
Solutions to Problem Set 3

Core Micro

Exercise 1: Consider a first-price sealed-bid auction of an object with two bidders.
Each bidder i’s valuation of the object is vi, which is known to both bidders. The
auction rules are that each player submits a bid in a sealed envelope. The envelopes
are then opened, and the bidder who has submitted the highest bid gets the object
and pays the auctioneer the amount of his bid. If the bidders submit the same bid,
each gets the object with probability 1

2 . Bids must be in dollar multiples (assume
that valuations are also).

(a) Are any strategies strictly dominated?
This is a simultaneous move game where the actions are the bides. Denote by
bi ∈ R+ bidder i’s bid. The payoffs for bidder i are given by

ui(bi, bj) =

 vi − bi if bi > bj
1
2 (vi − bi) if bi = bj
0 if bi < bj

No strategy is strictly dominated. To prove this consider b′i which strictly
dominates bi. Then, it must be that ui(b

′
i, bj) > ui(bi, bj) for all bj . Consider

b∗j = max{bi, b′i} + 1. Then, bidder j wins the auction both if agent i bids
bi or if he bids b′i. So, we have that ui(bi, b

∗
j ) = ui(b

′
i, b
∗
j ) = 0. This is a

contradiction to bi being strictly dominated.

(b) Are any strategies weakly dominated?
All strategies bi > vi are weakly dominated by b′i = vi. To show this consider
the payoffs in all the possible scenarios:

(i) if bj < vi then ui(b
′
i, bj) = 0 > vi − bi = ui(bi, bj)

(ii) if bj = vi then ui(b
′
i, bj) = 1

2 (vi − vi) = 0 > vi − bi = ui(bi, bj)

(iii) if vi < bj < bi then ui(b
′
i, bj) = 0 > vi − bi = ui(bi, bj)

(iv) if vi < bj = bi then ui(b
′
i, bj) = 0 > 1

2 (vi − bi) = ui(bi, bj)

(v) if bj > bi then ui(b
′
i, bj) = 0 = ui(bi, bj)

Thus, ui(b
′
i, bj) ≥ ui(bi, bj) for all bj and ui(b

′
i, bj) > ui(bi, bj) for some bj .

Therefore, any bi > vi is weakly dominated by b′i = vi.

There are more weakly dominated strategies (due to the bids and valuations
being only in dollar multiples). For example , it is easy to show that when
vi > 2, then bi = 0 is weakly dominated by b′i = 1. And when vi ∈ {1, 2},
then bi = vi is weakly dominated by b′i = vi − 1.

(c) Is there a Nash equilibrium? If so, what is it? Is it unique?
We first obtain the best response correspondence Ri(bj) for each player i —
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the set of actions bi which maximize ui(bi, bj) given bj . These are given by:

Ri(bj) =


bj + 1 if vi − 2 > bj
{bj , bj + 1} if vi − 2 = bj
bj if vi − 1 = bj
{0, 1, 2, . . . , vi} if vi = bj
{0, 1, 2, . . . , bj − 1} if vi < bj

A NE is a pair (b∗i , b
∗
j ) where b∗i ∈ Ri(b

∗
j ) and b∗j ∈ Rj(b

∗
i ). By looking at

the above best response correspondences, it can be verified that a NE always
exists and for most parameter specifications is not unique. For example, when
vi ≥ vj , the NE are as follows:

(i) if vi = vj then (vi, vj), (vi − 1, vj − 1), (vi − 2, vj − 2) are NE

(ii) if vi = vj + 1 then (vi − 1, vi − 1), (vi − 1, vi − 2), (vi − 2, vi − 2) are NE

(iii) if vi = vj + 2 then (vi − 2, vi − 2) is a NE

(iv) if vi > vj + 1 then (vi − x, vi − x− 1) with 1 ≤ x ≤ vi − vj are NE

The purpose of this exercise is for you to formulate the best response correspon-
dences correctly and to engage with attempting to find NE depending on the rela-
tionship between the parameters vi and vj . Even if you don’t succeed in finding all
NE, the goal is to learn how to think about best responses to best responses and to
find at least some equilibria based on this.

