Search and Matching - Ph.D. Training Course Lecture 2: Frictionless Transferable Utility Matching

Philipp Kircher ${ }^{1}$
${ }^{1}$ University of Edinburgh

December 6th 2013

Transferable Utility: The Setup

The setup is similar to non-transferable utility: The "Players":

- Set of Men (or firms): $M=\left\{m_{1}, m_{2}, \ldots, m_{|M|}\right\}$
- Set of Women (or workers): $W=\left\{w_{1}, w_{2}, \ldots, w_{|W|}\right\}$
- They are different people: $m_{i} \neq w_{j}$

Transferable Utility: The Setup

The setup is similar to non-transferable utility: The "Players":

- Set of Men (or firms): $M=\left\{m_{1}, m_{2}, \ldots, m_{|M|}\right\}$
- Set of Women (or workers): $W=\left\{w_{1}, w_{2}, \ldots, w_{|W|}\right\}$
- They are different people: $m_{i} \neq w_{j}$

Preferences:

- Say that $u_{m_{i}}\left(w_{1}\right)>u_{m_{i}}\left(w_{2}\right)$ if men m_{i} strictly prefers w_{1} to w_{2}.
- Say that $0>u_{m_{i}}\left(w_{2}\right)$ if men m_{i} strictly prefers being single to w_{2}.
- Similarly we can define the preferences of women

Transferable Utility: The Setup

The setup is similar to non-transferable utility:
The "Players":

- Set of Men (or firms): $M=\left\{m_{1}, m_{2}, \ldots, m_{|M|}\right\}$
- Set of Women (or workers): $W=\left\{w_{1}, w_{2}, \ldots, w_{|W|}\right\}$
- They are different people: $m_{i} \neq w_{j}$

Preferences:

- Say that $u_{m_{i}}\left(w_{1}\right)>u_{m_{i}}\left(w_{2}\right)$ if men m_{i} strictly prefers w_{1} to w_{2}.
- Say that $0>u_{m_{i}}\left(w_{2}\right)$ if men m_{i} strictly prefers being single to w_{2}.
- Similarly we can define the preferences of women

New element: Transferability. People value the utility from matching PLUS a monetary transfer (linear utility). So matching yields $u\left(w_{i}\right)+t$ for men and $u\left(m_{j}\right)-t$ for women. Now difference in utility matters.

Definition of a Matching

Matching (μ, t) has two components:

- μ assigns to each men either a women or himself (being single), such that no two men get the same women $\left(\mu\left(m_{i}\right) \neq \mu\left(m_{j}\right)\right.$ if $\left.m_{i} \neq m_{j}\right)$
- t assigns to each men a transfer to pay $\left(t\left(m_{i}\right)>0\right)$ or receive $\left(t\left(m_{i}\right)<0\right)$.

Definition of a Matching

Matching (μ, t) has two components:

- μ assigns to each men either a women or himself (being single), such that no two men get the same women $\left(\mu\left(m_{i}\right) \neq \mu\left(m_{j}\right)\right.$ if $\left.m_{i} \neq m_{j}\right)$
- t assigns to each men a transfer to pay $\left(t\left(m_{i}\right)>0\right)$ or receive $\left(t\left(m_{i}\right)<0\right)$.

Let $v\left(w_{i}\right)$ be the matched parter for woman w_{i}, and $\tau\left(w_{i}\right)=t\left(v\left(w_{i}\right)\right)$ the transfer to her.

Stability

A matching μ and associated v is called stable if

- Individual rationality: every matched person prefers their parter over being single $\left(u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+t\left(m_{i}\right) \geq 0\right.$, and similar for women) and

Stability

A matching μ and associated v is called stable if

- Individual rationality: every matched person prefers their parter over being single $\left(u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+t\left(m_{i}\right) \geq 0\right.$, and similar for women) and
- pairwise stability (core): there is no men and women who strictly prefer being together at some other transfer than being with their current partners at the current transfer

Stability

A matching μ and associated v is called stable if

- Individual rationality: every matched person prefers their parter over being single $\left(u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+t\left(m_{i}\right) \geq 0\right.$, and similar for women) and
- pairwise stability (core): there is no men and women who strictly prefer being together at some other transfer than being with their current partners at the current transfer; for any m_{i} and w_{j} and t^{\prime} :
if $u_{m_{i}}\left(w_{j}\right)+t^{\prime}>u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+t\left(m_{i}\right)$ then
$u_{w_{j}}\left(v\left(w_{j}\right)\right)-\tau\left(w_{j}\right)>u_{w_{j}}\left(m_{i}\right)-t^{\prime}$.

