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GAME THEORY 

(based largely on Steven Matthews’ notes) 

 

1. Concepts 

 

1.a. Basic definitions 

 

Game theory is the study of strategic interaction – that is, interactions where a player’s 

payoffs depend on others’ actions as well as own her own.  Game theory can also be 

thought of as multi-person decision theory, and many of the ideas from our study of 

choice under uncertainty will show up. 

 

As an introduction, we’ll consider two-player games. 

 

Example:   

 

Player’s 1’s utility payoffs (NOT wealth payoffs) are given in the following matrix: 

 

 
  Rain God 
  Sun Rain 

No 
Umbrella 5 0 

Player 1 
Umbrella 1 3 

 
 

In general, we have two expected-utility maximizing players. 

Player 1’s set of possible actions A = {a1, … , aK}, 

Player 2’s set of possible actions B = {b1, … , bJ}. 

Player 1’s utility is given by u(a, b), where u: A × B →  R.  (We’ll add Player 2’s payoffs 

later.) 
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1.b. Dominance and belief rationality 

 

Dominance: 

 

Action a “(strictly) dominates” action a′  if 

u(a, b) > u(a′, b) for all b ∈ B. 

Action a “weakly dominates” action a′  if 

u(a, b) ≥ u(a′, b) for all b ∈ B, and 

u(a, b) > u(a′, b) for some b ∈ B. 

Action a is “undominated” (or “admissible”) if it is not weakly dominated by any a′ ∈ A. 

Action a is “dominant” if it (strictly) dominates every other action a′ ∈ A. 

Action a is “weakly dominant” if it weakly dominates every other action a′ ∈ A. 

 

A rational player will never choose a strictly dominated action.  She will always pick a 

dominant action if there is one. 

 

Examples: 

 

 
  Player 2 
  C D 

C −1 −4 
Player 1 

D 0 −3 
 

 

 
  Player 2 
  L R 

T 3 0 

M 1 1 Player 1 

B 0 3 
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Beliefs: 

 

Player 1’s beliefs about Player 2’s actions are given by a probability distribution  

p = [p(b1), … , p(bJ)], where each  p(bj) ≥ 0 and ∑
=

=
J

j
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1
1)( .  The set of such beliefs is 

∆(B). 

 

Thus, the expected utility u(a, p) of an action a is given by  ∑
=

=
J

j
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(Note that the expected utility function u(a, p) maps from A × ∆(B) →  R, while our 

original utility function u(a, b) maps from A × B →  R.) 

 

A rational player will always choose an action that maximizes expected utility given 

beliefs p.  Since the set of actions A is finite, there is always at least one best action. 

 

Action a is a “(weak) best response” to beliefs p if 

 u(a, p) ≥ u(a′, p) for every action a′ ∈ A. 

The “best response correspondence” BR(p) is the set of best responses: 

 ),(maxarg)( paupBR
Aa∈
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Example:  Sun-Rain game. 

 

Let p = prob(Sun).  Then 

u(No Umbrella, p) = 5p + 0(1 – p) = 5p, and 

u(Umbrella, p) = 1p + 3(1 – p) = 3 – 2p. 

Thus, 
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Relating dominance and belief rationality: 

 

Action a is “never a weak best response” (NWBR) if it is not a best response to any belief 

p ∈ ∆(B). 

A rational player will not choose a NWBR. 

 

Proposition 1.b.1:  A strictly dominated action is a NWBR. 

Proof:  If action a dominates action a′, then by definition u(a, b) > u(a′, b) for all b ∈ B, 

and so u(a, p) > u(a′, p) for all p ∈ ∆(B).  Thus, a′ is a NWBR.   Q.E.D. 

 

The converse of the proposition is not true.  Here is a counterexample: 

 

 
  Player 2 
  L R 

T 3 0 
Player 1 

M 1 1 
 B 0 3 

 

Let p = prob(L).  Then 
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So action M is a NWBR, but M is undominated. 

 

However, consider a “mixed action,” where Player 1 flips a coin to decide between T and 

B.  Call that action F. 

The expected utility u(F, p)  = 0.5 u(T, p) + 0.5 u(B, p) 

    = 0.5[3p] + 0.5[3(1 – p)] = 0.5[3] = 1.5. 

Since u(F, p) = 1.5 for all p, in particular u(F, L) = u(F, R) = 1.5. 

Thus, F dominates M. 
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1.c. Mixed actions 

 

A “mixed action” is a probability distribution σ ∈ ∆(A): 

 σ = [σ(a1), …, σ(aK)]. 

The “support” of a mixed action is the set of pure actions given positive probability: 

 Supp(σ) = {a ∈ A : σ (a) > 0}. 

 

It will sometimes be convenient to think of pure actions as just a special case of mixed 

actions. 

 

The expected utility u(σ, p)of a mixed action σ given beliefs p is 

 ⎟
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(Note that the expected utility function for a mixed action u(σ, p) maps from ∆(A) × ∆(B) 

→  R.) 

 

There is a sense in which mixed actions “have no value.”  A mixed action cannot yield a 

payoff higher than the best pure action in its support, since the payoff to the mixture is a 

convex combination of the payoffs to the pure actions. 

 

We can redefine the best responses as mixed actions: 
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Proposition 1.c.1:  A mixed action σ is a best response if and only if every pure action in 

its support is a best response. 

Proof:   

).,(max),()(),()(),(
)(Supp)(Supp
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Example:  Sun-Rain game. 

 

Let p = prob(Sun), σ = [σ(No Umbrella), σ(Umbrella)].  Then 
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Note that BR(3/7) includes (1, 0) and (0, 1). 

 

Dominance by a mixed action: 

 

Action a ∈ A is “(strictly) dominated by a mixed action” σ ∈ ∆(A) if 

 u(a, b) < u(σ, b) for all b ∈ B. 

 

Proposition 1.c.2:  An action a ∈ A is dominated (possibly by a mixed action) if and 

only if it is a NWBR. 

Proof:  The proof of the “only if” direction is almost identical to the proof of Proposition 

1.b.1.  To prove the “if” direction, we show that if action a is not strictly dominated, then 

it is a best response for some belief. 

 Let xa = (u(a, b1), … , u(a, bJ)) ∈ RJ.  Define sets X and Y as follows: 

X = {x ∈ RJ | x = (u(σ, b1), … , u(σ, bJ)) for some σ ∈ ∆(A)}, and 

Y = {y ∈ RJ | y >> xa}. 