Exercise 2: Consider the following extensive form game:

d1 d2 d3

a3a2a11 12

1, 0 0, 2 2, 1

1, 3
x1 x2 x3

(a) Find all the subgame perfect Nash equilibria.
SPNE: ((d1, d3), d2).

(b) Find all the Nash equilibria.
NE: ((d1, a3); d2) ; ((d1, d3), d2).

Exercise 3: The following normal form game is played twice:

Player 2
a b

Player 1 A 10,10 5,20
B 20,5 7,7

(a) Draw the extensive form game. How many pure strategies does each player
have?
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Pl. 1

Pl. 1

(20,20)

a

(15,30)

b

A

(30,15)

a

(17,17)

b

B

a

Pl. 1

(15,30)

a

(10,40)

b

A

(25,25)

a

(12,27)

b

B

b

A

Pl. 1

(30,15)

a

(25,25)

b

A

(40,10)

a

(27,12)

b

B

a

Pl. 1

(17,17)

a

(12,27)

b

A

(27,12)

a

(14,14)

b

B

b

B

Pl. 2

Pl. 2 Pl. 2 Pl. 2 Pl. 2

Each player has 2 · 24 = 32 possible pure strategies.

(b) Find all the subgame perfect Nash equilibria.
The only SPNE is

(
(B,B|Aa,B|Ab,B|Ba,B|Bb), (b, b|Aa, b|Ab, b|Ba, b|Bb)

)
:

both players play their respective dominant strategies at every information
set and at each stage. The SPNE outcome is

(
(B, b), (B, b)

)
.

Exercise 4: A Stackelberg duopoly has two firms — firm 1 and firm 2 — with firm 1
choosing output first and firm 2 choosing output second, after observing the choice
of firm 1. Suppose that the inverse demand function is P (Q) = 6 − Q, where
Q = q1 + q2 is aggregate output. Each firm has constant marginal cost of £4 per
unit, and a capacity constraint of 3 units.

(a) Define formally the strategy set of each firm. (Hint: Firm 2’s strategy is a
function.)
q1 ∈ [0, 3]
q2 : [0, 3]→ [0, 3]

(b) Find a Nash equilibrium in which the Cournot outputs are produced.
First, we derive the Cournot output quantities. In the simultaneous move
game, firm i chooses qi to maximize its profit πi(qi, q−i):

max
qi∈[0,3]

πi(qi, q−i) = (6− qi − q−i)qi − 4qi = (2− qi − q−i)qi

FOC: ∂πi

∂qi
= 2− 2qi − q−i = 0

Hence, we obtain the best response of firm i as a function of the output of its
opponent as:

q∗Ci (q−i) = 1− 0.5q−i

Substituting in with q∗C−i (qi) = 1 − 0.5qi and solving for q∗Ci we obtain the
Cournot equilibrium quantities q∗C = q∗Ci = q∗C−i = 2

3 and payoffs π∗Ci =
π∗C−i = 4

9 .

Second, notice that for any choice q1 of firm 1, the best response of firm 2 in
the Stackelberg duopoly game is given by q∗S2 (q1) = 1− 0.5q1.

Now consider the following strategies:
q1 = 2

3
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q2(q1) =

{
1− 0.5q1 if q1 = 2/3
3 otherwise

It can be easily checked that both firms are best responding to the other one’s
strategy, so this pair of strategies constitutes a NE in which the Cournot
quantities q1 = q2 = q∗C = 2

3 are produced.

(c) Find a Nash equilibrium in which firm 2 produces the monopoly output and
firm 1 produces nothing.
The monopoly quantity is derived as

max
q∈[0,3]

π(q) = (6− q)q − 4q = (2− q)q

FOC: ∂π
∂q = 2− 2q = 0

Hence, we obtain the monopoly quantity q∗M = 1. Now consider the following
strategies:
q1 = 0

q2(q1) =

{
1− 0.5q1 if q1 = 0
3 otherwise

It can be easily checked that both firms are best responding to the other one’s
strategy, so this pair of strategies constitutes a NE in which firm 2 produces
the monopoly quantity q2 = q∗M = 1 and firm 1 produces nothing.

