Search and Matching - Ph.D. Training Course Lecture 3: Basics of Search Frictions

Philipp Kircher ${ }^{1}$
${ }^{1}$ University of Edinburgh

December 6th 2013

Search Frictions: The Basics

Why search frictions (also called matching frictons):

- competitive model: no voluntary unemployment, no co-existence of unfilled vacancies and unemployed individuals
- search frictions: one way to introduce both.
- idea: it takes time to find a parter (the right partner).

Search Frictions: The Basics

The basic model elements:

- number v of vacancies (possibly entry cost K)
- number u of workers searching for these vacancies
- matching function $M(v, u)$ gives the number of matches (often calibrated to be Beveridge curve; discuss recent events) str incr and str concave in each argument, overall constant returns

Search Frictions: The Basics

The basic model elements:

- number v of vacancies (possibly entry cost K)
- number u of workers searching for these vacancies
- matching function $M(v, u)$ gives the number of matches (often calibrated to be Beveridge curve; discuss recent events) str incr and str concave in each argument, overall constant returns
- queue length or market tightness: $\lambda=u / v$
- vacancy filling prob: $m(\lambda)=M(1, \lambda)=M(v, u) / v$
- worker matching prob: $n(\lambda)=m(\lambda) / \lambda=M(1, \lambda) / \lambda=M(u, v) / u$

Search Frictions: The Basics

The basic model elements:

- number v of vacancies (possibly entry cost K)
- number u of workers searching for these vacancies
- matching function $M(v, u)$ gives the number of matches (often calibrated to be Beveridge curve; discuss recent events) str incr and str concave in each argument, overall constant returns
- queue length or market tightness: $\lambda=u / v$
- vacancy filling prob: $m(\lambda)=M(1, \lambda)=M(v, u) / v$
- worker matching prob: $n(\lambda)=m(\lambda) / \lambda=M(1, \lambda) / \lambda=M(u, v) / u$
- wage w is determined. (explanation follows)

Search Frictions: The Basics

The basic model elements:

- number v of vacancies (possibly entry cost K)
- number u of workers searching for these vacancies
- matching function $M(v, u)$ gives the number of matches (often calibrated to be Beveridge curve; discuss recent events) str incr and str concave in each argument, overall constant returns
- queue length or market tightness: $\lambda=u / v$
- vacancy filling prob: $m(\lambda)=M(1, \lambda)=M(v, u) / v$
- worker matching prob: $n(\lambda)=m(\lambda) / \lambda=M(1, \lambda) / \lambda=M(u, v) / u$
- wage w is determined. (explanation follows)
- succesful: firm gets $y-w$ and worker gets w (risk-neutrality).
- Some prob $s \geq 0$ that job survives to next period.

Search Frictions: The Basics

The basic model elements:

- number v of vacancies (possibly entry cost K)
- number u of workers searching for these vacancies
- matching function $M(v, u)$ gives the number of matches (often calibrated to be Beveridge curve; discuss recent events) str incr and str concave in each argument, overall constant returns
- queue length or market tightness: $\lambda=u / v$
- vacancy filling prob: $m(\lambda)=M(1, \lambda)=M(v, u) / v$
- worker matching prob: $n(\lambda)=m(\lambda) / \lambda=M(1, \lambda) / \lambda=M(u, v) / u$
- wage w is determined. (explanation follows)
- succesful: firm gets $y-w$ and worker gets w (risk-neutrality).
- Some prob $s \geq 0$ that job survives to next period.
- unsuccessful: workers unemployment payoff $b \geq 0$, firms get 0 .
- Potentially try next period again (discount $\delta \in[0,1)$).
- For now mostly static ($\delta=0$ or $s=0$) and rep agent.