 Note that xa ∈ X, that X and Y are disjoint (since a is not strictly dominated), and 

that xa lies on the boundary of Y.  Both X and Y are convex, and Y is open.  A separating 

hyperplane theorem ensures that there is a nonzero vector p ∈ RJ such that (y – xa) ⋅ p > 0 

for all y ∈ Y, and (x – xa) ⋅ p ≤ 0 for all x ∈ X.  Since the set Y is unbounded above, p must 

be nonnegative.  We can thus interpret p as a probability vector.  (Just normalize by 

dividing through by ∑pj.)  Since (x – xa) ⋅ p ≤ 0 for all x ∈ X, a is a weak best response to 

belief p: any other action gives a weakly lower expected payoff.   Q.E.D. 
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2. Normal (Strategic) Form Games 

 

2.a. Definitions 

 

Definition:  A “normal form game” G is a collection of three things:  players, actions for 

each player, and utility functions for each player. 

 

There are N players. 

The “action set” (or “strategy set”) for Player i is denoted Ai. 

The set of “action profiles” is A = A1 × A2 × … × AN. 

Player i’s utility function is ui : A → R. 

 

Example:  Sun-Rain game. 

 

We’ll add the Rain God’s payoffs.  The Rain God likes the sun and also likes looking at 

umbrellas. 

 
  Rain God 
  Sun Rain 

No 
Umbrella 5, 3 0, 0 

Player 1 
Umbrella 1, 5 3, 2 

 
 

REMEMBER:  Payoffs are not outcomes.  They give the utility from outcomes.  They 

already include risk aversion, concern for others, etc.  So a rational player will maximize 

his or her own expected utility. 
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2.b.  Solution concepts 

 

How will people play a given game?  We will examine different ideas of what a solution, 

or “equilibrium,” should be. 

 

2.b.i  Equilibrium in undominated strategies 

 

We already know that a rational player will not play a dominated action.  Sometimes that 

fact by itself is enough to give us a prediction. 

 

Example: 

 
  Player 2 
  C D 

C −1, −1 −4, 0 
Player 1 

D 0, −4 −3, −3 
 

This game is the Prisoners’ Dilemma. 

Each player has only one action that is not strictly dominated:  D.  So (D, D) is the 

solution. 

 

Example:  Second-price auction. 

 

Bidding your valuation is a weakly dominant strategy.  If you bid higher, then (ignoring 

ties) either you don’t change the outcome, or you win and pay a price greater than your 

valuation.  If you bid lower, then (again ignoring ties) either you don’t change the 

outcome, or you lose when you could have won at a price below your valuation. 

 

Looking for a solution in undominated strategies (especially in strategies that are not 

strictly dominated) is a very reasonable thing to do, but often players have multiple 

undominated strategies.  In the Sun-Rain game, for example, both of Player 1’s actions 

are undominated. 
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2.b.ii.  Iterated deletion of strictly dominated actions 

 

Example:  Sun-Rain game. 

 

Player 1 has no dominated actions.  However, for the Rain God Sun is dominant.  If we 

remove Rain from the game, then No Umbrella becomes dominant for Player 1.  So if 

both players are rational, and if Player 1 knows that the Rain God is rational, and that 

Player 1 knows the Rain God’s payoffs, then we predict that (No Umbrella, Sun) will be 

played. 

 

The order of deletion does not matter.  That is, if more than one action is strictly 

dominated, it doesn’t matter whether they are deleted simultaneously or sequentially, or 

in what order. 

 

This solution concept requires not only that players are rational, but that 1) they know 

each other’s payoffs, and they know that they know each other’s payoffs, and they know 

that they know that they know each other’s payoffs, … , and 2) they know that the other 

is rational, and they know that they know that the other is rational, … , for as many levels 

as there are rounds of deletion. 

 

Example: 

 
  Player 2 
  L R 

U 8, 10 −1000, 9 
Player 1 

D 7, 6 6, 5 
 

 

An event is “common knowledge” if both players know that it is true, and both know that 

both know that it is true, and both know that both know that both know that it is true, and 

so on infinitely. 
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Again, many games are not solvable this way.  That is, in many games more than one 

action profile survives iterated deletion of strictly dominated strategies. 

 

Alternatively, we could try iteratively deleting weakly dominated strategies. 

 

Example: 

 
  Player 2 
  S D 

T 1, 1 2, 1 
Player 1 

B 0, 1 1, −1000 
 

 

The order of deletion does matter. 

 

There are still many games that are not solvable this way. 

 

This solution concept is less reasonable than iterated deletion of strictly dominated 

actions, because a rational player might choose a weakly dominated action.  In the 

example above, D was ruled out only because S is better than D when Player 1 chooses 

action B, which is strictly dominated.  But shouldn’t Player 2 “know” that Player 1 will 

never play a dominated strategy? 

 

As another alternative, we could try iteratively deleting NWBR actions.  For two-player 

games, that approach yields exactly the same solution as the iterated deletion of strictly 

dominated actions.  (The strategy profiles that survive are called “rationalizable.”)  With 

more than two players, things are more complicated.  In defining a NWBR, should we 

allow for correlated randomization by the other players, or should we require that the 

others’ strategies are independent? 
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2.b.iii.  Nash equilibrium 

 

A pure action profile a* = (a1*, … , aN*) is a “Nash equilibrium” if for each player i,  

 

  ui(ai*, a−i*) ≥ ui(ai, a−i*) for every ai ∈ Ai. 

 

That is, ai* ∈ BR(a−i*) for every player i. 

 

A (mixed) action profile σ* = (σ1*, … , σN*) is a “Nash equilibrium” if for each player i, 

σi* ∈ BR(σ−i*).  That is, ai ∈ BR(σ−i*) for every ai ∈ Supp(σi*). 

 

 

Example: The Prisoners’ Dilemma. 

 
  Player 2 
  C D 

C −1, −1 −4, 0 
Player 1 

D 0, −4 −3, −3 
 

The unique Nash equilibrium is (D, D).  That profile is also the only one to survive 

iterated deletion of strictly dominated actions. 

 

Proposition 2.b.1:  If σ* is a Nash equilibrium, then σ* survives iterated deletion of 

strictly dominated actions.  (That is, every action profile a ∈ Supp(σ*) survives.) 

Proof:  Practice. 
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2.c.  Finding equilibria 

 

2.c.i.  Calculating mixed strategy equilibria 

 

Example:  “Battle of the Sexes” 

 
  Woman 
  Fight Ballet 

Fight 2, 1 0, 0 
Man 

Ballet 0, 0 1, 2 
 

There are two pure strategy Nash equilibria:  (Fight, Fight) and (Ballet, Ballet). 

We can also find an equilibrium in mixed strategies: 

If Man is mixing, then he must be indifferent between playing Fight and playing Ballet, 

which implies conditions on the strategy that Woman is playing. 

Let p = σWoman(Fight).  Then 

 UMan(Fight) = 2p + 0(1 – p) = 2p, and 

 UMan(Ballet) = 0p + 1(1 – p) = 1 – p. 

Indifference requires that 2p = 1 – p, so p = 1/3. 

Similarly, Woman must be indifferent between Fight and Ballet to be willing to mix, 

which implies (by a similar calculation) that σMan(Fight) = 2/3. 