(d) Find the subgame perfect Nash equilibria.
In any SPE, firm 2 must be playing a best response in any subgame, i.e. both
on and off the equilibrium path. Hence, for any q1, firm 2 must respond with
q∗S2 (q1) = 1−0.5q1. Firm 1 knows that firm 2 will best respond in such a way
for any q1 and takes that into account when choosing its optimal action:

max
q1∈[0,3]

π1(q1, q2) = (6− q1 − q∗S2 (q1))q1 − 4q1 = (1− 0.5q1)q1

FOC: ∂π1

∂q1
= 1− q1 = 0

Hence, we obtain q∗S1 = 1. The best response of firm 2 to this is q∗S2 (1) =
1− 0.5 · 1. Hence, the SPE is given by
q∗S1 = 1

q∗S2 (q1) =

{
1− 0.5q1 if q1 ∈ [0, 2]
0 otherwise

The equilibrium quantities are thus given by q∗S1 = 1 and q∗S2 = 0.5.

Exercise 5: Suppose n players use an ultimatum procedure to share an apple pie.
First, player 1 proposes a division. Then the others simultaneously respond “yes”
or “no.” If they all say “yes” , the proposed division is implemented. Otherwise, the
pie is fed to Penny the dog. Each player prefers more pie to less, and is indifferent
about how much pie any other player or dog consumes.

(a) Define formally the strategy set of each player.

A1 = {p ∈ Rn+ :
n∑
i=1

pi = 1}

Ai : {p ∈ Rn+ :
n∑
i=1

pi = 1} → {Yes,No} for each i ≥ 2

(b) Find the subgame perfect Nash equilibria when n = 2 and n = 3.
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For n = 2 the SPNE is
(
(p1 = 1, p2 = 0), (Yes|p2 ≥ 0)

)
.

Notice that
(
(p1 = 1 − ε, p2 = ε), (Yes|p2 > 0,No|p2 = 0)

)
would also be a

SPNE, but since Player 1 would like to make ε as small as possible and since
there is no minimal amount of pie, this is not well-defined.

For n = 3 there is a multiplicity of SPNE, which can be grouped as follows:

(
(p1 = 1, p2 = 0, p3 = 0), (Yes|p2 ≥ 0), (Yes|p3 ≥ 0)

)
(
(p1 = 1−q−r, p2 = q, p3 = r), (Yes|p2 ≥ q and p3 ≥ r,No|p2 < q or p3 <

r), (Yes|p2 ≥ q and p3 ≥ r,No|p2 < q or p3 < r)
)

for any p+ q ≤ 1

(
(p1 = 1 − S, p2 = q, p3 = S − q), (Yes|p2 + p3 ≥ S,No|p2 + p3 <

S), (Yes|p2 + p3 ≥ S,No|p2 + p3 < S)
)

for any q ≤ S ≤ 1

Notice that(
(p1 = 1− ε, p2 = ε, p3 = 0), (Yes|p2 > 0,No|p2 = 0), (Yes|p3 ≥ 0)

)
,(

(p1 = 1 − ε, p2 = 0, p3 = ε), (Yes|p2 ≥ 0), (Yes|p3 > 0,No|p3 = 0)
)
, and(

(p1 = 1− ε, p2 = ε, p3 = ε), (Yes|p2 > 0,No|p2 = 0), (Yes|p3 > 0,No|p3 = 0)
)

would also be SPNE, but since Player 1 would like to make ε as small as
possible and since there is no minimal amount of pie, this is not well-defined.

Exercise 6: Consider the following Pirate Game: There are R pirates who must
decide how to divide 100 gold pieces among themselves. The gold pieces are in-
divisible, so a division is feasible only if each pirate gets a whole number of gold
pieces. The mechanism they use is as follows: Pirate 1 proposes a division. Then
Pirate 2 can accept or reject it. If he accepts, the proposed division is implemented
and the game is over. If he rejects, Pirate 1 is thrown to the sharks, and then
Pirate 2 proposes a division to Pirate 3, and so on. If pirate R rejects Pirate R−1’s
proposal, then Pirate R gets all 100 gold pieces. Pirates prefer more gold to less
and are indifferent about about how much gold any other pirate gets; being fed to
the sharks is their least favorite thing. Watching another pirate being fed to the
sharks gives a pirate positive utility, but a pirate always prefers an extra gold piece
to watching sharks eat. Describe the subgame perfect Nash equilibria of this game.
How does your answer depend on the value of R?