Stability

A matching μ and associated v is called stable if

- Individual rationality: every matched person prefers their parter over being single $\left(u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+t\left(m_{i}\right) \geq 0\right.$, and similar for women) and
- pairwise stability (core): there is no men and women who strictly prefer being together at some other transfer than being with their current partners at the current transfer; for any m_{i} and w_{j} and t^{\prime} :
if $u_{m_{i}}\left(w_{j}\right)+t^{\prime}>u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+t\left(m_{i}\right)$ then
$u_{w_{j}}\left(v\left(w_{j}\right)\right)-\tau\left(w_{j}\right)>u_{w_{j}}\left(m_{i}\right)-t^{\prime}$.
- Equivalent to pairwise stability:
$T\left(m_{i}\right) \geq 0$ and $T\left(m_{i}\right)+T\left(w_{j}\right)>V\left(m_{i}, w_{j}\right)$
where $T\left(m_{i}\right)=u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+t\left(m_{i}\right)$ is his total equilibrium payoff where $T\left(w_{j}\right)=u_{w_{j}}\left(\nu\left(w_{j}\right)\right)-\tau\left(w_{j}\right)$ is her total equilibrium payoff where $V\left(m_{i}, w_{j}\right)=u_{m_{i}}\left(\mu\left(m_{i}\right)\right)+u_{w_{j}}\left(v\left(w_{j}\right)\right)$ is total value created.

Insights and Comments

- Existence: yes, but hard to prove (Shapley+Shubic 71)
- Efficient: yes. Maximizes joint utility (if not, deviation).
- Unique: Matching is generically unique, transfers are not (example)

Assortative Matching

Assortative Matching: finite or continuum of players [continnum on board] Let m and w be elements of the real numbers
Let $G_{M}(m)$ be the CDF of men
Let $G_{W}(w)$ be the CDF of females
Let $V(m, w)>0$ for illustration.
Positive assortative matching (PAM): better men are matched to better women, i.e.,

$$
\mu(m)=w \text { iff } G_{M}(m)=G_{W}(w)
$$

Assortative Matching

Sufficient condition for PAM to optimal (and therefore part of any stable matching):
Increasing differences or "supermodularity":
For all m and m^{\prime} with $m^{\prime}>m$, for all w and w^{\prime} with $w^{\prime}>w$

$$
v\left(m^{\prime}, w^{\prime}\right)-v\left(m^{\prime}, w\right)>v\left(m, w^{\prime}\right)-v(m, w)
$$

or equivalently $\frac{\partial^{2} v}{\partial m \partial w}>0$.
Submodularity $\left(\frac{\partial^{2} v}{\partial m \partial w}<0\right)$ implies negative assortative matching. Discuss economic implications and consequences of transferable utility.

Connection to Competitive Markets

Continuum: competitive market and stable matching coincide (Zame...) Competitive: m maximizes profits given equilibrium "price" $T(w)$:

$$
\begin{aligned}
& \max _{w} V(m, w)-T(w) \\
\Rightarrow \quad & T^{\prime}(w)=\frac{\partial V\left(\mu^{-1}(w), w\right)}{\partial w} \\
\Rightarrow \quad & T(w)=\int_{\underline{w}}^{w} \frac{\partial V\left(\mu^{-1}(\tilde{w}), \tilde{w}\right)}{\partial \tilde{w}} d \tilde{w}+T(0)
\end{aligned}
$$

Implications for wage dispersion: changes in production function or in types on other side changes the dispersion of wages.

Connection to Competitive Markets

Continuum: competitive market and stable matching coincide (Zame...) Competitive: m maximizes profits given equilibrium "price" $T(w)$:

$$
\begin{aligned}
& \max _{w} V(m, w)-T(w) \\
\Rightarrow & T^{\prime}(w)=\frac{\partial V\left(\mu^{-1}(w), w\right)}{\partial w} \\
\Rightarrow & T(w)=\int_{\underline{w}}^{w} \frac{\partial V\left(\mu^{-1}(\tilde{w}), \tilde{w}\right)}{\partial \tilde{w}} d \tilde{w}+T(0)
\end{aligned}
$$

Implications for wage dispersion: changes in production function or in types on other side changes the dispersion of wages.

SOC: $\frac{\partial^{2} v}{\partial w^{2}}-T^{\prime \prime}(w)=\frac{\partial^{2} v}{\partial w^{2}}-\frac{\partial V\left(\mu^{-1}(w), w\right)}{\partial m \partial w} \frac{\partial \mu^{-1}(w)}{\partial w}-\frac{\partial V(v(w), w)}{\partial w^{2}}=$ $-\frac{\partial V\left(\mu^{-1}(w), w\right)}{\partial m \partial w} \frac{1}{\mu^{\prime}(w)}<0$

Connection to Competitive Markets

Continuum: competitive market and stable matching coincide (Zame...) Competitive: m maximizes profits given equilibrium "price" $T(w)$:

$$
\begin{aligned}
& \max _{w} V(m, w)-T(w) \\
\Rightarrow & T^{\prime}(w)=\frac{\partial V\left(\mu^{-1}(w), w\right)}{\partial w} \\
\Rightarrow & T(w)=\int_{\underline{w}}^{w} \frac{\partial V\left(\mu^{-1}(\tilde{w}), \tilde{w}\right)}{\partial \tilde{w}} d \tilde{w}+T(0)
\end{aligned}
$$

Implications for wage dispersion: changes in production function or in types on other side changes the dispersion of wages.

