Search and Matching - Ph.D. Training Course Lecture 4: Search and Sorting

Philipp Kircher ${ }^{1}$
${ }^{1}$ University of Edinburgh

December 6th 2013

Search and Sorting

- Big focus in labor: unemployment
- Less focus: "unsuitable" employment
- Examples:
- Dentist working at a fast-food restaurant
- Ph.D. economist working as taxi driver
- Why is this hard: observational problems (output hard to observe)
- Need more theory to understand this
- Frictions: induce mismatch (but other things do as well).

Sorting and Search Frictions: The Basics

We keep the basic elements of the framework before, but

- Each worker has a type x; distr. H_{w}
- Each job has a type y; distr. H_{m}
- The output is $f(x, y)$ [same as $V(m, w)$ with men and women]
- Matching through matching function (directed or random).
- succesful: firm gets $f(x, y)-w$ and worker gets w (risk-neutrality).
- Some prob $s \geq 0$ that job survives to next period.

Sorting and Search Frictions: The Basics

We keep the basic elements of the framework before, but

- Each worker has a type x; distr. H_{w}
- Each job has a type y; distr. H_{m}
- The output is $f(x, y)$ [same as $V(m, w)$ with men and women]
- Matching through matching function (directed or random).
- succesful: firm gets $f(x, y)-w$ and worker gets w (risk-neutrality).
- Some prob $s \geq 0$ that job survives to next period.
- unsuccessful: workers unemployment payoff $b \geq 0$, firms get 0 .
- Potentially try next period again (discount $\delta \in[0,1)$).

Sorting

How does sorting work now? Who get's matched with whom? Why?
Recall from frictionless matching: PAM if $f_{x y}>0$.
Things change with frictions:

- It is not only important which partner one gets,
- But it is also important whether one gets a partner at all.
- The second part tends to favor NAM, because the highest types have most to loose and are most likely to accept lower matches if that helps them getting matched.
- Most easily explained in directed search.

Sorting in Directed Search

Sorting in Directed Search. (based on Eeckhout-Kircher ECTR. See also Shi 01, Shimer 05)
Assume bilateral meetings. (otherwise auctions, see Eeckhout-Kircher JET)
Firm y posts (w, x) combination to maximize:

$$
\begin{aligned}
& \max _{x, w} m(\lambda(x, w))[f(x, y)-w] \text { s.t. } n(\lambda(x, w)) w=U(x) . \\
\Leftrightarrow & \max _{x, \lambda} m(\lambda) f(x, y)-\lambda U(x)
\end{aligned}
$$

Sorting in Directed Search

Sorting in Directed Search.(based on Eeckhout-Kircher ECTR. See also Shi 01, Shimer 05)
Assume bilateral meetings. (otherwise auctions, see Eeckhout-Kircher JET)
Firm y posts (w, x) combination to maximize:

$$
\begin{aligned}
& \max _{x, w} m(\lambda(x, w))[f(x, y)-w] \text { s.t. } n(\lambda(x, w)) w=U(x) . \\
\Leftrightarrow & \max _{x, \lambda} m(\lambda) f(x, y)-\lambda U(x)
\end{aligned}
$$

FOC at optimal $\lambda=\Lambda(y)$ and $x=\mu(y)$:

$$
\begin{aligned}
m^{\prime}(\Lambda) f(\mu, y) & =U(\mu) \\
m(\Lambda) f_{x}(x, y) & =\Lambda U^{\prime}(\mu)
\end{aligned}
$$

Sorting in Directed Search

Sorting in Directed Search. (based on Eeckhout-Kircher ECTR. See also Shi 01, Shimer 05)
Assume bilateral meetings. (otherwise auctions, see Eeckhout-Kircher JET)
Firm y posts (w, x) combination to maximize:

$$
\begin{aligned}
& \max _{x, w} m(\lambda(x, w))[f(x, y)-w] \text { s.t. } n(\lambda(x, w)) w=U(x) . \\
\Leftrightarrow & \max _{x, \lambda} m(\lambda) f(x, y)-\lambda U(x)
\end{aligned}
$$

FOC at optimal $\lambda=\Lambda(y)$ and $x=\mu(y)$:

$$
\begin{aligned}
m^{\prime}(\Lambda) f(\mu, y) & =U(\mu) \\
m(\Lambda) f_{x}(x, y) & =\Lambda U^{\prime}(\mu)
\end{aligned}
$$