So each player is willing to mix only if the other player is mixing.  That result implies 

that there is no Nash equilibrium where one player mixes and the other plays a pure 

strategy.  The unique mixed strategy equilibrium is thus ((2/3, 1/3), (1/3, 2/3)). 

 

In general, games may have mixed strategy equilibria where some players mix and some 

don’t, or where a player mixes over some of her actions and not others.  In looking for 

mixed strategy equilibria, it is important to check all the cases.  For large games, there are 

a lot of cases.1 

                                                 
1 Life is full of sadness. 



 14

2.c.ii.  Existence of Nash equilibria 

 

Definition:  A correspondence f mapping from A ⊆ RN to a closed set Y ⊆ RM is “upper 

hemicontinuous” if 

1) the set {(x, y) : x ∈ A, y ∈ f(x)} is closed (with respect to A × Y), and 

2) for any compact set AC ⊆ A, the set {y : y ∈ f(x) for some x ∈ AC } is compact. 

 

Part 1) says that the correspondence has “closed graph.”  Part 2) says that the image of a 

compact set is compact. 

 

Claim:  The best response correspondence is upper hemicontinuous. 

Suppose that {pn} → p is a sequence of mixed strategies by the other players.  If an 

action a ∈ BR(pn) for all n, then a ∈ BR(p). 

 

Proposition 2.c.1:  Every finite game (that is, every game with finite sets of players and 

actions) has at least one (possibly mixed) Nash equilibrium. 

Proof idea:  We apply Kakutani’s fixed point theorem to the best response 

correspondence.  A Nash equilibrium is an action profile that is a best response to itself – 

that is, a fixed point of the best response correspondence.  BR(⋅) is a nonempty, convex-

valued (why?), upper hemicontinuous correspondence mapping from a nonempty, 

convex, compact set (the set of mixed action profiles) to itself, so Kakutani’s fixed point 

theorem guarantees the existence of a fixed point. 

 

We have seen that the Nash equilibrium may not be unique. 

 

Nash equilibrium has nothing to do with Pareto optimality. 

 

The Nash equilibrium correspondence (mapping from payoffs to actions) is also upper 

hemicontinuous. 
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2.d.  Examples 

 

2.d.i.  Classic games 

 

Example:  “Matching Pennies” 

 
  Player 2 
  Heads Tails 

Heads 1, −1 −1, 1 
Player 1 

Tails −1, 1 1, −1 
 

Matching pennies is a “zero sum game.”  It has no Nash equilibrium in pure strategies.  

There is a unique mixed strategy equilibrium:  ((½, ½), (½, ½)). 

 

Example:  “Divide the Dollar” 

 

There are two players, with action sets A1 = A2 = R+.  Payoffs are as follows: 

 

 
⎩
⎨
⎧ ≤+

=
otherwise.,0

1 if,
),( jii

jii
aaa

aau  

 

Divide the Dollar is not a finite game, so Proposition 2.c.1 does not guarantee that a Nash 

equilibrium exists.  In fact, though, there are many.  Any pair (a1, a2) such that either  

a1 + a2 = 1 or min{a1, a2} ≥ 1 is a pure strategy equilibrium.  Note that some of those 

equilibria involve both players choosing weakly dominated actions.  There are also many 

mixed strategy equilibria. 
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Example:  Cournot duopoly 

 

There are two firms, each of whom chooses a quantity qi ∈ Ai = R+.  Define Q as the sum 

of q1 and q2.  Payoffs are as follows: 

 

 ui(qi, qj) = qi P(Q) – ci(qi), 

 

where P(⋅) is inverse demand and ci(⋅) is firm i’s cost function. 

For the sake of a simple example, let P(Q) = a – Q, and let ci(qi) = c qi for each i, where  

a > c.  Then the best response correspondences are given by 

 

 BRi(qj) = argmax qi (a – qi – qj) – c qi. 

 

At an interior solution, the first order condition is a – 2qi – qj – c = 0, so 

 

 
2

)( j
ji

qca
qq

−−
=  if 0

2
≥

−− jqca
, and 0 otherwise.  Similarly, 

 
2

)( i
ij

qca
qq

−−
=  if 0

2
≥

−− iqca
, and 0 otherwise. 

 

The pure strategy Nash equilibrium, then, is qi* = qj* = 
3

ca − .  Total quantity Q* = 

3
)(2 ca − , and the equilibrium price P* = ca 3

2
3
1 + . 

 

With N firms, each qi* = 
1+

−
N

ca .  Total quantity Q* = 
1

)(
+
−

N
caN , and the equilibrium 

price P* = ca N
N

N 11
1

++
+ .  As N grows, those values approach the competitive price c 

and quantity (a – c). 
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2.d.ii.  Thought-provoking examples 

 

Suppose that a game has two Nash equilibria.  One might think that if one equilibrium 

involves weakly dominated strategies and the other doesn’t, then the first is less likely to 

be played.  One might also think that an equilibrium that is Pareto dominated by another 

equilibrium is unlikely to be played.  But consider the following example: 

 

 
  Player 2 
  L R 

T 10, 0 5, 2 
Player 1 

B 10, 11 2, 11 
 

That game has two pure strategy equilibria: (B, L) and (T, R).  The first equilibrium 

involves both players choosing weakly dominated actions, but it strictly Pareto dominates 

the second! 

 

Or consider the following three-player game, where Player 1 chooses rows, Player 2 

chooses columns, and Player 3 chooses the box: 

 
 Box 1 
 X Y 

A 1, 1, 0 1, 0, 1 

B 1, 1, 1 0, 1, 1 
 

 Box 2 
 X Y 

A 1, 0, 1 1, 1, 0 

B 1, 1, 0 0, 1, 0 
 

The only pure strategy Nash equilibrium, (B, X, Box 1), has Player 1 playing a weakly 

dominated action (B). 
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3. Extensive Form Games 

 

Remember the Battle of the Sexes: 

 

 
  Woman 
  Fight Ballet 

Fight 2, 1 0, 0 
Man 

Ballet 0, 0 1, 2 
 

 

What if Man, working downtown, is farther from the boxing arena and from the ballet 

theater, so that he has to leave work and make his decision first? 

 

 
But that picture does not quite capture the situation that we’re interested in.  We need a 

way to indicate who knows what when, as well as who moves when. 

 

Man 

Fight Ballet 

Woman Woman 

Fight Ballet Fight Ballet 

(2, 1) (0, 0) (0, 0) (1, 2) 

• •
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3.a.  Definitions 

 

3.a.i.  Extensive-form game ingredients 

 

1) Players 0, 1, … , N.  Player 0 is Nature. 

2) Nodes:  y ∈ Y. 

a. Decision nodes x ∈ X. 

b. Terminal nodes z ∈ Z. 

3) Directions:  predecessors and successors. 

a. Each node (except the initial node y0) has one immediate predecessor. 

b. Terminal nodes have no successors, immediate or otherwise. 

