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Abstract

Technological progress allows firms to scale production processes over an increasingly large num-

ber of workers. This affects the size of the firm as well as the skill level of its workforce. We propose

a unifying theory of production where management resolves a tradeoff between hiring more versus

better workers. The span of control or size is therefore intimately intertwined with the sorting pat-

tern. We provide a condition for sorting that captures this tradeoff between the quantity and quality

of workers and that generalizes Becker’s sorting condition. A system of differential equations deter-

mines the equilibrium allocation, the firm size and wages. We illustrate the theory using German

matched employer data, and apply it to analyze quantity-biased technological change in conjunction

with skill-biased technological change. We find that quantity-biased technological change is sizable

and important. Moreover, it partially dampens the skill-premium, which would have increased even

more. Skill-biased technological change is therefore even larger than the increase in the skill premium

indicates.
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1 Introduction

The firm size is an important aspect of a firm’s productivity. Given wages, managers determine the

optimal size of their workforce. This has far reaching aggregate implications. Researchers have used

the firm size distribution to identify the role of market frictions and to explain how the misallocation

of resources can lead to large differences in productivity across economies that have access to similar

technologies.1 At the same time, inputs in production are heterogeneous. Workers have different skills,

managers and capital have different levels of productivity. This means that the sorting of workers

into firms is an important determinant of the efficient production of output. What is missing in the

literature is a tractable framework that allows for the standard firm size choice but also allows us to

think about the sorting of heterogeneous workers into such large firms.2 In this paper we take a first

step towards proposing such a framework and show how the sorting of workers into firms interplays

with the size of the firm. In particular, we show how the firm’s management trades off the quality of its

workforce against the quantity, and how wages and allocations are determined in equilibrium. A key

insight is that the firm size distribution feeds back into the choice of labor inputs and affects the skill

premium, as well as that the input heterogeneity feeds back into the firm size distribution.

We introduce a model of the firm where the span of control – the number of workers under the

control of management within a firm – attributes an essential role to the firm. Just like in the canonical

macroeconomic context, firms in our model predominantly make quantity decisions. Endowed with

different management, technologies, or capital, companies choose the span of control accordingly, and

this has important implications for the size of firms (Lucas (1978); Hopenhayn and Rogerson (1993)).

This labor factor intensity decision is both realistic and a convenient modeling device. Yet, firms

typically face a more complex tradeoff. They simultaneously choose the quality of the workers as

well as the quantity. A retail arm of a company that sells electronics products for example faces the

tradeoff between hiring skilled shop floor assistants who have extensive experience with a wide range

of its products versus more unskilled assistants who can only be of help with the most basic features.

Heterogeneity in skills and jobs is without doubt an important component of the labor market. Without

the quantity dimension, the allocation process of differently skilled workers to jobs has extensively been

analyzed, both with search frictions and without. In the standard frictionless matching model (Becker

(1973)), each firm consists of exactly one job which leads to sorting since the firm’s choice is in effect

about which worker to hire, the extensive margin, rather than how many, the intensive margin.

By simultaneously solving the quantity and the quality dimension within the same model, we not

1See amongst many others Hsieh and Klenow (2009), Restuccia and Rogerson (2008) and Guner, Ventura, and Xu
(2008).

2Of course the literature has proposed tractable models of sorting in settings with many-to-one matching, for example
Sattinger (1993), or Garicano (2000)). These models have provided useful insights, deriving their tractability from the fact
that the number of workers (i.e., the firm size) is fully determined once the manager has chosen the type of his workforce.
Our framework instead endogenizes the size decision, which is standard in most macroeconomic environments (see for
example Lucas (1978)). We discuss in Section 4 how existing models solve as special cases in our general framework, as
well as the relation of our setup to the broader literature on many-to-one matching.
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only nest other well known models of sorting and of firm size. Most importantly, we also analyze how the

different technological determinants interact in general equilibrium with endogenous prices. Within this

framework, we pin down the features of the equilibrium allocation: the sorting pattern, firm size distri-