SOC according to Hessian:

$$
\left(\begin{array}{cc}
m^{\prime \prime}(\Lambda) f(\mu, y) & m^{\prime}(\Lambda) f_{x}(\mu, y)-U^{\prime}(\mu) \\
m^{\prime}(\Lambda) f_{x}(\mu, y)-U^{\prime}(\mu) & m(\Lambda) f_{x x}(\mu, y)-\Lambda U^{\prime \prime}(\mu)
\end{array}\right)
$$

Can be done. Real complication: deal with possible non-differentiabilities,

Sorting and Directed Search

PAM if

$$
\frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \frac{m^{\prime}(\Lambda)\left[m^{\prime}(\Lambda) \Lambda-m(\Lambda)\right]}{\Lambda m(\Lambda) m^{\prime \prime}(\Lambda)}
$$

Sorting and Directed Search

PAM if

$$
\begin{aligned}
& \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \frac{m^{\prime}(\Lambda)\left[m^{\prime}(\Lambda) \Lambda-m(\Lambda)\right]}{\Lambda m(\Lambda) m^{\prime \prime}(\Lambda)} \\
& \Leftrightarrow \quad \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \text { Elasticity }_{M}
\end{aligned}
$$

Sorting and Directed Search

PAM if

$$
\begin{aligned}
& \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \frac{m^{\prime}(\Lambda)\left[m^{\prime}(\Lambda) \Lambda-m(\Lambda)\right]}{\Lambda m(\Lambda) m^{\prime \prime}(\Lambda)} \\
\Leftrightarrow & \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \text { Elasticity }_{M} \\
\Leftrightarrow & 1 \geq \frac{M_{u}(\Lambda, 1) M_{v}(\Lambda, 1)}{M_{u v}(\Lambda, 1) M(\Lambda, 1)} \frac{f_{y}(\mu, y) f_{y}(\mu, y)}{f_{x, y}(\mu, y) f(\mu, y)}
\end{aligned}
$$

Remarkable symmetry. Stronger than $f_{x y}>0$. (Use graph...)

Sorting and Directed Search

PAM if

$$
\begin{aligned}
& \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \frac{m^{\prime}(\Lambda)\left[m^{\prime}(\Lambda) \Lambda-m(\Lambda)\right]}{\Lambda m(\Lambda) m^{\prime \prime}(\Lambda)} \\
\Leftrightarrow & \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \text { Elasticity }_{M} \\
\Leftrightarrow & 1 \geq \frac{M_{u}(\Lambda, 1) M_{v}(\Lambda, 1)}{M_{u v}(\Lambda, 1) M(\Lambda, 1)} \frac{f_{y}(\mu, y) f_{y}(\mu, y)}{f_{x, y}(\mu, y) f(\mu, y)}
\end{aligned}
$$

Remarkable symmetry. Stronger than $f_{x y}>0$. (Use graph...) For $m(\lambda)=1-e^{-\lambda}$ it is root-supermodularity (\sqrt{f} supermodular)

Sorting and Directed Search

PAM if

$$
\begin{aligned}
& \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \frac{m^{\prime}(\Lambda)\left[m^{\prime}(\Lambda) \Lambda-m(\Lambda)\right]}{\Lambda m(\Lambda) m^{\prime \prime}(\Lambda)} \\
\Leftrightarrow & \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \text { Elasticity }_{M} \\
\Leftrightarrow & 1 \geq \frac{M_{u}(\Lambda, 1) M_{v}(\Lambda, 1)}{M_{u v}(\Lambda, 1) M(\Lambda, 1)} \frac{f_{y}(\mu, y) f_{y}(\mu, y)}{f_{x, y}(\mu, y) f(\mu, y)}
\end{aligned}
$$

Remarkable symmetry. Stronger than $f_{x y}>0$. (Use graph...) For $m(\lambda)=1-e^{-\lambda}$ it is root-supermodularity (\sqrt{f} supermodular) For Cobb-Douglas matching functions $m(\lambda)=\lambda^{\alpha}$ it is $\log -\mathrm{sm}(\ln (f) \mathrm{sm})$

