Repeated Games
Example

$$
G=\begin{array}{cc|c|c|}
\hline & F & B & C \\
\hline & \begin{array}{c}
x^{2}, 1^{n} \\
\hline
\end{array} & 0,0 & 6,0 \\
\hline 0,0 & 1,1,2^{n} & 0,0 \\
\hline & 0,0 & 0,0 & 5,5^{n} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { NE: } \quad(F, F) \\
& (B, B)
\end{aligned}
$$

$G(2)=$ Game G is played twice
\rightarrow play 6 first time
\rightarrow observe chores of the players
\rightarrow play 6 again
\rightarrow payouts of $G(2)=$ sum of payoff from the two plays.

A pure strategy S_{i} of player i specifies how to play in each game depending on what happened before.

Game: $S_{i}^{1} \in\{F, B, C\}$

$$
S_{i}^{2}:\{F, B, C\} \times\{F, B, C\} \rightarrow\{F, B, C\}
$$

Player 1
Follow instructions $\rightarrow(C, C)$ then $(F, F) \sim 5+2=7$

- Deviate in and road $\longrightarrow F$ is $B R$ to $F \quad$ io B is $B R$ to B to deviate
- Deviate in list round to $F(F, C) \rightarrow(B, B) \sim 6+1=7$

Player 2
\Rightarrow Placer. 1 has no profitable deviation
Follow instructions $\rightarrow(C, C)$ then $(F, F) \sim 5+1=6$

- Dew in 2 nd round \rightarrow no reason to deviate, similarly to player 1.
- Der in list round \rightarrow worse off.
\Rightarrow Plages 2 has no profitable deviation.

Repeated Game $G(T, \delta)$

- G ~ stage game
- "Stages" are rounds of play, $t=1,2, \ldots, T$
- $a^{s}=\left(a_{1}^{s}, a_{2}^{s}, \ldots, a_{N}^{s}\right)$ the play in round s
- "history" $h^{t}=\left(a^{1}, a^{2}, \ldots, a^{t-1}\right)$ is a list of action profiles (or plays) in each round $s=1,2, \ldots, t-1$
$\rightarrow h^{t}$ is commonly known at the start of stage t
$\rightarrow \mathrm{H}^{t}=$ set of possible histories h^{t}
$\rightarrow H^{1}=\left\{h^{\prime}\right\}$ is the null history
$\rightarrow \mathrm{H}^{T+1}$ or $\mathrm{H}^{\text {os }}$ is the set of complete histories (plays)
A behavior strategy of player i is

$$
\sigma_{i}=\left(\sigma_{i}^{1}, \sigma_{i}^{2}, \ldots, \sigma_{i}^{\top}\right) \text { where } \sigma_{i}^{t}: H^{+} \rightarrow \Delta\left(A_{i}\right)
$$

After observing history h^{t}, plage i chooses action $a_{i} \in A_{i}$ with probability $\sigma_{i}\left(h^{+}\right)\left[a_{i}\right]$

Payoffs
Discount factor $\delta \in[0,1]$
\rightarrow today's value of getting one unit of payoff in the next round \rightarrow Probability that the play continues
Assume to the next round

- δ is the same for all players
- δ is common knowledge.

Payoffs $u_{i}\left(h^{T+1}\right)=u_{i}\left(a^{1}\right)+\delta u_{i}\left(a^{2}\right)+\delta^{2} u_{i}\left(a^{3}\right)+\ldots+\delta^{T-1} u_{i}\left(a^{T}\right)$

$$
\rightarrow u_{i}\left(h^{j+1}\right)=x+\delta \cdot x+\delta^{2} \cdot x+\ldots+\delta^{\delta-1} \cdot x= \begin{cases}\frac{1-\delta^{r}}{1-\delta} \cdot x, & \delta<1 \\ T \cdot x, & \delta=1\end{cases}
$$