Since this is a game of perfect information, the subgame perfect Nash equilibria are
the backwards induction solutions.

Suppose R = 2. Pirate 2 always rejects Pirate 1’s offer, no matter what it is.
That way, Pirate 2 gets both the 100 gold pieces and the utility from watching
Pirate 1 being fed to the sharks. Hence, the set of SPE is characterized by Pirate
1 proposing any division and Pirate 2 rejecting any proposed division. The payoffs
are (−∞, 100 + c), where c is the utility gained from watching another pirate being
fed to the sharks.

Suppose R = 3. Pirate 3 always rejects Pirate 2’s offer, no matter what it is. That
way, Pirate 3 gets both the 100 gold pieces and the utility from watching Pirate 2
being fed to the sharks. Pirate 2 knows that if it ever comes to him to make an
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offer, it will be rejected and he will die. Hence, Pirate 2 would accept any offer so
that the game would end and he would avoid being fed to the sharks by Pirate 3.
Pirate 1 knows that Pirate 2 would accept any offer in order to avoid being fed to
the sharks and so proposes a “division” where he keeps all the 100 gold pieced and
gives Pirate 2 and Pirate 3 zero goldpieces. The payoffs are (100, 0, 0).

Suppose R = 4. Pirate 4 always rejects Pirate 3’s offer, no matter what it is. That
way, Pirate 4 gets both the 100 gold pieces and the utility from watching Pirate 3
being fed to the sharks. Pirate 3 knows that if it ever comes to him to make an
offer, it will be rejected and he will die. Hence, Pirate 3 would accept any offer so
that the game would end and he would avoid being fed to the sharks by Pirate 4.
Pirate 2 knows that Pirate 3 will accept any offer in order to avoid being fed to
the sharks and so Pirate 2’s life is guaranteed. Therefore, Pirate 2 would reject any
offer Pirate 1 makes and would propose a “division” to Pirate 3, where he gets to
keep all the gold pieces. The payoffs are (−∞, 100 + c, 0, 0).

And so on... The pattern shows that when R is odd, Pirate 1 will keep all the
gold pieces for himself. So the SPE in this case is: Pirate 1 offers to keep all 100
pieces for himself, Pirate 2 always accepts, game over. The equilibrium payoffs are
(100, 0, 0, . . . , 0). Denoting by di ∈ RR−i+1

+ = Di the proposed division of the gold
pieces by Pirate i, the equilibrium strategies, including at those subgames that are
not reached in equilibrium, can be specified as:

s1 = (d1 = (d11 = 100, d21 = 0, . . . , dR1 = 0))
s2k = (accept, d2k ∈ D2k) for k = 1, 2, . . . , R−12

s2k+1 = (reject, d2k+1 = (d2k+1
2k+1 = 100, d2k+2

2k+1 = 0, . . . dR2k+1 = 0) for k = 1, 2, . . . , R−12

 .

On the other hand, when R is even, Pirate 2 will keep all the gold pieces for
himself. The SPE in this case is: Pirate 1 makes any offer, but Pirate 2 rejects
it. Then Pirate 2 proposes to keep all the coins for himself and Pirate 3 accepts
it. The equilibrium payoffs are (−∞, 100 + c, 0, 0, . . . 0). The equilibrium strategies,
including at those subgames that are not reached in equilibrium, can be specified
as:

s1 = (d1 ∈ D1)

s2k = (reject, d2k = (d2k2k = 100, d2k+1
2k = 0, . . . dR2 = 0)) for k = 1, 2, . . . , R2

s2k+1 = (accept, d2k+1 ∈ D2k+1) for k = 1, 2, . . . , R2

 .
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