Beveridge Curve

United States, December 2000-June 2013

Wage Determination Mechanisms

Random search and bilateral meetings: surplus to be split

- firms make take-it-or-leave-it wage offer
- Diamond Paradox
- Wage $=$ reservation value $=b$
- Workers have no incentive to search

Wage Determination Mechanisms

Random search and bilateral meetings: surplus to be split

- firms make take-it-or-leave-it wage offer
- Diamond Paradox
- Wage $=$ reservation value $=b$
- Workers have no incentive to search
- "Fix" against Diamond Paradox
- Bargaining where workers have power β
- Mortensen, Pissarides
- Wage in the interior unless $\beta=0$ or $\beta=1$

Wage Determination Mechanisms

Random search and bilateral meetings: surplus to be split

- firms make take-it-or-leave-it wage offer
- Diamond Paradox
- Wage $=$ reservation value $=b$
- Workers have no incentive to search
- "Fix" against Diamond Paradox
- Bargaining where workers have power β
- Mortensen, Pissarides
- Wage in the interior unless $\beta=0$ or $\beta=1$
- (Worker have unobserved outside option, Albrecht-Axel))

Non-random search:

- Some worker see more than one wage offer
- some randomly see one offer and others more (Butters, Burdett-Judd, Varian,...)
- on-the-job search (Burdett-Mortensen)
- directed search: see every offer but can apply only to one (Peters, Burdett-Shi-Wright, Moen, Shimer, Kircher...)

Here: discuss bargaining and directed search $(\delta=0)$.

The efficient benchmark

The efficient benchmark (Hosios 1990):

$$
\begin{aligned}
& \max _{v} M(u, v) y+(u-M(u, v)) b-v K \\
\Leftrightarrow & \max _{v} v m(u / v)(y-b)+u b-v K \\
\Rightarrow & {\left[m\left(\lambda^{*}\right)-\lambda^{*} m^{\prime}\left(\lambda^{*}\right)\right](y-b)=K ; \quad \lambda=u / v } \\
\Leftrightarrow & m\left(\lambda^{*}\right)\left[1-\lambda^{*} m^{\prime}\left(\lambda^{*}\right) / m\left(\lambda^{*}\right)\right](y-b)=K .
\end{aligned}
$$

- Conditional on matching, workers have to get a fraction of output equal to the elasticity of the matching function.

The efficient benchmark

The efficient benchmark (Hosios 1990):

$$
\begin{aligned}
& \max _{v} M(u, v) y+(u-M(u, v)) b-v K \\
\Leftrightarrow & \max _{v} v m(u / v)(y-b)+u b-v K \\
\Rightarrow & {\left[m\left(\lambda^{*}\right)-\lambda^{*} m^{\prime}\left(\lambda^{*}\right)\right](y-b)=K ; \quad \lambda=u / v } \\
\Leftrightarrow & m\left(\lambda^{*}\right)\left[1-\lambda^{*} m^{\prime}\left(\lambda^{*}\right) / m\left(\lambda^{*}\right)\right](y-b)=K .
\end{aligned}
$$

- Conditional on matching, workers have to get a fraction of output equal to the elasticity of the matching function.
- Insight applies even when $\delta>1$, i.e., when the future matters.

The efficient benchmark

The efficient benchmark (Hosios 1990):

$$
\begin{aligned}
& \max _{v} M(u, v) y+(u-M(u, v)) b-v K \\
\Leftrightarrow & \max _{v} v m(u / v)(y-b)+u b-v K \\
\Rightarrow & {\left[m\left(\lambda^{*}\right)-\lambda^{*} m^{\prime}\left(\lambda^{*}\right)\right](y-b)=K ; \quad \lambda=u / v } \\
\Leftrightarrow & m\left(\lambda^{*}\right)\left[1-\lambda^{*} m^{\prime}\left(\lambda^{*}\right) / m\left(\lambda^{*}\right)\right](y-b)=K .
\end{aligned}
$$

- Conditional on matching, workers have to get a fraction of output equal to the elasticity of the matching function.
- Insight applies even when $\delta>1$, i.e., when the future matters.
- Comment: Urnball $m(\lambda)=1-e^{-\lambda}$ generates condition $\left(1-e^{-\lambda}-\lambda e^{-\lambda}\right)(y-b)=K$, so firm gets paid everything if two or more workers are there, while worker gets everything when alone (which is exactly when he brings surplus).

Bargaining

Bargaining: With $\delta=0$ workers get $b+\beta(y-b)$ and firms get $(1-\beta) y$.
Entry:

$$
m(\lambda)[1-\beta](y-b)=K
$$

Efficient v (i.e., efficient $\lambda=u / v$) iff $\beta=$ elasticity of m. Generically inefficient.