4) The game tree is initial node y0 and all its successors. 

a. A subtree is any node and all its successors. 

5) Whose decision:  a map i: X → N that specifies which player gets to move at each 

decision node. 

6) Actions:  A(x) is the set of actions available to player i(x) at decision node x. 

a. Each different action leads to a different immediate successor node. 

7) Information sets:  H is a partition of decision nodes into information sets.  A player 

cannot tell which node within an information set she’s at, although she can 

distinguish between information sets. 

a. h(x) is the information set that contains decision node x. 

b. The same player moves at each decision node in an information set:  if  

x′ ∈ h(x), then i(x) = i(x′ ).  So we can write i(h). 

c. The same actions are available at each decision node in an information set:  if 

x′ ∈ h(x), then A(x) = A(x′ ).  So we can write A(h). 

8) Nature’s moves:  Nature moves randomly according to commonly known 

probabilities. 

9) Payoffs:  A set of maps ui: Z → R that specify a player’s utility at each terminal node. 
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3.a.ii.  Properties 

 

1) A game has perfect recall if players don’t forget anything (e.g., their own previous 

actions) during the game.  (We could define this property formally using restrictions 

on information sets.  But we won’t.) 

2) A game has perfect information if each information set contains only one node – that 

is, if players know the history of moves so far. 

3) A game has complete information if the structure of the game is common knowledge 

– that is, each player could draw the game tree.  (E.g., players know each others’ 

payoffs.) 

a. We’ll usually transform incomplete information games into imperfect 

information games by letting Player 0 choose the structure randomly and (at 

least to some players) unobservably. 

Man 

Fight Ballet 

Woman Woman 

Fight Ballet Fight Ballet 

(2, 1) (0, 0) (0, 0) (1, 2) 

• •

x1 

x2 x3 

h1 

z1 z2 z3 z4 
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3.a.iii.  Strategies and payoffs 

 

In extensive form games, we will distinguish between strategies and actions.  Actions 

were defined above. 

 

Let Hi denote the collection of information sets at which Player i moves.  That is, Hi =  

{h : i(h) = i}.  Then the set of actions for Player i is given by Ai = ∪
iHh

hA
∈

)( . 

Now we can define a “pure strategy” for player i as a function si mapping from Hi into Ai 

with the property that si(h) ∈ A(h) for all h ∈ Hi.  Let Si denote the set of pure strategies 

for Player i, and define S = S1 × S2 × … × SN. 

 

Nature’s strategy is to move randomly according to a known distribution, as mentioned 

above. 

 

We can think of a pure strategy as a complete contingent plan of actions.  A pure strategy 

specifies a player’s choice of action at each of her information sets, even for sets that are 

not reached.  One way to interpret that requirement is that a strategy represents both what 

the player intends to do and what other players expect her to do. 

 

Example: 

 
 

S1 = {Tt, Tb, Bt, Bb}, S2 = {L, R}. 

 

Note that B is not a strategy for Player 1.  A strategy must specify Player 1’s choice at x3, 

even though if he plays B at x1 then node x3 will never be reached. 

1 12T R t

B L b

(2, 3) (1, 1) (3, 2) 

(0, 0) 
x2 x3 x1 
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A pure strategy profile s, together with the probabilities over Nature’s moves, generates a 

probability distribution over terminal nodes.  Let o : S → ∆(Z) denote the “outcome” of a 

strategy profile, so that o(s)[z] is the probability that terminal node z is reached when 

strategy profile s is played. 

 

Now we can straightforwardly define expected payoffs as a function of strategy profiles, 

Ui : S → R:  Ui(s) = ∑
∈Zz

i zuzso )(])[( . 

 

A “mixed strategy” σi ∈ ∆(Si) for Player i is a probability distribution over pure 

strategies.  In the example on the previous page, {σ1(Tt)= σ1(Tb) = σ1(Bb) = 1/3} is a 

mixed strategy for Player 1. 

 

A “behavior strategy bi ∈ ))(( hA
iHh
∆×

∈
 is a mixed strategy such that the probability 

distributions over actions are independent across information sets.  The mixed strategy 

{σ1(Tt) = σ1(Tb) = σ1(Bb) = 1/3} is not a behavior strategy, because σ1(t | T) = ½, while 

σ1(t | B) = 0. 

 

Behavior strategies are easier to work with than unrestricted mixed strategies, so it would 

be nice if we could without loss of generality worry only about behavior strategies.  

Without going into detail, it turns out that we can! 

 

Proposition 3.a.1. (Kuhn):  For games with perfect recall, anything that we can do with 

mixed strategies, we can do with behavior strategies. 
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3.a.iv.  Corresponding strategic forms and Nash equilibrium 

 

Given an extensive form game G, consider the set of players 1, … N, the set of strategies 

for each player Si, and the maps from strategy profiles to expected payoffs Ui : S → R.  

Those three objects define a normal form game, which is the “corresponding strategic 

form game” of the original extensive form game. 

 

Example:  Baby centipede game. 

 

The extensive form is 

 
 

The corresponding normal form is  

 
  Player 2 
  L R 

Tt 1, 1 0, 0 

Tb 1, 1 3, 2 

Bt 2, 3 2, 3 
Player 1 

Bb 2, 3 2, 3 
 

1 12T R t

B L b

(2, 3) (1, 1) (3, 2) 

(0, 0) 
x2 x3 x1 
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Note that the following extensive form game has the same corresponding normal form: 

 
In general, any given normal form game corresponds to many different extensive form 

games.  That is, there is more information in the extensive form than there is in the 

normal form. 

 

Definition:  A “Nash equilibrium” of an extensive form game is a Nash equilibrium of 

the corresponding strategic form game. 

 

Nash equilibrium is a normal form concept, so the corresponding normal form of an 

extensive form game has all the information we need.  To think about refinements of 

Nash equilibrium like backwards induction and subgame perfection, we need the extra 

information in the extensive form. 

1 

Tt Bb 

2 

L R 

(1, 1) (0, 0) 

• 

Bt Tb 

L 

(1, 1) (3, 2) 

• 

R L R 

(2, 3) (2, 3) 

•

L R 

(2, 3) (2, 3) 

• 
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3.b.  Refinements of Nash equilibrium 

 

3.b.i.  Backwards induction and subgame perfection 

 

3.b.i.1.  Backwards induction 

 

Example:  A Parent is driving to Disneyland with a Child in the back seat.  The Child is 

making a lot of noise.  The Parent says, “Pipe down back there, or I’ll turn this car 

around.”  That situation is represented in the following extensive form game, where the 

Child’s payoffs are given first: 

 

 
The strategy profile (Pipe Down, (x2: Disneyland, x3: Turn)) is a Nash equilibrium.  But is 

the Parent actually willing to Turn at node x3?  Is that a “credible” threat? 