Same payoff x in every round

$$
\begin{aligned}
& \text { Normalized Payoffs } \\
& \hat{U}_{i}\left(h^{T+1}\right)= \\
& \frac{1-\delta}{1-\delta^{T}} U_{i}\left(h^{T+1}\right) \\
& \frac{1}{T} U_{i}\left(h^{T+1}\right)
\end{aligned} \begin{aligned}
& \text { if } \delta<1
\end{aligned}
$$

For $T=\infty \quad($ Assume $\delta<1)$

$$
\begin{aligned}
& \text { or } \quad T=\infty \quad(\text { Assume } \\
& \hat{U}_{i}\left(h^{2}\right)=(1-\delta) U_{i}\left(h^{\infty}\right)=(1-\delta) \sum_{t=1}^{\infty} \delta^{t-1} u_{i}\left(a^{t}\right) .
\end{aligned}
$$

$\hat{U}_{1}(S)=\hat{U}_{:}\left(S_{1}, \ldots, S_{N}\right) \sim$ the expected (normalised) pay off of plages i from strategy profile s.
Principle of Optimality (One-shot deviation principle) A strategy profile σ is a SPE of game $G(T, \delta)$ if and only if at every history (onoroff equilibrium path) no player ican increase her expected (normalised) utility by deviating from σ_{i} exactly once (at .that history) and playing σ_{i} again often wards.

Finitely Repeated Games

$$
T<\infty
$$

C
C
C
$-1,-1$
$0,-4,0$

D strictly dominates C
Consider $G(T, \delta)$.
\rightarrow in stage $T, \quad(D, D)$ must be
\rightarrow in stage $T-1$,
(D, D) must be played
\rightarrow in stage $T-2, \quad(D, D)$ must be played
\Rightarrow Conclude: in all stages (D, D) must be played.
Proposition In any repeated game (finite or infinite) playing a NE of the stage game in every stage is SPE.
Proposition Suppose that stage game G has a unique $N E, \alpha^{*}$, and let $T<\infty$. Then the only SPE of $G(T, \delta)$ is to ploy α^{*} in every stage.

Infinitely Repeated Games $\quad T=\infty$
Let α_{-i} be a mixed action profile of all players other than i in stage game
bet $w_{i}\left(\alpha_{-i}\right)=\max _{a_{i}} u_{i}\left(a_{i}, \alpha_{-i}\right)=$ player i's best response payoff to α_{-i}
Let $\quad \underline{v}_{i}=\min _{\alpha-i} W_{i}\left(\alpha_{-i}\right)=\min _{\alpha_{-i}}\left[\max _{a_{i}} u_{i}\left(a_{i}, \alpha_{-i}\right)\right]$
\sim the minmax proyot of player i
The minmax strategy used against player i is the action $m_{n i}$ that delivers the minmax payoff:

$$
m_{a i}=\underset{\alpha-i}{\operatorname{angmin}} w_{i}\left(\alpha_{-i}\right)
$$

Proposition In any repeated game, The payoff of player i in any SDE is at least $\underline{v_{i}}$.

Example

	C
	D
2,1	0,1
3,3	$-1,2$

$\underline{v}_{1}=n d \alpha_{\alpha} \min _{p} w_{i}\left(\alpha_{i}\right)=0$
Simitarly, $\underline{v}_{2}=1$

Folk Theorem
Let V be the set of feasible payoffs of G

$$
V=\text { Convexthll }\left\{\left(u_{1}(a), u_{2}(a), \ldots, u_{N}(a)\right): a \in A\right\}
$$

Proposition (Fudenberg \& Maskin) Let $T=\infty$. Choose any vector of payouts $v \in V$ such that $v_{i}>\underline{v i}_{i}$ for each player i
Then there exists a discount factor threshold $\delta \in(0,1)$ such that for every discount factor $\delta \in(\underline{\delta}, 1)$ there exists a SPE σ^{*} of $G(\infty, \delta)$ with $\hat{U}_{i}\left(\sigma^{*}\right)=v_{i}$ for each player i.