bution and the wage distribution. We find a surprisingly simple condition for assortative matching that

captures both the quality and quantity considerations. This condition is new and compares the differ-

ent degrees of complementarity3 along four margins: (1) type complementarity captures the interaction

between firm and worker types. Clearly, if better firms receive a exceptionally high return only from

better workers, then they will end up hiring those workers. This is the only effect present in standard

quality-sorting models in the spirit of Becker (1973)). Additionally, there is the (2) complementarity in

quantities of workers and resources, just as in the standard model with quantity choices only. There is

the (3) span-of-control complementarity between the firm or manager type and the number of workers

that features in Lucas (1978); how much of a higher marginal product do better managers have from

supervising more workers of a given skill? Finally, there is the (4) managerial resource complementarity,

the complementarity between worker skills and managerial or firm resources: do better workers have a

higher marginal product when receiving more supervision time? A simple tradeoff between these four

forces determines the pattern of sorting. It characterizes the efficient equilibrium outcome and is a

measure of the efficiency losses that would result from misallocation.

We also precisely pin down the composition of the workforce across different firm types, i.e., how

firms resolve the tradeoff of span of control over more versus better workers. The equilibrium allocation

of types and quantities is entirely governed by a system of three differential equations. In particular,

this gives a prediction for the firm’s span of control, and therefore, for the firm size distribution. It

also determines the equilibrium allocation of skills and the wage distribution. This system also makes

explicit how firm size interacts with the skill premium.

The combination of size and quality sorting allows us to study how changes in the size distribution

affect wage inequality and the skill premium. We can also investigate how changes in the inequality

of inputs affects the firm size distribution. Obviously, neither of these questions can be answered in

models where all inputs are homogeneous or where all firms have equal size, as in most of the previous

literature.

We illustrate our theory with an application to technological change. We ask how technology has

changed over the last two decades and in which way technological change is driven by forces that

affect the determinants of worker-firm complementarity, Skill Biased Technological Change (SBTC),

as well as the determinants of Quantity Biased Technological Change (QBTC). Technological change

drives economic progress, but it does not affect all factors of production equally. For example, the

introduction of computers affects high skill workers differently than low skill workers. In light of this

3We will use the term complementarity and supermodularity interchangeably. For our purposes, it can best be thought
of as the fact that the marginal contribution of higher input (quantity or quality) to output is higher when matched with
other high inputs, i.e. there are synergies. In mathematical terms, the cross-partial of the output generated is positive
(negative in the case of substitutes or submodularity).
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biased technological change, relative prices adjust and resources are reallocated. A lot of focus has been

on SBTC: the marginal product of the high skilled relative to the low skilled has increased substantially.

This has strong implications for the wage premium, and therefore for wage inequality (see amongst many

others Krusell, Ohanian, Ŕıos-Rull, and Violante (2000), Acemoglu (1998), and Acemoglu (2002)). But

technological change also affects how firms organize their production and thereby how they determine

their size. In this framework, we can analyze the quantity dimension of technological change or QBTC.

Technologies such as scanning devices and GPS emitters enable management to supervise a larger

number of workers simultaneously. For example, if the chief operating officer, say at FedEx, streamlines

the production processes, then this affects thousands of workers. Technological change is quantity

biased if already large firms grow relatively more than small firms. If such firms employ mostly high

skilled workers, the size expansion might reduce their marginal product, counteracting other drivers of

technological change in the wage premium. The wage premium would then understate the importance

of these other drivers in terms of technological development.

Using matched employer-employee data for Germany, we find that two technological determinants

have changed dramatically: the marginal product of skilled labor, and the span of control of firms.

