with more elastic supply is higher, need not hold.

Once more, what guarantees that ranking of prices is not the relative size of the reverse

hazard rate (elasticity) but the relative size of this reverse hazard rate "corrected" by the

term F (c) max
l∈{1,2,...,Q}

{vl − vl+1} that also appears in the super-regularity condition. Again,
the extra term reflects the relative size of the gambles in the different markets, given the

aggregate uncertainty that the monopsonist faces. By strengthening the standard condi-
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tion on elasticity taking these gambles into account, we recover the “correct”ranking of

prices.

Our one-seller-one-unit set-up can be easily extended to multiunit sellers, as long as

they have constant marginal costs. While our procedure would allow the buyer to make

a different price offer for each unit of a seller, optimally he would set a constant price for

all. Increasing (decreasing) marginal costs would introduce the usual incentives towards

distributing (concentrating) procurement over suppliers and would take us away from the

classical model.

We have dealt with bilateral commitment in static games. In dynamic games and

without dynamic (multilateral) commitment, the monopsonist could make their future

decisions depend on past realizations of trade. That dynamic monopoly problem is an

interesting extension of this paper.

The restriction to static mechanisms imposed by our main goal of microfounding

monopsony, makes it impractical to think about our model in a mechanism design context:

the sequential resolution of uncertainty would clearly be beneficial. Nonetheless, it is of

note that our personalized pricing scheme is the best mechanism the buyer can devise

subject to bilateral commitment in the static context.

Finally, it is important to point out that the personalized price setting mechanism

that we analyze in this paper can be usefully adapted to the context of competing price

setters. Burguet and Sákovics (2017a, 2017b, 2019) are witnesses to this. In the first

paper, personalized pricing leads to a model of simultaneous price competition without

the need for rationing (in case, given prices, demand exceeds supply) or demand sharing

(in case, given prices, supply exceeds demand) as these are determined endogenously

by the equilibrium bid vectors. The equilibrium is unique even when marginal cost are

increasing: the price is competitive with positive profits.

In the second paper there is competition for input between two firms that also compete

in the product market. Here, personalized pricing allows firms to strategically target their

offers at the suppliers of their competitors. The “competitive foreclosure” that ensues

leads to higher aggregate input (and, therefore output and effi ciency), contrary to the

17



usual foreclosure logic, which tends to lead to ineffi ciency.

The third paper extends the previous study to the case where the product market is

collusive, as in the competition for talent in a sports league. It provides micro-foundations

for some classical invariance theorems in the literature.
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6 Appendix A: Third-degree price discrimination

Aggregate uncertainty might affect the direction of third-degree price discrimination. Re-

call that, according to the classical multi-market monopsony model,20 the buyer should

optimally offer a higher price to the market with the higher price elasticity of supply. This

result need not hold in our model with uncertainty.

Indeed, let us reintroduce ex-ante (observable) asymmetry among sellers. To consider

the simplest case, suppose there are two “markets”with Q1 and Q2 sellers, their cost

distributions being F (.) andG(.), respectively. In order to calculate the expected marginal

value we first need to calculate the probability that l items are sold when the buyer offers

p1 toQ1 sellers in market 1 and p2 toQ2 sellers in market 2. First, let us denote by χil(x;K)

the value of χl(x) when Q = K and the distribution function is the one characterizing

suppliers in market i, for i = 1, 2. Also, and to save in notation, let χil(x;K) = 0 whenever

l ≥ K. We should also introduce an additional piece of notation:

ψ
l
(p1, p2;K1, K2) =

l∑
k=0

χ1
k(p

1;K1)χ2
l−k(p2;K2).

ψ
l
represents the probability that l offers are accepted when Ki are made to sellers in

market i, each with a price of pi. We can now write the corresponding system of equations

for (4) as

Q1+Q2∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2)vj =
F (p1)

f(p1)
+ p1 (5)

Q1+Q2∑
j=1

ψ
j−1(p

1, p2;Q1, Q2 − 1)vj =
G(p2)

g(p2)
+ p2. (6)

It is now straightforward to generalize Proposition 1 to two (or more) classes of sellers.

Corollary 1 When both cost distributions are super-regular relative to the buyer’s de-

mand function, the optimal personalized pricing strategy is a posted price in each market,

satisfying (5)-(6).

20See, for example, Tirole (1988) page 137.
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We are not particularly interested in the uniqueness of the pairs of (uniform) prices

solving the first-order conditions. (In case there are several, the buyer simply chooses the

pair maximizing his expected utility.)

Returning to third-degree price discrimination, note that in the solution to (5), the

monopsonist again equals the marginal expenditure in market 1 (the right hand side) to

the expected willingness to pay for the marginal unit, the left hand side. The subtle point

here is that this expectation is taken conditional on all offers made in market 2, and all

but one made in market 1. Similarly, the solution to (6) depends on the same expectation

but conditional on all but one offers in market 2 and all offers in market 1.