SOC: $\frac{\partial^{2} v}{\partial w^{2}}-T^{\prime \prime}(w)=\frac{\partial^{2} v}{\partial w^{2}}-\frac{\partial V\left(\mu^{-1}(w), w\right)}{\partial m \partial w} \frac{\partial \mu^{-1}(w)}{\partial w}-\frac{\partial V(v(w), w)}{\partial w^{2}}=$ $-\frac{\partial V\left(\mu^{-1}(w), w\right)}{\partial m \partial w} \frac{1}{\mu^{\prime}(w)}<0$

Applications

- CEO compensation [Tervio...]
- Matching based on intrinsic and extrinsic motivation [Besley, Ghatak...]
- Empirics (are better workers in better jobs? see second part)
- Firm size (how can we embedd "size" better - see next slides)
- Worker Peer Effects (simple ways?)
- Matching under uncertainty of types [Postlewaite, Mailath... ECTR]. Much to do...

Many-to-One Matching (TU)

Setup (Kelso-Crawford ECTR):

- Each firm m can hire multiple workers $\left\{w_{j}, w_{k}, ..\right\}$ to create value $V\left(m, w_{j}, w_{k}, \ldots\right)$
- (One-to-one matching special case where value of multiple workers is the max of the values with each individual worker.)
- Otherwise obvious extension of stability.
- Result: Existence if V fulfills gross-substitutes condition, otherwise existence problems.
- Gross-substitutes: If the firm looses a worker, the marginal loss from loosing any second worker goes up (then existence through ascending multi-unit auctions).
- Similar results in Migrom-Hatfield, Gul-Staccetti, Cole-Prescott...
- Problem: Not much help in characterization of equilibrium.

Simple Notion of Firm Size

Simple many-to-one matching based on Eeckhout-Kircher-WP:
Assume firm value is $V(m, w, l)$ where I is simply the number of workers. Let $\mu(m)$ still be worker type (no worker type dispersion within firm).
Let $l(m)$ the number of workers.
Market clearing: $\int_{A} I(m) d G_{M}=\int_{\mu(A)} d G_{W}$ for all A.

Simple Notion of Firm Size

Simple many-to-one matching based on Eeckhout-Kircher-WP:
Assume firm value is $V(m, w, I)$ where I is simply the number of workers. Let $\mu(m)$ still be worker type (no worker type dispersion within firm).
Let $l(m)$ the number of workers.
Market clearing: $\int_{A} I(m) d G_{M}=\int_{\mu(A)} d G_{W}$ for all A.
$F(m, w, H, L):=H V(m, w, L / H)$ total output of H firms with L workers.

Simple Notion of Firm Size

Simple many-to-one matching based on Eeckhout-Kircher-WP:
Assume firm value is $V(m, w, l)$ where I is simply the number of workers. Let $\mu(m)$ still be worker type (no worker type dispersion within firm).
Let $l(m)$ the number of workers.
Market clearing: $\int_{A} I(m) d G_{M}=\int_{\mu(A)} d G_{W}$ for all A.
$F(m, w, H, L):=H V(m, w, L / H)$ total output of H firms with L workers.
PAM: $F_{m w} F_{H L}>F_{w H} F_{m L}$

Simple Notion of Firm Size

Simple many-to-one matching based on Eeckhout-Kircher-WP:
Assume firm value is $V(m, w, l)$ where I is simply the number of workers. Let $\mu(m)$ still be worker type (no worker type dispersion within firm).
Let $l(m)$ the number of workers.
Market clearing: $\int_{A} I(m) d G_{M}=\int_{\mu(A)} d G_{W}$ for all A.
$F(m, w, H, L):=H V(m, w, L / H)$ total output of H firms with L workers.
PAM: $F_{m w} F_{H L}>F_{w H} F_{m L}$
PAM and increasing size: roughly if $F_{m L}>F_{w H}$

Simple Notion of Firm Size

Simple many-to-one matching based on Eeckhout-Kircher-WP:
Assume firm value is $V(m, w, I)$ where I is simply the number of workers. Let $\mu(m)$ still be worker type (no worker type dispersion within firm).
Let $l(m)$ the number of workers.
Market clearing: $\int_{A} I(m) d G_{M}=\int_{\mu(A)} d G_{W}$ for all A.
$F(m, w, H, L):=H V(m, w, L / H)$ total output of H firms with L workers.
PAM: $F_{m w} F_{H L}>F_{w H} F_{m L}$
PAM and increasing size: roughly if $F_{m L}>F_{w H}$
Applications: Agriculture, Mismatch Literature, Trade,...

Simple Notion of Firm Size

Simple many-to-one matching based on Eeckhout-Kircher-WP:
Assume firm value is $V(m, w, l)$ where I is simply the number of workers. Let $\mu(m)$ still be worker type (no worker type dispersion within firm).
Let $l(m)$ the number of workers.
Market clearing: $\int_{A} I(m) d G_{M}=\int_{\mu(A)} d G_{W}$ for all A.
$F(m, w, H, L):=H V(m, w, L / H)$ total output of H firms with L workers.
PAM: $F_{m w} F_{H L}>F_{w H} F_{m L}$
PAM and increasing size: roughly if $F_{m L}>F_{w H}$
Applications: Agriculture, Mismatch Literature, Trade,... But: Missing interactions amongst workers.