Instead, the marginal productivity of firms, the elasticity of substitution between skills and firm pro-

ductivity as well as the skill and productivity distributions have not or barely evolved. The estimates

of the technology indeed show that SBTC has a sizable effects on the skill premium, but that some of

this is mitigated due to QBTC. In its absence, the increase in wage inequality would have been even

bigger. Likewise, the effect of QBTC on the firm size distribution would have been much larger if it

were not because of the increase in the skill premium which reduces the impact on firm size due to

higher wages. Not only does this exercise uncover novel aspects of technological determinants and their

evolution, it also highlights the important role of the equilibrium interplay of sorting and firm size.

This example highlights how changes in the firm size distribution feed back into the inequality of

payoffs amongst heterogeneous production inputs. But there is also a feedback channel from input

heterogeneity to the firm size distribution. For some research questions, the latter might be even

more central, for example in the misallocation debate as we show in section 4. One strand concerns the

misallocation debate which is based on the observation that there are too many small firms in developing

countries relative to developed countries, discussed for example in Hsieh and Klenow (2009), Restuccia

and Rogerson (2008), Guner, Ventura, and Xu (2008), and Adamopoulos and Restuccia (2014). This

literature either allows no input heterogeneity or assumes efficiency units of labor. We briefly showcase

how our setup allows the introduction of input heterogeneity into this debate, e.g., such that better

inputs (either land or labor) facilitate the use of capital. We illustrate how such input heterogeneity

can affect the firm size distribution, and outline how our framework might be useful to think about the

role of input heterogeneity within the misallocation debate.

In addition to a discussion on the misallocation debate, Section 4 is devoted to how the relevant

literature relates to the mathematics of our model. We have chosen to give detailed credit to the related
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literature only after we have introduced our model because it allows us to we combine the discussion

of related papers with a some simple analytical arguments how our model nests a number of well

known matching models as special cases. Most notably, we show that Becker’s one-to-one matching

model is the limit case of a multiplicatively separable version of ours where the quantities enter as a

Constant Elasticity of Substitution (CES) technology that converges to Leontief, i.e., with an elasticity

of substitution equal to zero. We show similar connections to the influential papers by Sattinger (1975)

and Garicano (2000) who embed specific forms in which firm size depends on worker and firm types but

do not allow this to be a choice variable. We also discuss other related work from various literatures.

We further show how our framework lends itself to introducing search frictions. To our knowledge, this

extension with search frictions provides the first model that combines three essential features of labor

market data: two-sided heterogeneity with complementarities, unemployment due to search frictions,

and large firms. Existing models have combined two of those three, but not all three at the same time.

Most surprisingly, we find that in this model the condition for assortative matching is independent of

the matching technology and thus holds even if we move away from a Walrasian setting.

The paper is organized as follows. In the next section we lay out the model. In Section 3 we first

solve the model and derive the general sorting condition, and then we characterize the equilibrium

assignment, the firm size distribution and the wage profile. We then discuss in Section 4 the special

cases that are nested in the model, we briefly refer to the extensions in the Appendix, and we review

the related literature. Section 5 elaborates on the application of the theory: Quantity Biased and Skill

Biased Technological Change. We conclude in Section 6.

2 The Model

We consider a static assignment problem in the tradition of Monge-Kantorovich, except that the allo-

cation is not limited to one-to-one matching. To preview the basic economic situation that the model

intends to capture, we consider an economy with two sides, which we mostly label as firms and workers,

even though the labels managers/workers, farms/land, and capital/labor would be equally appropriate.

There is heterogeneity on both sides: workers differ by skills, and firms are heterogeneous in terms of

the quality of some proprietary resource that is exclusive to the firm, such as scarce managerial talent

or particular proprietary capital goods. These scarce internal resources limit the scope of the firm.

In a modern business setting, the resource might reflect the time endowment of an entrepreneur that

she spends interacting with and supervising her employees, and quality can refer to the value of the

final output or the ability during such supervision. If she supervises different workers, she might adjust

supervision time to suit each worker’s skill. Output depends on the type of worker and of the supervisor

and the time they interact. The setup is formalized as follows.