Note that, for K1 +K2 − 1 ≥ l ≥ 1,

ψ
l
(p1, p2;K1, K2) (7)

= (1− F (p1))ψ
l
(p1, p2;K1 − 1, K2) + F (p1)ψ

l−1
(p1, p2;K1 − 1, K2)

= (1−G(p2))ψ
l
(p1, p2;K1, K2 − 1) +G(p2)ψ

l−1
(p1, p2;K1, K2 − 1).

Indeed, the second line above simply separates one supplier from the first market, com-

putes the probability that l units are obtained from the K1 − 1 and K2 other suppliers,

and the probability that l − 1 units are obtained from them. Then, it multiplies these

probabilities by the probability of obtaining no unit or one unit from the separated sup-

plier, respectively. The third line is a similar exercise with a separated supplier from

market 2. Using (7), we can write the left-hand side of (5) as

Q1+Q2∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2)vj

= (1−G(p2))

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)vj +

G(p2)

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)vj+1

=

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)vj

−G(p2)

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)(vj − vj+1),
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where we have also used the fact that

ψ
0
(p1, p2;Q1 − 1, Q2) = (1−G(p2))ψ

0
(p1, p2;Q1 − 1, Q2 − 1),

ψ
Q1+Q2−1

(p1, p2;Q1 − 1, Q2) = G(p2)ψ
Q1+Q2−2

(p1, p2;Q1 − 1, Q2 − 1)

Similarly for the left hand side of (6). Thus, we can write (5)-(6) as

Ep1,p2vj =
F (p1)

f(p1)
+ p1 +G(p2)Ep1,p2∆vj,

Ep1,p2vj =
G(p2)

g(p2)
+ p2 + F (p1)Ep1,p2∆vj,

where Ep1,p2vj =
∑Q1+Q2−1

j=1 ψ
j−1(p

1, p2;Q1− 1, Q2− 1)vj is the expected (marginal) value

of a unit bought from a supplier, given the offers made to Q1 − 1 suppliers in market 1

and to Q2 − 1 suppliers in market 2; and Ep1,p2∆vj is the expectation of the marginal

increase in this value relative to the case where one more unit is bought from the other

sellers, ∆vj = vj − vj+1, Ep1,p2
∑Q1+Q2−1

j=1 ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)(vj − vj+1).

Now recall that the price elasticity of supply in market 1 is

εs1 =

(
dF (p)

dp

p

F (p)

)−1

=

(
f(p)

F (p)
p

)−1

.

Thus, the supply elasticity of a market at any price is proportional to the (inverse) hazard

rate. The intuition becomes clear if we write the optimal pricing formula in terms of the

hazard rate

Ep1,p2vj − p1 =
F (p1)

f(p1)
+G(p2)Ep1,p2∆vj (8)

Ep1,p2vj − p2 =
G(p2)

g(p2)
+ F (p1)Ep1,p2∆vj.

The inverse (reverse) hazard rate may be higher, yet the optimal price in that market

may be lower.

Note that, for all prices, Ep1,p2∆vj ≤ maxj ∆vj. Thus, once again, aggregate uncer-

tainty may results in changes that are related to the the additional term F (x) maxj ∆vj.

Combining the two equations in (8) we obtain

G(p2)

g(p2)
− F (p1)

f(p1)
+
(
F (p1)−G(p2)

)
Ep1,p2∆vj = p1 − p2.
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Recall that reverse-hazard-rate dominance implies first order stochastic dominance. Then,

the following proposition is immediate:

Proposition 4 Suppose that both F and G are super-regular relative to {vl}, and for any
x ∈ (0, 1), F (x)

f(x)
< G(x)

g(x)
(F reverse-hazard-rate dominates G’s; i.e., market 1’s supply is

more elastic than market 2’s). A suffi cient condition for the optimal monopsony price in

market 1 to be larger than that in market 2 is that for all x

F (x)

f(x)
− F (x) max

j
∆vj ≤

G(x)

g(x)
−G(x) max

j
∆vj.

Thus, just as a strengthening of regularity guarantees that the posted prices are indeed

optimal for a monopsonist, strengthening the inverse hazard rate dominance along the

same lines guarantees that prices for a third-degree price discriminating monopsonist

follow the same pattern as in the classical model of monopsony.