 

Conditional on reaching node x3, Parent’s best response is Disneyland.  The same is true 

at node x2.  Anticipating those decisions, Child knows that if he chooses Pipe Down he 

will end up with a payoff of 5, and if he chooses Noise he will get 10.  Thus, he will 

choose Noise. 

x1 

x2 

x3 

Child 

Parent 

Parent 
Noise 

Pipe 
Down 

Turn 

Disneyland 

Turn 

Disneyland 

(−10, −5) 

(5, 10) 

(−5, −10) 

(10, 5) 
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The strategy profile (Noise, (x2: Disneyland, x3: Disneyland)) is the “backwards induction 

solution” to the game.  Note that that profile is also a Nash equilibrium, which is not a 

coincidence. 

 

The following theorems are reasonably straightforward to prove: 

 

Proposition 3.b.1:  Every backwards induction solution of an extensive form game is a 

Nash equilibrium.  (The converse is not true.) 

 

Proposition 3.b.2:  Every finite perfect information game has at least one backwards 

induction solution in pure strategies.  Thus, every such game has a pure strategy Nash 

equilibrium. 

 

There may be more than one backwards induction solutions if there are “ties” in payoffs.  

In that case, some solutions may involve mixed strategies. 

x1 

x2 

x3 

Child 

Parent 

Parent 
Noise 

Pipe 
Down 

Turn 

Disneyland 

Turn 

Disneyland 

(−10, −5) 

(5, 10) 

(−5, −10) 

(10, 5) 
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Example:  Baby centipede game. 

 
The backwards induction solution is (Tb, R). 

 

Example:  Backwards induction solutions may involve weakly dominated strategies.  

Consider the following game: 

 
Even though B is weakly dominated for Player 1, (B, C) is a backwards induction 

solution. 

 
Note that (A, C) is also a backwards induction solution.  In fact, the set of backwards 

induction solutions is {(σ1(A) ∈ [0, 1], C)}. 

1 2 

A 

B 

C 

D 

(1, 1) (1, 1) 

(0, 0) 

1 12T R t

B L b

(2, 3) (1, 1) (3, 2) 

(0, 0) 
x2 x3 x1 

1 2 

A 

B 

C 

D 

(1, 1) (1, 1) 

(0, 0) 
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3.b.i.2.  Subgame perfection 

 

Backwards induction does not work when there are non-trivial information sets: 

 
 

Subgame perfection is a related idea.  As with backwards induction, the idea of subgame 

perfection is to require rationality even off the path of play. 

 

Definition:  A “subgame” is a subtree that i) starts at a decision node, and ii) contains no 

broken information sets.  That is, if an information set contains a node in the subgame, 

then every node in the information set is in the subgame. 

 

Example: 

 
The subtrees starting at nodes x1 and x2 are subgames.  (The one starting at x2 is a “proper 

subgame.”)  The subtrees starting at x3 and x4 are not subgames. 

3 1 

B 

T 

L 

R 

L 

R 

2 

U 

D 

x1 x2 

x3 

x4 

2 
1 

B 

T 

L 

R 

L 

R 

(1, 0) 

(0, 1) 

(0, 1) 

(1,0) 
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Definition:  A “subgame perfect equilibrium” is a profile of behavior strategies such that 

their restriction to any subgame forms a Nash equilibrium of that subgame. 

 

In games of perfect information, the set of subgame perfect equilibria and the set of 

backwards induction solutions are the same.  The advantage of subgame perfection is that 

it is defined even for games with imperfect information or infinite horizons. 

 

Every subgame perfect equilibrium is a Nash equilibrium.  If a game has no proper 

subgames, then every Nash equilibrium is subgame perfect. 

 

To find subgame perfect equilibria, the procedure is similar to backwards induction:  

replace subgames at the end of the game with their equilibrium payoffs, and repeat until 

you reach the initial node. 

 

Example: 

 

 
 

The unique subgame perfect equilibrium is (D, B, L).  Strategy profiles (U, T, L) and  

(U, B, R), for example, are Nash equilibria but not subgame perfect. 

3 1 

B 

T 

L 

R 

L 

R 

2 

U 

D 

x1 x2 

x3 

x4 

(1, 10, 10) 

(0, 0, 1) 

(0, 1, 0) 

(2, 1, 1) 

(0, 0, 0) 
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Example:  Centipede game. 

 
The unique subgame perfect equilibrium is (ddd, dd).  More generally, we can make the 

centipede game as long as we want: 

 
Still, the only subgame perfect equilibrium is (ddd … , ddd … ).  But does it make sense 

for Player 2 to choose d at node x2?  Given that Player 1 has behaved “irrationally” once 

by choosing a at node x1, might he not do so again at x3?  Then Player 2 might get a 

payoff of 3 instead of 2.  What if N = 1,000,000, and play reaches node x500,000?  Given 

that Player 1 has behaved “irrationally” 250,000 in a row, might he not do so again?  By 

choosing a at that point, Player 2 gets a potential gain of 250,000 at a risk of only 1.  

How would you play the centipede game? 

 

Subgame perfection requires a lot of rationality, especially in long games. 

 

The idea of subgame perfection is to require common knowledge of rationality even off 

the equilibrium path of play.  But if a player finds herself at a node off the equilibrium 

path, then she knows that someone has behaved irrationally, by deviating, so how can 

rationality still be common knowledge?  The solution is for players to treat deviations as 

one-time events that will not be repeated. 

1 12a a a

d d d

(1, 0) (0, 2) (2, 1) 

(2, 4) 
x2 x3 x1 

12 a a

d d

(1, 3) (3, 2) 

x4 x5 

1 12a a a

d d d

(1, 0) (0, 2) (2, 1) 

(N + 1, N ) 
x2 x3 x1 

12 a a

d d

(1, 3) (3, 2) 

x4 x5 
21 a a

d d

(N , N– 1) (N – 1, N + 1) 

x2N−1 x2N 
…



 31

3.b.ii.  Problems with subgame perfection 

 

Aside from the issues described above, it turns out that the set of subgame perfect 

equilibria can depend on what seem like irrelevant transformations of the game. 

 

Example: 

 
 

In the above game, (U, R) is a Nash equilibrium.  It is also subgame perfect.  (Why?) 

 

 
In this game, the equivalent (in some sense) strategy profiles (UM, R) and (UD, R) are 

Nash equilibria, but they are not subgame perfect.  (AM, L) is the only subgame perfect 

equilibrium. 

 

We will see other problems with subgame perfection in Section 3.d. 

2 1 

D 

M 

L 

R 

L 

R 

1 

U 

A 

(2, 0) 

(5, 1) 

(1, 0) 

(4, 0) 

(0,1) 

1 
2 

D 

M 

L 

R 

L 

R 

U 

(2, 0) 

(5, 1) 

(1, 0) 

(4, 0) 

(0, 1) 
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3.c.  Repeated games 

 

Example:  Let’s add a couple of actions to the Battle of the Sexes: 

 

 
   Woman 
  Fight Ballet C2 

Fight 2, 1 0, 0 6, 0 

Ballet 0, 0 1, 2 0, 0 Man 

C1 0, 0 0, 0 5, 5 
 

 

Even with the additions, the only Nash equilibria are (Fight, Fight), (Ballet, Ballet), and 

(σMan(Fight) = 2/3, σWoman(Fight) = 1/3).  It is sad that (C1, C2) is not an equilibrium, 

because then both players could get a payoff of 5.  Unfortunately, Player 1 would want to 

deviate to Fight. 