Agents. The economy consists of firms and workers. Workers are indexed by their skill x ∈ X = R+,
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and Hw(x) denotes the measure of workers with skills below x. Firms are indexed by their productivity

type y ∈ Y = R+, where Hf (y) denotes the measure of firms with type below y. Unless otherwise

stated, we focus on distributions Hf and Hw with non-zero continuous densities hf and hw on the

compact subsets [x, x] ⊂ X and [y, y] ⊂ Y, respectively, but especially for our main characterization

result we also provide a proof for arbitrary distribution functions.

Preferences and Production. The main primitive of our model is the output function F :

R4
+→ R++ that describes how the firm combines labor and its resources to produce output. Out-

put is perfectly transferable, and firms maximize profits while workers maximize wage income. A firm

has a fixed amount of proprietary resources. If a firm of type y hires an amount of labor l of type x, it

has to choose a fraction of its resources r that it dedicates to this worker type. This allows the firm y

to produce output

F (x, y, l, r) (1)

with this worker type x, where the first two arguments (x, y) are quality variables describing the worker

and firm types while the latter two arguments (l, r) are quantity variables describing the level of inputs.

We assume that output is twice differentiable, but place no further restrictions on the quantity variables,

even though we often refer to higher types as “better” types which is more appropriate for output

functions that are increasing in types. Our main assumptions on the production functions concern the

quantity variables. For technical reason we assume that it is strictly concave in each quantity variable in

the interior of the type space, no output is produced without resources, and standard Inada conditions

apply.4

Of economic relevance is the assumption that production displays constant returns to scale in the

quantity variables. For example, if the output of each worker depends only on his own type x, the

type of the firm y, and how many resources the worker receives, then constant returns to scale arise as

twice the workers produce twice the output if the resources per worker stay constant. Constant returns

implies that the output in (1) can be expressed as the product of the amount of resource r and the

output per unit of resource:5

f(x, y, θ) := F (x, y, θ, 1) (2)

where θ = l/r represents the amount of workers per unit of resource, which we often call the intensity.

Importantly for the later analysis, function f(x, y, θ) also represents the production of a firm that only

hires one type of worker, in which case θ represents the firm’s size. Because of the tight link between

f and F in (2), either can be used as the primitive of the model.

The action of a firm y is to choose two distributions, the number of workers of each type and the

4The requirement that F (x, y, l, 0) = 0 is made for convenience as it rules out that workers are hired by firms that
devote no resources to them. This is only weakly concave in l, and therefore we can only assume strict concavity in the
interior. Finally, Inada conditions on labor are liml→0 Fr(x, y, l, r) =∞ for given x, y, r > 0, and liml→∞ Fr(x, y, l, r) = 0.
Similar conditions can be placed on resources.

5If total output F (x, y, l, r) has constant returns to scale, we can write it as F (x, y, l, r) = rF (x, y, l/r, 1) = rf(x, y, θ).
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amount of resources devoted to them. Let labor demand Ly(x) denote the cumulative distribution

of the number of workers that firm y hires of type x or lower, and let resource allocation Ry(x)

denote the cumulative distribution of the resources that the firm dedicates to all workers of type x

or lower. There is no loss to the assumption that firms hire workers only if they devote resources

to them, as workers without resources produce no output (formally this means that labor demand is

absolutely continuous in the resource allocation). The choices of Ly(x) and Ry(x) then determine the

number of workers per unit of resources θy(x) relevant in (2) through the Radon-Nikodym derivative

θy(x) := dLy(x)/dRy(x) almost everywhere. Conversely, the number of workers per resource θy(x) and

the allocation of resources Ry(x) fully summarize the firm’s labor demand as the sum of workers-per-

resource over all resources: Ly(x) =
∫ x
x θ(x̃)dRy(x̃).6 We can therefore interchangably use (Ly(·),Ry(·))

and (θy(·),Ry(·)) to represent the firm’s choices.