Directed Search (Competitive Search)

Each firm simultaneously publicly posts wage w, then workers decide where to search. (Foundations: Peters, Burdett-Shi-Wright, Galenianos-Kircher)

Firm maximizes: $\max _{w} m(\lambda(w))(y-w) \quad(=K$ due to free entry)
Workers must be indifferent: $n(\lambda(w)) w+(1-n(\lambda(w)) b=U$
Since $w=\lambda(U-b) / m(\lambda)+b$, firm maximizes:

$$
\begin{aligned}
& \max _{\lambda} m(\lambda)(y-b)-\lambda(U-b) \quad(=K) \\
\Rightarrow & m^{\prime}(\lambda)(y-b)=U-b \\
\Rightarrow & m(\lambda)\left[1-\lambda m^{\prime}(\lambda) / m(\lambda)\right](y-b)=K
\end{aligned}
$$

Entry is efficient. Bargaining Power as in the Hosios condition.

Is Directed Search Always Efficient?

Is directed search always (constrained) efficient:

- The good that is being priced is the matching probability
- If there are enough "prices" then it is efficient
- It is as efficient as the planner if the planner does not have more instruments.
- Discuss:
- risk-averse workers (utility $u(w)$), no savings
- risk-neutral firms, can only pay employed workers
- planner with and without unemployment benefits

Particular Usefulness of Directed Search: Simplicity

"block-recursivity" (Menzio-Shi,... Kaas-Kircher):

- Heterogeneous workers: Let $G(b)$ be number of workers with type below b
- Future matters: discounting $(\delta \in(0,1))$, and separations $(s \in(0,1))$
- Aggregate shocks: $y \in\left\{y_{l}, y_{h}\right\}$ with transitions $\pi_{/ /}, \pi_{l h}, \pi_{h l}, \pi_{h h}$

Particular Usefulness of Directed Search: Simplicity

"block-recursivity" (Menzio-Shi,... Kaas-Kircher):

- Heterogeneous workers: Let $G(b)$ be number of workers with type below b
- Future matters: discounting $(\delta \in(0,1))$, and separations $(s \in(0,1))$
- Aggregate shocks: $y \in\left\{y_{l}, y_{h}\right\}$ with transitions $\pi_{/ l}, \pi_{l h}, \pi_{h l}, \pi_{h h}$
- Let $\Upsilon_{t}(b)$ be number of unemployed with types below b :

$$
\Upsilon_{t+1}(b)=\int_{0}^{b}\left[1-n\left(\lambda_{t}(w(b))\right)\right] d \Upsilon_{t}(b)+(1-s)\left[G(b)-\Upsilon_{t}(b)\right]
$$

- This object moves around over the cycle. Infinite-dimensional state space. Hard to find $\lambda_{t}(w)$.

Particular Usefulness of Directed Search: Simplicity

 "block-recursivity" (Menzio-Shi,... Kaas-Kircher):- Heterogeneous workers: Let $G(b)$ be number of workers with type below b
- Future matters: discounting $(\delta \in(0,1))$, and separations $(s \in(0,1))$
- Aggregate shocks: $y \in\left\{y_{l}, y_{h}\right\}$ with transitions $\pi_{/ l}, \pi_{l h}, \pi_{h l}, \pi_{h h}$
- Let $\Upsilon_{t}(b)$ be number of unemployed with types below b :

$$
\Upsilon_{t+1}(b)=\int_{0}^{b}\left[1-n\left(\lambda_{t}(w(b))\right)\right] d \Upsilon_{t}(b)+(1-s)\left[G(b)-\Upsilon_{t}(b)\right]
$$

- This object moves around over the cycle. Infinite-dimensional state space. Hard to find $\lambda_{t}(w)$.
- Relevant with on-the-job search (where b is value of current job).
- Solution: Free entry: $\lambda_{t}(w)$ only depends on y_{t} !:

$$
m\left(\lambda_{t}(w)\right)\left[V\left(y_{t}\right)-W(w)\right]=K
$$

where $W(w(b))=w(b) /(1-s \delta), V(y)=y+s \delta E\left(V\left(y^{\prime}\right)\right)$.

- So $\lambda_{t}(w)$ determined without knowing $\Upsilon!!!$ Only current $y_{t_{\equiv}}$ matters.

