
Section B

Question 1. Penny Pockerpitt is an expected utility maximizer who has a prefer-
ence for more treats. In other words, her Bernoulli utility function u(x) is strictly
increasing in the amount of treats x she gets. Suppose Penny faces the following
situation: A fair coin (a penny) will be flipped. If the outcome is heads, then
Penny will receive 2 treats. If the outcome is tails, then the coin will be flipped
again. If the outcome of this second flip is heads, Penny will get 1 treat, and if
it is tails, she will get 3 treats. Denote this lottery by L.

(i) Define formally the lottery L and its set of outcomes C. Find the expecta-
tion and variance of L.

C = {1, 2, 3}, L = (1
4
, 1
2
, 1
4
).

E(L) =
1

4
· 1 +

1

2
· 2 +

1

4
· 3 = 2

V ar(L) =
1

4
· (1− 2)2 +

1

2
· (2− 2)2 +

1

4
· (3− 2)2 =

1

2

(ii) Suppose that Penny is risk-neutral. What are Penny’s certainty equivalent
and risk premium associated with the lottery L?

The certainty equivalent for the lottery L is given as c(L, u) = 2. The risk
premium is the difference between the expectation of L and the certainty
equivalent c(L, u): rp(L, u) = E(L)− c(L, u) = 2− 2 = 0.

(iii) Consider a lottery L′ under which Penny will receive 1 treat with probability
1
4
, 2 treats with probability 1

4
or 3 treats with probability 1

2
. Does Penny

prefer lottery L or lottery L′? Would that preference between L and L′

change if Penny were risk-averse instead of risk-neutral?

L′ is preferred to L if

1

4
u(1) +

1

2
u(2) +

1

4
u(3) ≤ 1

4
u(1) +

1

4
u(2) +

1

2
u(3),

which simplifies to 1
4
(u(2)− u(3) ≤ 0. This always holds as long as u(x) is

increasing, irrespective of risk preferences.

(iv) We say that lottery L′ weakly dominates lottery L′′ if, for every amount of
treats x, the probability of getting at least x is (weakly) higher under L′

than under L′′ (this is known as first-order stochastic dominance).

Consider a lottery L̂ = (p, q, 1 − p − q). According to this lottery, Penny
receives 1 treat with probability p, 2 treats with probability q, or 3 treats
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with probability 1− p− q. What is the condition on p and q so that lottery
L̂ weakly dominates lottery L?

The set of lotteries that weakly dominate L is given by all lotteries for which
q + (1− p− q) ≥ 3

4
and (1− p− q) ≥ 1

4
, which is equivalent to p ≤ 1

4
and

p+ q ≤ 3
4
.

(v) Provide an example of a lottery that neither weakly dominates L nor is
weakly dominated by L, and show why this is an appropriate example.

E.g., L̂ = (p, q, 1 − p − q) = (1/2, 0, 1/2). Here 1 − p − q = 1/2 > 1/4 but
q + (1− p− q) = 1/2 < 1/2 + 1/4. So L̂ and L are not comparable.

(vi) Draw lottery L in the 2-dimensional simplex. Label the corners of the
triangle. Draw Penny’s indifference curve that passes through lottery L,
assuming that Penny is risk-neutral.

See the drawing below.

(vii) How is risk preference reflected in the shape of the indifference curve in the
drawing of part (vi)? How would the indifference curve change if Penny
was risk-averse? Provide a brief explanation to your answers.

The indifference curves are straight lines for any risk preference. This is
because the expected utilities are linear in the probabilities of different
outcomes. For example, let u(x) =

√
x. Then the values 1, 2, 3 will change

into different values
√

1,
√

2,
√

3, but nothing else changes. However, risk
preference may affect the slope of these indifference lines. For example,
for u(x) = x lottery L is as good as the lottery (0, 1, 0) that yields 2 with
certainty, but for u(x) =

√
x lottery (0, 1, 0) would be strictly preferred to

L.
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Question 2. Consider the following normal form game played between Bonnie
and Clyde:

Clyde
a b

Bonnie a 2,4 1,1
b 1,1 4,2

(i) What are the best response correspondences of the players? Draw the best
response correspondences in the same graph. Put the probability of Bonnie
playing a on the horizontal axis and the probability of Clyde playing a on
the vertical axis.
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(ii) Find all Nash equilibria of this game.
The Nash equilibria are (a, a), (b, b), and (σB(a) = 1

4
, σC(a) = 3

4
).

Suppose a third action is added, giving the following game G:

Clyde
a b c

Bonnie a 2,4 1,1 0,0
b 1,1 4,2 0,0
c 0,6 0,0 5,5

Consider the repeated game G(δ), where the game G is played infinitely
many times, and both players have the same discount factor δ ∈ (0, 1).

(iii) Find the minmax payoffs and minmax strategies for both players in the
stage game G, restricting attention to pure strategies. Draw the set of all
possible payoffs for the players in the stage game. Identify which payoffs
are feasible SPE payoffs of G(δ) for high enough δ (Fudenberg and Maskin’s
Folk Theorem).

The minmax values and strategies for both players: m1 = a, v1 = 2; m2 = b,
v2 = 2

See attached drawing.
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(iv) Construct a SPE of the repeated game G(δ) such that (c, c) is played in
every period, provided δ is high enough. [NOTE: You need to construct
a strategy profile which specifies the play after each possible history and
check that there are no profitable deviations both on and off the equilibrium
path.]

For what values of δ the constructed strategy profile is indeed a SPE of
G(δ)?

Consider the following strategy for each player i ∈ {B,C} :
1) in period 1 Player i plays c;
2) in every period after period 1, Player i plays c if (c, c) has been played
in all previous periods; and
3) play b forever otherwise [could also be a; or a for Bonnie and b for Clyde].

If this strategy profile constitutes an equilibrium, then (c, c) will be played
in each period, which is what we want. In this case, each player gets a
payoff of 5 each period, i.e., 5

1−δ . After a deviation, both players will play
(b, b) forever, which gives Clyde his minmax payoff.

The conditions for no profitable deviations on the equilibrium path are:
—for Player B, on the equilibrium path, following the above strategy gives a
payoff of 5 in every period, i.e. 5

1−δ . A one-shot deviation and then playing

the strategy subsequently gives a payoff of at most 0 + δ 4
1−δ . Deviating is
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not profitable for Player B if

5

1− δ
≥ 0 + δ

4

1− δ

which holds for any δ ∈ (0, 1).

—for Player C, on the equilibrium path, following the above strategy gives a
payoff of 5 in every period, i.e. 5

1−δ . The most profitable one-shot deviation

is to a and then playing the strategy subsequently gives a payoff of 6+δ 2
1−δ .

Deviating is not profitable for Player C if

5

1− δ
≥ 6 + δ

2

1− δ
⇔ δ ≥ 1

4
.

Since we need to ensure this is a SPE, we also need to look at profitable
deviations off the equilibrium path. In any history after any deviation we
have the play (b, b), which is a NE of the stage game, so there are no
profitable deviations.
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