When a firm hires workers of multiple types we assume that its total output is the sum of the outputs

across all its types. Additive separability again arises naturally if the output of each worker depends

only on his and the firm’s types and on the amount of resources available to him. Such formulations

allows for interactions between firm and worker type, but abstracts from interactions amongst workers

except through the limited resources. This abstraction is restrictive, but implies existence and – more

importantly – tractability for the analysis of all the other cross-complementarities between quantities

and qualities. Since F (x, y, l, r) = rf(x, y, θ) is the output of one worker type, the sum across all

worker types can formally be represented as
∫
f(x, y, θy(x))dRy(x) where, as mentioned above, dRy(x)

represents how the firm allocates resources across different worker types.

Competitive Market Equilibrium. We consider a competitive equilibrium where firms can hire a

worker of type x at wage w(x). In equilibrium, firms’ hiring decisions must be optimal and markets for

each worker type must clear.7

Profit maximization of a firm of type y entails a choice of a production plan that maximizes output

minus wage costs. For resource devoted to workers of type x at intensity θ the output is f(x, y, θ) but

the firm has to pay the wage w(x) to each of the θ workers that produce with this resource. The optimal

production strategy therefore solves:

max
θy ,Ry

∫
[f(x, y, θy(x))− w(x)θy(x)]dRy(x). (3)

The firm’s total wage bill
∫
w(x)θdRy consists of the wage w(x) integrated over its labor demand

Ly(x) =
∫ x
x θ(x̃)dRy(x̃). For later reference it is useful to note that a firm that only hires one worker

type x has a workforce size of l(y) = θy(x).

6Since θy(x) = dLy(x)/dRy(x), one can use θy(x) to reconstruct labor demand as: Ly(x) =
∫

(x,θ):x≤x̃
θ(x̃)dRy(x̃).

7We require wages to be non-negative in order not to violate the workers’ outside option, which is normalized to zero
for all agents. Firms can achieve their outside option simply by hiring no workers. We will call worker types with a zero
wage and firm types with zero profits as inactive, while all other agents are called active.
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Feasibility of the total allocation of resources requires that firms attempt to hire no more workers

than there are in the population. Consider an interval of worker types (x′, x]. A firm of type y has a

demand for such workers of Ly(x)− Ly(x′). Integrated over all firms this yields the aggregate demand

for such worker types. Therefore, labor demand schedules L = {Ly}y∈Y are feasible if for any such

interval of worker types the implied aggregate demand does not exceed the economy’s endowment with

such worker types: ∫
y

[
Ly(x)− Ly(x′)

]
dHf ≤ Hw(x)−Hw(x′). (4)

We can now define an equilibrium as follows:

Definition 1 An equilibrium is a tuple functions (w, θy,Ry,Ly) consisting of a non-negative wage

schedule w(x) as well as intensity functions θy(x) and resource allocations Ry(x) with associated feasible

labor demands Ly(x) such that

1. Optimality: For any y the combination (θy,Ry) solves (3).

2. Market Clearing: (4) holds with equality if wages are strictly positive a.e. on (x′, x].

The market clearing condition simply states that if wages for some worker types are positive, their

markets clear. A useful feature of our setup is that firm’s preferences over workers are convex, as shown

in the appendix, so that we can draw on classical results on existence and welfare theorems in, e.g.,

Ostroy (1984) and Khan and Yannelis (1991). Our main focus here is on characterization: When do

better firms hire better workers? How are the wages determined? When do better firms employ more

employees? How is that effected by quantity-biased technological change?

Assortative Matching. Our focus is on labor demands that are monotonic in x and y. There is

positive assortative matching (PAM) if higher firm types employ higher worker types in their production,

i.e., for almost all firm types y and y′ with y > y′ it holds that x is in the support of Ly and x′ is in the

support of Ly′ only if x ≥ x′. Negative assortative matching (NAM) can be defined by reversing the

last inequality, capturing that lower type workers are employed in higher type firms. This definition is

suitable in the presence of mass points in the type distributions.