Applications

Applications

- On-the-job search over the business cycle (Shi, Menzio-Shi)
- "Recall" of unemployed (Fernando Blanco)
- Output-enhancing unemployment insurance (Acemoglu-Shimer)
- Modelling large firms with output $f(y, L)$, where $L=v m(\lambda)$ (Kaas-Kircher, Schaal).
- Applications of large firms to international trade
- Introduction of two-sided heterogeneity: $f(x, y, L)$, where $L=v m(\lambda)$ (Eeckhout-Kircher, Grossman-Helpman-Kircher)
-

Multiple Job Applications: NTU matching...

Multiple Job Applications:

- Assume same $b=0$ for all workers. One period $(\delta=s=0)$.
- Workers can apply for TWO jobs instead of only to one. (More general: N job applications, possibly determined by application cost).
- Big difference:
- one application: if a firm offers the job to a worker, he accepts
- two applications: if a firm offers its job to a worker, but the worker got a better other offer, he declines. What does the firm do then? Albrecht-Gautier-Vroman: Bid wage up for this worker (access entry) Galianos-Kircher: Too bad, firm gets no worker even if other initially applied (inefficient application behavior)
Kircher: Firm offers the job to the next worker, and workers can change their mind (Gale-Shapley..., Leads to overall efficient behavior even though there is ONLY one price and two applications). Wolthoff: synthesis. Gautier-Holzer: TU matching.

Multiple Job Applications: NTU matching...

Kircher's set-up close to medical resident intern matching:

- Hospitals set compensation in advange
- Interns apply to a limited number of jobs (see Roth... simulations)
- Hospitals tend to shortlist only those they interviewed
- Final matching is Gale-Shapley

2 applications: worker behavior

With 2 applications, the workers takes the probability $p(w)$ of getting a job as given, and maximizes:

$$
\max _{w_{1}, w_{2}} p\left(w_{2}\right) w_{2}+\left(1-p\left(w_{2}\right)\right) p\left(w_{1}\right) w_{1}
$$

Note that w_{2} is only choosen if w_{1} unsuccesful, two problems:

$$
\begin{align*}
\max _{w_{1}} p\left(w_{1}\right) w_{1} & \equiv U_{1} \tag{1}\\
\max _{w_{2}} p\left(w_{2}\right) w_{2}+\left(1-p\left(w_{2}\right)\right) U_{1} & \equiv U_{2} \tag{2}
\end{align*}
$$

- (1) looks like the standard worker problem with $b=0$ (but some workers will walk away).
- (2) looks like the standard worker problem with $b=U_{1}$ (but all workers stay).'
- Two wages arise in equilibrium (needs more time to explain, see paper and Gautier-Holzner).

2 applications: Firms behavior

High wage firms max:

$$
\max _{w_{2}}\left(1-e^{-\lambda\left(w_{2}\right)}\right)\left(y-w_{2}\right) \text { s.t. } \underbrace{\frac{1-e^{-\lambda\left(w_{2}\right)}}{\lambda\left(w_{2}\right)}}_{p\left(w_{2}\right)}\left(w_{2}-U_{1}\right)=U_{2}-U_{1} .
$$

Low wage firms max:

$$
\max _{w_{1}}\left(1-e^{-\left(1-p\left(w_{2}\right)\right) \lambda\left(w_{1}\right)}\right)\left(y-w_{2}\right) \text { s.t. } \underbrace{\frac{1-e^{-\left(1-p\left(w_{2}\right)\right) \lambda\left(w_{2}\right)}}{\left(1-p\left(w_{2}\right)\right) \lambda\left(w_{2}\right)}}_{p\left(w_{1}\right)} w_{1}=U_{1} .
$$

Note that workers and firms care about the same "effective queue length". In problem 2, let $\mu\left(w_{1}\right)=\left(1-p\left(w_{2}\right)\right) \lambda\left(w_{1}\right)$. Substitute out and solve as in one-application case. Then use U_{1} in the first problem. Let's you determine how many firms offer each wage. This is socially efficient.

- Application: Medical intern matching. Can anlyze wages, matching probabilities, number of applications, too low wages (finite numbers? see Hatfield... AER), but needs heterogeneity...