As an illustration that when the suffi cient condition is not satisfied we can indeed

obtain the “wrong”price ordering, consider the following example:21

Example 5 Let , Q1 = Q2 = 1 v1 = 1 and v2 = 0, F (x) = x and G(x) = x2 if x ≤ .5

and G(x) = 1.5x− .5 for x > .5.22 Then (5)-(6) become

1− (p2)
2 if p2 ≤ .5

1.5(1− p2) if p2 > .5

 = 2p1 (9)

1− p1 =

 1.5p2 if p2 ≤ .5

2p2 − 1/3 if p2 > .5
.

Solving, we obtain p2 = 3−
√

5
2

< .5 < p1 =
√

5
2
· 3−

√
5

2
, while the price elasticities are

p1 · f(p1)
F (p1)

≡ 1 < p2 · g(p
2)

G(p2)
= 2.

Once more, when the number of suppliers is large (and their capacity small, with

respect to the size of the market), maxj ∆vj is small and (given regularity) the suffi cient

21In fact, Example 4 could suffi ce, if we consider each seller as a different market, since elasticity is

(constant and) equal in both markets in that case, yet prices are different.
22We cannot use G(x) = x2 as it is not super-regular, so we could not appeal to the corollary.
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condition in Proposition 4 is satisfied. Consequently, the expected values in the left hand

side of (5) and (6) for similar values of p1 and p2 approach, and then we recover the

predictions of the classical monopsony model.

Finally, along the lines of Section 4, it is a straightforward corollary to Proposition 4

that the direction of third-degree price discrimination fixes itself when sellers are small:

Corollary 2 For t suffi ciently large, the market with higher price elasticity is offered the

higher price.

7 Appendix B

7.1 Proof of Lemma 1

Suppose that it is optimal to offer a seller a price that is accepted for certain. As c̄ ≥ 1,

and the marginal value of this unit is bounded by V (0) = 1, the maximum profit on this

transaction is non positive. Then, as the probability that a price p < 1 is accepted is

F (p) > 0, offering a lower price would lead to a positive profit. Consequently, offering a

price above c̄ can never be optimal.

Next, suppose that it is optimal to offer a price of 0 to a seller. Obviously, that would

lead to no profit on that seller as the probability of acceptance is 0. However, as long as

there is a positive expected marginal valuation for that “last”unit, an offer to buy for a

price above it will be accepted with positive probability —note that, given c = 0, there are

always seller types below any positive value —and thus lead to positive marginal profit.

The only way not to have a positive expected marginal valuation would be if the seller

made at least one offer that is certainly accepted. However, we have just shown that such

an offer is never made. Q.E.D.
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7.2 Proof of Proposition 1

By Lemma 1, we know that all prices are interior. We show that there can be no two

different interior prices by reduction to the absurd. Take any two interior prices, bj, bk ∈
(0, 1). Given the rest of the prices, we can compute the probabilities that the buyer obtains

l ∈ {0, 1, .., Q − 2} units from these other sellers. Let those probabilities be denoted by

Φ̃l(b−(j,k)). Then, the buyer’s expected profit can be written as

Q−2∑
l=0

Φ̃l(b−(j,k))
{[
F (bk) + (1− F (bk))F (bj)

]
vl+1 + F (bj)F (bk)vl+2 − F (bj)bj − F (bk)bk

}
.

To see this, note that, from the two sellers considered, the buyer will buy at least one

unit if either he buys from the kth seller (and either buys or not from the jth one) or if he

does not buy from the kth but buys from the jth seller. He will get a second unit if and

only if he buys from both. Finally, he pays each seller if and only if he buys from them.

Thus, the first-order condition for bj is

Q−2∑
l=0

Φ̃l(b−(j,k))
{
f(bj)

[
F (bk)vl+2 +

(
1− F (bk)

)
vl+1 − bj

]
− F (bj)

}
= 0,

and similarly for bk. As
∑Q−2

l=0 Φ̃l(b−(j,k)) = 1, we can write this first-order condition in

the familiar way (c.f. (3)),
F (bj)

f(bj)
+ bj = v̂j,

where

v̂j =

Q−2∑
l=0

Φ̃l(b−(j,k))
{
F (bk)vl+2 +

(
1− F (bk)

)
vl+1

}
is the expected value of the unit potentially bought from seller j.23 We can rewrite

v̂j =

Q−2∑
l=0

Φ̃l(b−(j,k))vl+1 − F (bk)

Q−2∑
l=0

Φ̃l(b−(j,k)) (vl+1 − vl+2)

=

Q−2∑
l=0

Φ̃l(b−(j,k))vl+1 − F (bk)H(b−(j,k)),

23Note that, by regularity, the second-order condition is satisfied.
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where H(b−(j,k)) =
∑Q−2

l=0 Φ̃l(b−(j,k)) (vl+1 − vl+2). Then, the first-order conditions with

respect to bj and bk imply

F (bj)

f(bj)
+ bj − F (bj)H(b−(j,k)) =

F (bk)

f(bk)
+ bk − F (bk)H(b−(j,k)) =

Q−2∑
l=0

Φ̃l(b−(j,k))vl+1 −
[
F (bk) + F (bj)

]
H(b−(j,k)).