A more natural and more tractable formulation of assortative matching arises if higher types produce

strictly more output and the type distributions have non-zero continuous densities. We will focus on

this case for expositional convenience, but our main sorting result in the Proposition 1 holds without

these restrictions. With these restrictions higher types are more valuable and therefore there exist

boundary types x̂ and ŷ such that all higher types are active. Assume that almost all active firm types

y hire exactly one worker type ν(y) and reach size l(y). We prove in the Appendix (Lemma 3) that this

has to hold if there is assortative matching. An equivalent but simpler notion of assortative matching

is therefore that ν(y) exists and is strictly monotone for almost all active types.
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Traditionally models are solved from the perspective of the workers, for which the above discussions

imply that for almost all active types x we can define the inverse µ = ν−1 so that we can interpret µ(x)

as the firm type that hires worker type x. The intensity for this worker is the worker intensity θ(x) :=

θµ(x)(x). Clearly µ inherits the strict monotonicity of ν, and as mentioned earlier, intensity equals firm

size so that θ(x) = l(µ(x)). The market clearing condition now becomes particularly tractable. For the

case of PAM, for example, it reduces to∫ y

µ(x)
θ(s)hf (s)ds =

∫ x

x
hw(s)ds (5)

where right hand size sums up all workers above x and the left hand side sums over all firms that hire

these workers times the number of workers each hires. In the case of one-to-one matching as in Becker,

θ = 1 and therefore
∫ x
x h

w(s)ds =
∫ y
µ(x) h

f (s)ds implies Hw(x) = Hf (µ(x)). With firm size θ, this now

means that we are matching one firm to θ workers.8

3 The Main Results

Models of assortative matching are in general difficult to characterize completely. Therefore, the lit-

erature has tried to identify conditions under which sorting is assortative. These conditions help our

understanding of the underlying driving sources of sorting. And if the appropriate conditions are

fulfilled, they substantially reduce the complexity of the assignment problem and allow further char-

acterization of the equilibrium. In this section we first derive necessary and sufficient conditions for

assortative matching, and then we characterize the assortative equilibrium allocation.

3.1 Assortative Matching

Our main result on sorting provides a necessary and sufficient condition that applies to arbitrary type

distributions, and that places no restrictions on how types influence output. To build up intuition,

though, it will be convenient to focus on necessary conditions for assortative matching in the case

discussed at the end of the previous section: higher types produce more output and distributions have

non-zero continuous densities. As outlined earlier, in an assortative equilibrium we can define for almost

all active worker types the function µ(x) that denotes the firm type that hires worker x. Employment is

at intensity θ(x) = θµ(x)(x) > 0 at the equilibrium wage w(x) > 0. The strict inequalities arise because

otherwise either worker or firm payoff would be zero, which would violate that these types are active.

In an equilibrium with positive sorting µ(x) is strictly increasing. When output is increasing in x, also

w(x) is increasing as better types necessarily earn higher wages. Monotone functions are differentiable

8Like in our model, the mechanical relation that pins down matching in Becker (1973) no longer holds even in the
one-to-one matching model when types are multi dimensional. See Lindenlaub (2016).
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almost everywhere. Therefore, for almost any active x there exists an open neighborhood in which the

following arguments based on differentiability are valid.

For this to be an equilibrium outcome, the firms’ choices have to maximize their optimization

problem (3). The next Lemma establishes that we can focus on a simplified problem.

Lemma 1 Consider an active firm with strategy (θy,Ry) that maximizes (3). Almost everywhere in

the support of Ry it has to hold that (x, θy(x)) solves

max
x̃,θ̃

f(x̃, y, θ̃)− θ̃w(x̃). (6)

Proof. Proceed by contradiction. Assume a positive measure of resources is placed by active firm

y on a set of worker types X̃ such that (x, θy(x)) does not solve (3). Let (x∗, θ∗) be an optimizer of

(3). Firm profits can be decomposed into the sum of
∫
x∈X\X̃ [f(x, y, θy(x)) − w(x)θy(x)]dRy(x) and∫

x∈X̃ [f(x, y, θy(x)) − w(x)θy(x)]dRy(x) where the first term captures the profits with worker types in

X \ X̃ and the second term captures the profits with worker types in X̃ . Placing all resources that the

firm places on types in X̃ instead on type x∗ and choosing an intensity at x∗ of θ∗ leaves the first term

unchanged but changes the second term to
∫
x∈X̃ [f(x∗, y, θ∗)−w(x∗)θ∗]dRy(x), which strictly improves

profits since the integrant has strictly increased.