Sorting and Directed Search

PAM if

$$
\begin{aligned}
& \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \frac{m^{\prime}(\Lambda)\left[m^{\prime}(\Lambda) \Lambda-m(\Lambda)\right]}{\Lambda m(\Lambda) m^{\prime \prime}(\Lambda)} \\
\Leftrightarrow & \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \text { Elasticity }_{M} \\
\Leftrightarrow & 1 \geq \frac{M_{u}(\Lambda, 1) M_{v}(\Lambda, 1)}{M_{u v}(\Lambda, 1) M(\Lambda, 1)} \frac{f_{y}(\mu, y) f_{y}(\mu, y)}{f_{x, y}(\mu, y) f(\mu, y)}
\end{aligned}
$$

Remarkable symmetry. Stronger than $f_{x y}>0$. (Use graph...) For $m(\lambda)=1-e^{-\lambda}$ it is root-supermodularity (\sqrt{f} supermodular) For Cobb-Douglas matching functions $m(\lambda)=\lambda^{\alpha}$ it is log-sm $(\ln (f) \mathrm{sm})$ The wages and matching probabilities are also easily described (diff equ)

Sorting and Directed Search

PAM if

$$
\begin{aligned}
& \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \frac{m^{\prime}(\Lambda)\left[m^{\prime}(\Lambda) \Lambda-m(\Lambda)\right]}{\Lambda m(\Lambda) m^{\prime \prime}(\Lambda)} \\
\Leftrightarrow \quad & \frac{f_{x, y}(\mu, y) f(\mu, y)}{f_{y}(\mu, y) f_{y}(\mu, y)} \geq \text { Elasticity }_{M} \\
\Leftrightarrow & 1 \geq \frac{M_{u}(\Lambda, 1) M_{v}(\Lambda, 1)}{M_{u v}(\Lambda, 1) M(\Lambda, 1)} \frac{f_{y}(\mu, y) f_{y}(\mu, y)}{f_{x, y}(\mu, y) f(\mu, y)}
\end{aligned}
$$

Remarkable symmetry. Stronger than $f_{x y}>0$. (Use graph...) For $m(\lambda)=1-e^{-\lambda}$ it is root-supermodularity (\sqrt{f} supermodular) For Cobb-Douglas matching functions $m(\lambda)=\lambda^{\alpha}$ it is log-sm $(\ln (f) \mathrm{sm})$ The wages and matching probabilities are also easily described (diff equ) Discuss: what happens as short side of the market gets matched for sure...

Sorting: Random Search

Sorting with Random Search:

- Downside for theory: much harder (illustrate matching bands)
- Applied upside: breaks perfect matching (feature of data)
- Canonical Model: Shimer-Smith ECTR
- Considitions for increasing matching bands (PAM):
- f sm, $f_{x} \log$-sm, $f_{x y} \log$-sm,... (implies $f \log -s m$)
- More interesting for applied work:
- Can we identify the production function from observed data?
- Can we say whether sorting is positive, negative, etc?
- Can we say how much value is lost from mismatch?
- How much could the market improve (increase b, not done yet)?

Identificaiton of Sorting under Random Search Identification of Sorting with Random Search:
 Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings) Surplus from x matching with y :

Identificaiton of Sorting under Random Search

 Identification of Sorting with Random Search:Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings) Surplus from x matching with y :

$$
s(x, y)=f(x, y)-[s \delta v(x)+s \delta v(y)-2 c]
$$

Wage of x working for y :

Identificaiton of Sorting under Random Search

 Identification of Sorting with Random Search:Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings) Surplus from x matching with y :

$$
s(x, y)=f(x, y)-[s \delta v(x)+s \delta v(y)-2 c]
$$

Wage of x working for y :

$$
w(x, y)=\beta[f(x, y)-s \delta v(x)-s \delta v(y)+2 c]+s \delta v(x)-c
$$

- Worker's type:

Identificaiton of Sorting under Random Search

 Identification of Sorting with Random Search:Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings) Surplus from x matching with y :

$$
s(x, y)=f(x, y)-[s \delta v(x)+s \delta v(y)-2 c]
$$

Wage of x working for y :

$$
w(x, y)=\beta[f(x, y)-s \delta v(x)-s \delta v(y)+2 c]+s \delta v(x)-c
$$

- Worker's type: higher reservation wage (higher wage within firm)
- Firm's type:

