Problem Set 4

Microeconomics I

Exercise 1: Consider the infinitely repeated game $G(\infty, \delta)$ based on the stage game below. Use the principle of optimality to find the set of discount factors for which the following strategy profile is a subgame perfect equilibrium:

1) in period 1 Player i plays a_i ;

2) in every period after period 1, Player *i* plays b_i if (b_1, b_2) or (c_1, c_2) was played in the previous period; and

3) in every period after period 1, Player *i* plays c_i if (b_1, b_2) or (c_1, c_2) was not played in the previous period.

		Player 2		
		a_2	b_2	c_2
Player 1	a_1	4,4	3,2	1,1
	b_1	2,3	2,2	1,1
	c_1	1,1	1,1	-1,-1

Exercise 2: (Repeated Prisoner's Dilemma) Consider the following stage game G:

		Player 2	
		\mathbf{C}	D
Player 1	С	-1,-1	-4,0
	D	0,-4	-3,-3

Show that for high enough δ there is a subgame perfect equilibrium (SPE) σ of the infinitely repeated game $G(\infty, \delta)$ for which $u_1(\sigma) = u_2(\sigma) = -1$.

Exercise 3: Consider the following stage game G (G is a game of "Chicken"):

		Player 2	
		\mathbf{S}	KG
Player 1	\mathbf{S}	4,4	$1,\!6$
	\mathbf{KG}	6,1	0,0

where S stands for "Swerve" and KG stands for "Keep Going".

- (a) Find every Nash equilibrium of G.
- (b) Find the strategy m_1 of Player 2 that minmaxes Player 1, and the corresponding minmax value \underline{v}_1 of Player 1. (*G* is symmetric, so that is also Player 2's minmax value.)
- (c) Carefully draw the utility possibility set, and the set of payoffs identified in the Fudenberg and Maskin Folk Theorem as SPE payoffs of $G(\infty, \delta)$ for high enough δ .
- (d) For what values of δ is ((S, S), (S, S), (S, S), ...) a Nash equilibrium outcome of $G(\infty, \delta)$? NOTE: The equilibrium need not be subgame perfect.

Exercise 4: Consider the following extensive form game:

- (a) Write the corresponding normal form.
- (b) Show that no player has any weakly dominated strategies.
- (c) Let p be the probability that Player 3 chooses action l. For what values of p is (A, t, p) a Nash equilibrium.
- (d) Show that whenever (A, t, p) is a Nash equilibrium, then it is also part of a perfect Bayesian equilibrium.

<u>Exercise 5</u>: Consider the following extensive form game in which Nature moves first with the commonly known probabilities given in brackets:

The first payoff is Player 1's, and the second payoff is Player 2's.

- (a) Find all the perfect Bayesian equilibria (PBE).
- (b) Find a Nash equilibrium that is not a part of a PBE.