This Lemma states that firms do not choose worker type and intensity unless the combination

maximizes the return per unit of resource. It implies that firms with a unique optimizer for (6) hire

only one worker type. Optimality requires that the choices solve the first order conditions with respect

to x and θ :

fθ(x, µ(x), θ(x))− w(x) = 0, (7)

fx(x, µ (x) , θ(x))− θ(x)w′(x) = 0, (8)

where functions with lower case letters denote partial derivatives (e.g., fx = ∂f/∂x). Note that these

equalities hold within the neighborhood around x. The implicit function theorem applied to (7) estab-

lishes that θ(x) is locally differentiable, and then the implicit function theorem applied to (8) implies

that w′(x) is once more locally differentiable. A necessary condition for optimality of the first order

conditions is that the Hessian is positive definite, and in particular that its determinant is positive:

fθθ
[
fxx − θw′′(x)

]
−
[
fxθ − w′(x)

]2 ≥ 0,

where the argument (x, µ(x), θ(x)) of f and its derivatives is suppressed for notational convenience.

While this still entails the endogenous wage schedule, one can differentiate the first order conditions

along the equilibrium path and use this to substitute out the wage schedule to obtain equivalently (see
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appendix for the derivation):

µ′(x)

[
fxy −

fyθ(
fx
θ − fxθ)
fθθ

]
≥ 0.

Since PAM requires µ′(x) > 0, a necessary condition is that the square bracket is weakly positive. This

places restrictions on the production technology f of firms with only one worker type. The term fxy

is familiar from one-to-one matching models and – if positive – captures that higher firm types value

higher worker types more. This is not enough to ensure PAM. It also matters to which extent higher

types value the size of the firm. Intuitively, if higher type firms get high value out of being large but

higher worker types are most productive in small firms, then this counteracts the familiar force. This

can be seen even easier when using (2) to express this in terms of the original production function

F. The next proposition makes this point, states this as necessary as well as sufficient condition, and

dispenses with assumptions on the type distribution nor requires output to increase in types:

Proposition 1 A necessary condition to have equilibria with positive assortative matching under any

arbitrary distribution of types is that the following inequality holds:

Fxy ≥
FylFxr
Flr

(9)

for all (x, y, l, r) ∈ R4
++. With a strict inequality, it is also sufficient to ensure that any equilibrium en-

tails positive assortative matching. The opposite inequality provides a necessary and sufficient condition

for negative assortative matching.

Proof. In Appendix.

The proof has to deal with possible mass points in the type distributions which can lead to multiple

firm types choosing a given work type in equilibrium. More importantly, the argument above only

shows that the derivative of the matching function µ(x) has to be positive when (9) holds wherever this

derivative is defined. In a positive assortative equilibrium this derivative is defined almost everywhere

and (9) is necessary at these points. To ensure this under all type distributions, we show in the Appendix

that (9) is necessary everywhere. But this does not prove sufficiency since it does not rule out that the

matching can have a discontinuity with a discrete jump downward, which requires a global rather than

a local argument. In the Appendix we deal with these issues by exploiting the implication of the First

Welfare Theorem that any equilibrium allocation maximizes output in this economy with quasi-linear

utility. If (9) fails but allocations have mass around points that are positive assortative, there are strict

efficiency gains from re-arranging production in a negative assortative way. If (9) holds strictly but mass

is placed around negative sorting, efficiency can be improved by re-arranging production in a positive

assortative way. These properties are easy to show in one-to-one matching models where production

always requires r = l = 1 and the local PAM requirement of Fxy > 0 can easily be integrated out to
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yield the gobal implication that F (xh, yh) + F (xl, yl) > F (xh, yl, 1, 1) + F (xl, yh, 1, 1) for any xh > xl

and yh > yl, meaning that output increases when types are matched positively assorted. When the

quantity dimension is active and r can differ from l, the new sorting condition (9) is more involved and

cannot simply be integrated, requiring a substantially more involved argument despite the similarity in

spirit.