Identificaiton of Sorting under Random Search

 Identification of Sorting with Random Search:Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings) Surplus from x matching with y :

$$
s(x, y)=f(x, y)-[s \delta v(x)+s \delta v(y)-2 c]
$$

Wage of x working for y :

$$
w(x, y)=\beta[f(x, y)-s \delta v(x)-s \delta v(y)+2 c]+s \delta v(x)-c
$$

- Worker's type: higher reservation wage (higher wage within firm)
- Firm's type: those with higher worker types (might get it wrong)

Identificaiton of Sorting under Random Search

 Identification of Sorting with Random Search:Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings)
Surplus from x matching with y :

$$
s(x, y)=f(x, y)-[s \delta v(x)+s \delta v(y)-2 c]
$$

Wage of x working for y :

$$
w(x, y)=\beta[f(x, y)-s \delta v(x)-s \delta v(y)+2 c]+s \delta v(x)-c
$$

- Worker's type: higher reservation wage (higher wage within firm)
- Firm's type: those with higher worker types (might get it wrong)
- Then: $\left|w_{x y}\right|=\beta\left|f_{x y}\right|$, and $\left|f_{x y}\right|$ is a indicator of loss $\left(L(x, y)=-\iint\left|f_{x y}\right| d x^{\prime} d y^{\prime}\right)$

Identificaiton of Sorting under Random Search

 Identification of Sorting with Random Search:Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings)
Surplus from x matching with y :

$$
s(x, y)=f(x, y)-[s \delta v(x)+s \delta v(y)-2 c]
$$

Wage of x working for y :

$$
w(x, y)=\beta[f(x, y)-s \delta v(x)-s \delta v(y)+2 c]+s \delta v(x)-c
$$

- Worker's type: higher reservation wage (higher wage within firm)
- Firm's type: those with higher worker types (might get it wrong)
- Then: $\left|w_{x y}\right|=\beta\left|f_{x y}\right|$, and $\left|f_{x y}\right|$ is a indicator of loss $\left(L(x, y)=-\iint\left|f_{x y}\right| d x^{\prime} d y^{\prime}\right)$
- With $s \delta=1$: firm type cannot be identified

Identificaiton of Sorting under Random Search

 Identification of Sorting with Random Search:Fixed search costs $c>0$ (Atakan ECTR, Eeckhout-Kircher REStud, Gautier-Teulings)
Surplus from x matching with y :

$$
s(x, y)=f(x, y)-[s \delta v(x)+s \delta v(y)-2 c]
$$

Wage of x working for y :

$$
w(x, y)=\beta[f(x, y)-s \delta v(x)-s \delta v(y)+2 c]+s \delta v(x)-c
$$

- Worker's type: higher reservation wage (higher wage within firm)
- Firm's type: those with higher worker types (might get it wrong)
- Then: $\left|w_{x y}\right|=\beta\left|f_{x y}\right|$, and $\left|f_{x y}\right|$ is a indicator of loss $\left(L(x, y)=-\iint\left|f_{x y}\right| d x^{\prime} d y^{\prime}\right)$
- With $s \delta=1$: firm type cannot be identified
- With $s \delta<1$: firm type is identified by excess payments (what workers get beyond their reservation wage Hagedorn-Law-Manovskii)

Other Identification Strategies

Other ways of identification:

- Hight and width of wage function (use picture)
(Gautier-Teulings: mismatch costs \approx unemployment costs)
- Similar types of co-workers (de Melo)
- Speed of sorting with search intensity (Lentz...)

Problematic:

- Correlation of worker and firm fixed effects (reason: non-monotonicity of wage function)

Different reason for mismatch: shocks or learning

Open questions about sorting:

- How to handle on-the-job search (important for wage dispersion, recently introduced by Lise-Robin, Hagedorn-Law-Manovskii, Gautier-Teulings...)
- How to handle ideosyncratic and aggregate shocks (Lise-Robin)
- To use it for sensible policy questions:
- What is the effect of higher unemployment insurance
- What is the effect of job protection....

Different way to think about mismatch:

- Shocks to types or learning
- Long literature going back to Waldmann...
- Short exposition based on my own work
- Message:
- Combining search and shocks might be important
- Small improvements on any of these can be a great dissertation
- Keep relevance in mind
- Keep data in mind