 

But consider the game G(2), where the above game is played twice:  first they play the 

game once, then both players’ actions are revealed to each other, and then they play the 

game again.  The payoffs from G(2) are the sum of the payoffs in the two stages. 

 

There exists a subgame perfect equilibrium in which (C1, C2) is played in period 1.  A 

pure strategy si for Player i is a pair of functions, ∈1
is  {Fight, Ballet, Ci} and   

:2
is  {Fight, Ballet, C1} × {Fight, Ballet, C2} → {Fight, Ballet, Ci}.  (Note that each 

player has 3 × 39 = 310 = 59,049 pure strategies in G(2).) 
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The following strategies form a subgame perfect equilibrium of G(2): 

 

 1
is  = Ci, 

⎩
⎨
⎧ =

=
otherwise.

 if
),( 11

21
2

Ballet
CaFight

aasi  

 

That is, if Man does not deviate from C1 in period 1, then he is rewarded with his favorite 

stage-game equilibrium, (Fight, Fight) in period 2.  Otherwise, (Ballet, Ballet) is played. 

 

First, note that this strategy profile is a Nash equilibrium.  If Man follows the 

equilibrium, he gets a payoff of 5 + 2 = 7.  If he deviates in the first round, he gets at 

most 6 + 1 = 7, so deviating is not profitable.  In the second round, he has no incentive to 

deviate.  Woman has no incentive to deviate in either period – the equilibrium calls for 

her to play a static best response in both periods, and her action in period 1 does not 

affect play in period 2.  So both players are playing best responses. 

 

The equilibrium is subgame perfect because both (Fight, Fight) and (Ballet, Ballet) are 

Nash equilibria of the stage game: each of the nine proper subgames is that stage game. 

 

 

That example suggests that our predictions from one-shot normal form games may 

change when the game is repeated.  Many real-world situations, like price competition 

between firms or being interrogated by the police after robbing a bank with your buddy, 

seem to have the flavor of repeated interaction.  Let us consider repeated games, which 

are a special kind of extensive form game, more generally. 
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3.c.i.  Definitions and discounting 

 

Remember that a normal form game G consists of three things:  a set of N players, a set 

of actions Ai for each player, and a payoff function ui : A → R for each player.  We will 

define the “repeated game” G(T, δ ) as follows: 

 

• The “stages” of the game are t = 1, 2, … , T, where T may be infinite. 

• A “history” ht = (a1, a2, … , at−1) is a list of the action profiles as ∈ A played in each 

period s < t.  The history ht is commonly known at the start of period t.  Let Ht 

denote the set of possible period-t histories, At−1.  For the sake of notational 

consistency, we will think of H1 = {h1} as a “dummy” singleton history for period 

1.  HT+1 is the set of complete histories of the game, which correspond to terminal 

nodes. 

• A “pure strategy” for Player i is ), ... ,,( 21 T
iiii ssss = , where .: i

tt
i AHs →   After 

observing history ht, Player i chooses action ).( tt
i hs   The set of pure strategies for 

Player i is Si. 

• A “behavior strategy” for Player i is ), ... ,,( 21 T
iiii σσσσ = , where ).(: i

tt
i AH ∆→σ   

After observing history ht, Player i chooses action ai with probability ].)[( i
tt

i ahσ   

The set of behavior strategies for Player i is Σi. 

• The “outcome” of a pure strategy profile s is a history hT+1(s) defined recursively as 

a1 = s1(h1), and at = st(a1, … , at−1) for 2 ≤ t ≤ T.  Similarly, the outcome of a 

behavior strategy profile σ is a probability distribution P(σ) ∈ ∆(HT+1). 

• The value δ ∈ (0, 1) is the “discount factor.”  For simplicity, we will assume that it is 

the same for all players. 
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Now all we need to complete our description of the game is payoffs.  The payoff to 

Player i from a complete history hT+1 is the sum of Player i’s payoffs in each stage, 

exponentially weighted by the discount factor: 

 

)(ˆ 1+T
i hU  = ui(a1) + δ ui(a2) + … + δT−1 ui(aT). 

 

It will sometimes be convenient to rescale those payoffs so that they are directly 

comparable to the stage game payoffs.  If we define 

 

)(ˆ 1+T
i hU = Tδ

δ

−

−

1
1 [ui(a1) + δ ui(a2) + … + δT−1 ui(at)], 

 

then the set of possible vectors of utilities are constant (and equal to the set for the stage 

game) as δ and T vary.  When T is infinite, define payoffs as 

 

)(ˆ ∞hUi  = ∑
∞

=

−−
1

1 )()1(
t

t
i

t auδδ . 

 

With the rescaling, note for example that if hT+1 = (a, a, … , a), then Ui(hT+1) = ui(a). 

 

Finally, we can write payoffs as functions of strategy profiles.  Given a pure strategy 

profile s, player i’s payoff is given by Ui(s) = ))((ˆ 1 shU T
i

+ .  The expected payoff from a 

mixed strategy is defined in the usual way. 
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3.c.ii.  Finitely repeated games 

 

Example:  The Prisoners’ Dilemma, repeated T < ∞ times. 

 
  Player 2 
  C D 

C −1, −1 −4, 0 
Player 1 

D 0, −4 −3, −3 
 

Remember that the only Nash equilibrium of the stage game is (D, D).  In any subgame 

perfect equilibrium of G(T, δ ), therefore, (D, D) must be played in period T.  That means 

that what happens in the second-to-last period cannot affect play in the last period.  So 

players must choose static best responses in period T – 1, which means an equilibrium of 

the stage game (that is, (D, D)) will be played.  By similar reasoning, (D, D) will be 

played in every period. 

 

 

Proposition 3.c.1:  Suppose that stage game G has a unique Nash equilibrium α*, and 

that T < ∞.  Then the only subgame perfect equilibrium of G(T, δ ) is to play α* in every 

period. 

 

If the stage has more than one Nash equilibrium, then the finitely repeated game has more 

than one subgame perfect equilibrium.  For example, for each t we could specify a stage-

game equilibrium to be played in that period, regardless of history.  That profile is a 

subgame perfect equilibrium. 

 

Proposition 3.c.2:  Let α*(t) map from periods 1, … , T into the set of stage-game Nash 

equilibria.  Then the strategy profile defined by 

 )(*)( th i
tt

i ασ =  for each period t, each history ht
 ∈ Ht, and each player i 

is a subgame perfect equilibrium of G(T, δ ). 
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3.c.iii.  Infinitely repeated games 

 

As a preliminary, let’s define “minmax” strategies and payoffs. 