Therefore, if

b+
F (b)

f(b)
− F (b)H(b−(j,k)) (10)

is strictly monotone, we must have bj = bk. Finally, observe that, since H(b−(j,k)) =∑Q−2
l=0 Φ̃l(b−(j,k)) (vl+1 − vl+2) ≤ max

l
{vl − vl+1}, the strict monotonicity of b + F (b)

f(b)
−

F (b)max
l
{vl − vl+1} (and the monotonicity of F (.)) implies strict monotonicity of (10) —

and super-regularity implies the former. Repeating this argument for every pair of sellers,

we obtain that all interior prices must be equal.

Finally, to obtain (4) just note that
∑Q−2

l=0 Φ̃l(p
D)
{
F (pD)vl+2 +

(
1− F (pD)

)
vl+1

}
=∑Q−1

l=0 χl(p
D)vl+1. Q.E.D.

7.3 Proof of Proposition 2

Note that both prices are equating the virtual cost to: i) in the no uncertainty case, the

demand function evaluated at the expected amount of trade; ii) in case of personalized

pricing, the expected value of the marginal valuation (demand). Thus, as the virtual cost

is strictly increasing by (super) regularity, all we need to check is whether, when V is

suffi ciently concave,
Q−1∑
l=0

χl(p)vl+1 ≤ V (QF (p)) .

Note that

Q−1∑
l=0

χl(p)vl+1 =

Q−1∑
l=0

χl(p)

∫ l+1

l

V (x)dx =

Q−1∑
l=0

∫ l+1

l

χl(p)V (x)dx

=

∫ Q

0

H(x; p)V (x)dx,
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where H(x; p) is the step (in x) function H(x; p) = χl(p) for all x ∈ [l, l + 1). Note that∫ Q

0

H(x; p)xdx =

Q−1∑
l=0

χl(p)

∫ l+1

l

xdx =

Q−1∑
l=0

χl(p)(l +
1

2
) = (Q− 1)F (p) +

1

2
.

Thus,

V (QF (p))−
Q−1∑
l=0

χl(p)vl+1

= V (QF (p))− V ((Q− 1)F (p) +
1

2
) + V (

∫ Q

0

H(x; p)xdx)−
∫ Q

0

H(x; p)V (x)dx.

The first term is (positive if F (p) > 1/2 and) related to the slope of V , whereas when

V is concave, the second is positive from Jensen’s inequality. Also, the relative size of

these terms depends on the degree of concavity of V : V ”/V ′. Thus, when V is suffi ciently

concave, the result follows. The result for (suffi cient) convexity can be obtained in a

similar way. Q.E.D.

7.4 Proof of Lemma 2

For each posted price p and given the total number of sellers t, the number j of sellers

(other than i) that accept the offer, n is a random variable with probability distribution,

χ
n
(p), a binomial with parameters (t− 1, F (c)). Also, by the Strong Law of Large Num-

bers, these sellers’average supply converges a.s. to F (p) as t − 1 → ∞. That is, taking
into account that each seller sells δ = 1

t
when accepting the offer, and that t−1

t
→ 1, total

supply of these t− 1 sellers converges a.s. to F (c). That is,

Pr [|δn− F (c)| < ε]→ 1, ∀ε > 0.

Therefore,
∑

j/t/∈(F (p)−ε,F (p)+ε) χj−1(p) → 0 as t → ∞, for all ε, and the result follows.
Q.E.D.

7.5 Proof of Lemma 3

That interior prices must be uniform for high enough t follows immediately from the proof

of Proposition 1. We only need to observe that, as V (.) is continuous, max
l
{vl − vl+1}
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converges to zero as t → ∞, and so H(b−(j,k)) (an expectation of these values) does too.

Consequently, regularity is suffi cient for a unique interior solution.

To show that for high enough t no extreme offer will be made, we will first prove that

in equilibrium the marginal valuation must eventually be strictly above c. It then follows

that it is in the buyer’s interest to make serious offers.

Take a price which is strictly above c (there must be at least one since c < 1 = v1).

The marginal valuation for this unit must be at least as much as the price. Now take

another price which is not serious. As t increases, the difference between the marginal

valuations of these two units converges to zero, so the second unit is also worth a serious

price.

Next, note that unless the classical monopsony price equals c̄ —which happens if the

lowest marginal valuation is above the highest virtual cost —it must be the case that, for

t large enough, the marginal valuation is less than the highest virtual cost, implying that

(4) has an interior solution. Q.E.D.
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