 

Given a normal form stage game, let α−i be a mixed action profile for all players other 

than player i.  Let wi(α−i) = ),(max iii
Aa

au
ii

−
∈

α .  That is, wi(α−i) is Player i’s payoff from 

best-responding to α−i. 

 

The “minmax payoff” vi for Player i is defined as 

 

 vi = ⎥
⎦

⎤
⎢
⎣

⎡
= −

∈
−

−−

),(maxmin)(min iii
Aa

ii auw
iiii

αα
αα

. 

 

That is, the other players are “minimizing” the value of Player í’s “maximum” payoff, 

when he best responds.  The “minmax strategy” that they use against Player i is 

 

mi = )(minarg iiw
i

−
−

α
α

. 

 

Proposition 3.c.3:  The payoff to Player i in any Nash equilibrium of any repeated game 

(finite or infinite) is at least vi (average per period). 

Proof idea:  Player i can guarantee herself no less than vi just by playing a static best 

response in every period.  Thus, she has a profitable deviation from any strategy profile 

that gives her a lower payoff than that. 
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Example: 

 

 
  Player 2 
  C D 

A 2, 1 0, 1 
Player 1 

B 3, 3 −1, 2 
 

 

To find m2, note that for Player 2 C weakly dominates D.  So to minmax Player 2, Player 

1 just chooses the action (A) that minimizes Player 2’s payoff from playing C.  To find 

m1, note that Player 1’s lowest possible payoff when Player 2 plays C is greater than his 

highest possible payoff when Player 2 plays D.  So to minmax Player 1, Player 2 chooses 

D.  That is, m1 = D, v1 = 0, m2 = A, and v2 = 1. 

 

 

Example:  Matching pennies. 

 
 

  Player 2 
  Heads Tails 

Heads 1, −1 −1, 1 
Player 1 

Tails −1, 1 1, −1 
 

 

To find m1 and v1, observe that if Player 2 chooses Heads with probability p, then w1(p) = 

max{2p – 1, 1 – 2p}.  Since w1(p) ≥ 0 for all p ∈ [0, 1], with strict inequality for p ≠ 0.5, 

m1 = σ2(Heads) = 0.5, and v1 = 0.  Similarly, m2 = σ1(Heads) = 0.5, and v2 = 0. 
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3.c.iii.1.  Folk theorems 

 

Proposition 3.c.3 tells us that any Nash equilibrium must give each player a payoff of at 

least vi.  A folk theorem, roughly, tells us that if players are patient enough (that is, if they 

care enough about the future), then that lower bound is the only restriction on equilibrium 

payoffs.  That is, any feasible payoff vector that gives each player at least her minmax 

payoff is achievable in equilibrium. 

 

Let V be the set of feasible payoffs in a stage game G.  That is, 

 

 V = co{ (u1(a), … uN(a)) : a ∈ A}. 

 

With the appropriate scaling, V is also the set of feasible payoffs in the infinitely repeated 

game G(∞, δ). 

 

Here is one of the most general folk theorems: 

 

Proposition 3.c.4 (Fudenberg and Maskin’s subgame perfect folk theorem):  Suppose 

that the dimension of V is N.  (That is, V has a nonempty interior.)  Choose any vector of 

payoffs v ∈ V such that vi > vi for every player i.  Then there exists δ ∈ (0, 1) such that 

whenever δ ∈ (δ, 1), there exists a subgame perfect equilibrium σ* of the infinitely 

repeated game G(∞, δ) such that U(σ*) = v. 

Proof intuition:  When vi > vi for every player i, there is always a feasible, lower payoff 

to punish a deviating player with.  The hard part is to make sure that punishing a deviator 

is an equilibrium – that is, to make the punishers want to punish, which can be tricky if 

the strategy profile that minmaxes Player 1 also gives Player 2 a low payoff. 
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3.c.iii.2.  The principle of optimality 

 

The principle of optimality (also known as the one-shot deviation principle) is most 

useful when we deal with infinitely repeated games, but it also holds for finitely repeated 

games and, more generally, for any multistage game in which players move 

simultaneously within a period and all past actions are publicly observed. 

 

Proposition 3.c.5 (Principle of optimality, one-shot deviation principle):  A strategy 

profile σ is a subgame perfect equilibrium if and only if no player at any history (on or 

off the equilibrium path) can increase her utility from that point on by deviating from σ 

exactly once (at that history) and playing σ again afterward. 

 

(Technically, a condition on the utility functions called “continuity at infinity” is required 

for the principle of optimality to hold.  Roughly, continuity at infinity means that what 

happens in the far future becomes vanishingly unimportant.  That condition obviously 

holds for finite games, and it also holds for infinitely repeated games with discounting.) 

 

The principle of optimality makes checking for subgame perfection much easier by 

reducing the number of deviations that we need to check.  The idea is that if there is any 

profitable deviation, then there must be a profitable one-shot deviation. 

 

Example:  The expanded Battle of the Sexes: 

 
   Woman 
  Fight Ballet C2 

Fight 2, 1 0, 0 6, 0 

Ballet 0, 0 1, 2 0, 0 Man 

C1 0, 0 0, 0 5, 5 
 

For what values of the discount factor does the following strategy profile constitute a 

subgame perfect equilibrium of the infinitely repeated game G(∞, δ)? 
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 1
is  = Ci, and for t > 1 

⎪⎩

⎪
⎨
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otherwise.
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Ballet
tsCaCaChs
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That is, (C1, C2) is played in every period until someone deviates, and then (Ballet, 

Ballet) is played forever.  There are two types of histories that we need to check: those 

when no one has deviated, and those after a deviation. 

 

If no one has deviated, Man’s equilibrium continuation payoff is 
δ−1

5 .  Since any 

deviation results in the same future play, Man’s best deviation is his best static deviation: 

Fight.  That deviation yields a continuation payoff of 
δ

δ
−

+
1

16 .  Woman’s equilibrium 

continuation payoff is also 
δ−1

5 .  Her best deviation is to either Fight or Ballet, both of 

which yield continuation payoff 
δ

δ
−

+
1

20 . 

 

In any history after a deviation, Man’s equilibrium continuation payoff is 
δ−1

1 .  Now 

any further deviation does not affect future play, so again Man’s best deviation is his best 

static deviation: either Fight or C1.  That deviation yields a continuation payoff of 

δ
δ

−
+

1
10 .  Woman’s equilibrium continuation payoff is 

δ−1
2 .  Her best deviation is 

either Fight or C2, both of which yield continuation payoff 
δ

δ
−

+
1

20 . 

 

So the strategies are subgame perfect if the following four inequalities hold: 

 
δ

δ
δ −

+≥
− 1

6
1

5 , 
δ
δ

δ −
≥

− 1
2

1
5 , 

δ
δ

δ −
≥

− 11
1 , and 

δ
δ

δ −
≥

− 1
2

1
2 . 

The last three hold for any δ ∈ (0, 1), so the condition for subgame perfection is just 

δ
δ

δ −
+≥

− 1
6

1
5 , or 

5
1

≥δ . 
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3.d.  Refinements of subgame perfection 

 

3.d.i.  Motivating examples 

 

Example 1: 

 

 
 

The strategy profile (T, R) is a Nash equilibrium, and it is subgame perfect. 

 

However, no beliefs that Player 2 can have about which decision node she’s at in her 

information set are consistent with R giving higher expected utility than L.  The action R 

is conditionally strictly dominated. 

 

We ought to require that at nontrivial information sets, players maximized expected 

utility according to some beliefs about which node they’re at (and about future play by 

other players.)  Those beliefs should be consistent with Bayes’ rule applied to other 

players’ strategies whenever possible.  In this example, it is not possible.  (Why?) 
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Example 2:  Selten’s horse 

 
Strategy profile (Du, a, L) is a Nash equilibrium.  It is also subgame perfect.  However, 

Player 2’s choosing a is inconsistent with knowledge of Player 3’s equilibrium strategy. 

 

 

Example 3:   

 
The unique subgame perfect equilibrium is (D, B, R), which is fine.  However, the profile 

(U, σ2(B) = 2/3, L) is also a Nash equilibrium.  There is a belief over which nodes he’s at 

that Player 3 could have that would lead him to pick L (that is, high probability on x3), but 

that belief is in some sense inconsistent with knowledge of Player 2’s strategy. 

 

When Player 1 chooses U, Bayes’ rule does not give a conditional probability µ(x3 | h) 

since information set h is reached with probability zero.  However, we can apply Bayes’ 

rule to Player 2’s strategy, assuming that play reaches x2 (which it must if it reaches h).  

In that case, µ(x3 | h) = 1/3, and Player 3’s best response is R. 
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3.d.ii.  Perfect Bayesian equilibrium 

 

First, let’s be more formal about beliefs at information sets.  Let decision node x be an 

element of Player i’s information set h.  Then “conditional belief” µi (x | h) is the 

probability of being at node x given that Player i is at some node in information set h:  

1)|( =∑
∈hx

hxµ . 

 

Given Nature’s moves and a strategy profile σ, Bayes’ rule pins down beliefs at all 

information sets that are reached with positive probability when σ is played. 

 

A few more definitions: 

 

• An “assessment” is a (behavior) strategy / conditional belief pair (σ, µ), where the 

function µ: X → [0, 1] gives conditional beliefs at each information set. 

 

• An assessment (σ, µ) is “sequentially rational” if playing σi maximizes expected 

utility given µ for each player i at each of Player i’s information sets.  That is, σ is 

a best response for all players given µ. 

 

• An assessment (σ, µ) is a “perfect Bayesian equilibrium” if 

o it is sequentially rational, and 

o beliefs µ are given by Bayes’ rule applied to Nature’s move and to σ 

“whenever possible.” 

 

 

Proposition 3.d.1:  If (σ, µ) is a perfect Bayesian equilibrium, then σ is a subgame 

perfect equilibrium. 
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“Whenever possible” includes all information sets that are reached with positive 

probability when σ is played.  It also includes some that are not, as in Example 3 in 

Section 3.d.i.  In example 1, on the other hand, deriving beliefs from Bayes’ rule is 

neither possible nor “possible.”  We could be more formal about defining “whenever 

possible,” but we won’t. 

 

Note:  MWG’s “weak perfect Bayesian equilibrium” puts no restrictions on beliefs at 

information sets off the equilibrium path, and so is easier to define formally.  However, a 

weak perfect Bayesian equilibrium need not be subgame perfect. 

 

 

 

Example 3: 

 
 

The unique subgame perfect equilibrium is (D, B, R), and so (D, B, R) must be the 

strategy part of any perfect Bayesian equilibrium.  When (D, B, R) is played, every 

information set is reached, and so beliefs are given by Bayes’ rule:  µ3 (x3 | h) = 0.  

(Technically, we also need to describe beliefs at the trivial information sets, but those 

beliefs are also trivial.) 
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Example 2:  Selten’s horse 

 
 

Homework exercise. 

 

 

 

 

Example 1:   

 
 

As we noted earlier, Player 2’s conditional best response at her information set is L, 

regardless of her beliefs.  So in any perfect Bayesian equilibrium, she plays L.  Player 1’s 

best response to L is B.  So the unique perfect Bayesian equilibrium is the assessment  

((B, L), µ2 (x2 | h) = 0). 
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3.d.iii.  Sequential equilibrium 

 

Even perfect Bayesian equilibrium has its problems: 

 

Example: 

 

 
Strategy profiles (In, b) and (Out, a) are Nash equilibria.  They are also subgame perfect.  

(Why?) 

 

There are infinitely many pure strategy perfect Bayesian equilibria, but they fall into two 

categories: 

 

1) s1 = In, µ1(x1) = 0.5, s2 = b, µ2(x3) = 0.5, and 

2) s1 = Out, µ1(x1) = 0.5, s2 = a, µ2(x3) 3
2

≥ . 

 

Equilibria in the second category are “bad.”  Since Player 1’s actions cannot depend on 

Nature’s move (which he does not observe), and Player 2 knows that, we ought to require 

that µ2(x3) = 0.5, even though it is neither possible nor “possible” for Bayes’ rule to 

determine Player 2’s beliefs. 
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Definition:  A strategy profile is “completely mixed” if it assigns strictly positive 

probability to all pure strategies (so that every information set is reached with positive 

probability). 

 

Definition:  An assessment (σ, µ) is a “sequential equilibrium” if 

o it is sequentially rational, and 

o there exists a sequence of completely mixed strategies { }∞=1k
kσ  that 

induce beliefs { }∞=1k
kµ  (given by Bayes’ rule) such that σσ =∞→

k
klim  

and µµ =∞→
k

klim . 

 

 

Example: 

 

In the example above, the first perfect Bayesian equilibrium is also a sequential 

equilibrium, but those in the second category are not:  for any completely mixed strategy 

profile σk, the induced belief µk(x3) = 0.5, so )(lim 3xk
k µ∞→ , if it exists, must equal 

0.5. 

 

To see that the first equilibrium is sequential, choose kkk bIn εσσ −== 1)()( 21 , where  

ε ∈ (0, 1).  Then µk(x1) = µk(x3) = 0.5 for all k, and 1)(lim)(lim 21 == ∞→∞→ bIn k
k

k
k σσ . 

 

 

 

Proposition 3.d.2:  If (σ, µ) is a sequential equilibrium, then (σ, µ) is a perfect Bayesian 

equilibrium (and so σ is a subgame perfect equilibrium and a Nash equilibrium). 