Interpretation: Condition (9) embodies the quantity-quality trade-off that the firm makes, and

this is captured by all four possible combinations of pairwise complementarities: one within qualities,

two across quality-quantity dimensions, and one within quantities. Observe that, as in the one-to-

one matching model (Becker (1973)), both positive and negative assorted allocations constitute an

equilibrium if the condition holds with equality. Hence, the condition is only sufficient when it holds

strictly.

On the left-hand side, a large value of the cross-partial on the quality dimensions (Fxy) captures

strong type complementarity and means that higher firm types have ceteris paribus a higher marginal

return for matching with higher worker types. The two terms in the numerator on the right-hand side

represent the complementary interaction across qualities and quantities. The cross-partial Fyl captures

the span-of-control complementarity. If it is large, it means that higher firm types have a higher marginal

valuation for the quantity of workers. That is, better firms value the number of “bodies” that work for

them especially high. In this case better firms would like to employ many workers. The managerial

resource complementarity Fxr expresses how the marginal product of managerial time varies across

better workers. If managerial time is particularly productive when spent with high skilled types, then

it is positive and large. This would be the case for example if the learning by high types is faster.9

Noteably, if better firms particularly value large firms but better workers particularly excel with lots

of resources (implying few co-workers and therefore small firms) this creates a tension that counteracts

positive assortative matching. The term in the denominator captures the complementarity in quantities,

and acts mostly as a normalization since only its magnitude varies but its sign is always strictly positive

due to constant returns to scale in quantities. Since it is tightly linked to the concavity in labor holding

resources fixed, it captures the extent to which additional labor decreases the value of output.10 The

overall condition (9) can interpreted like the Spence-Mirrlees single crossing condition, adjusted for the

additional complication that there are three goods that firms care about: the number of workers, the

type of worker, and the numeraire.11

9This type of complementarity is often discussed in the context of teaching in the classroom. If a low-ability student
reaches his limits earlier than a high-ability student, then additional instructor time might be more worth-while when it
is devoted to the high-ability student (Fxr > 0). If high-ability students do well without further input while low-ability
students crucially need the instructors time, then additional time by the instructor might be more worthwhile with the
low-ability students (Fxr < 0). Clearly, in this context the output measure is not as clear as in a production setting, and
considerations of fairness and equity play an additional role.

10Due to constant returns to scale Frl(x, y, l, r) = −Fll(x, y, l, r)l/r.
11In a standard Spence-Mirlees analysis, agents care only about two dimensions. For example, think about an alternative

model in which agents of type y maximize f(x, y, θ) and have a budget set M and feasible (x, θ)-combinations that only
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The condition for positive assortative matching then compares the within-complementarities with

the across-complementarities. In the absence of a quantity dimension the right-hand side of the inequal-

ity is zero. With a quantity dimension, the requirements for positive assortative matching now depend

on how much substitutability there is of quality for quantity, i.e., the ability to substitute additional

workers to make up for their lower quality, and which worker types are most loosing out when additional

workers are added. If size is important and better workers loose most in productivity when they receive

little resources, then the traditional type complementarity Fxy must be strong enough for good firms to

still employ these types. Substitutability along the quantity dimensions are key to this trade-off. The

discussion in Section 4 reveals that as the elasticity of substitution on the quantity dimension goes to

zero – in the limit there is no substitution and agents can only be matched into pairs – the right hand

side goes to zero.

Finally, one may wonder what happens when our homogeneity assumption does not hold and output

is not proportional to the ratio θ of the labor force l to the amount of resources r. Conceptually,

the problem is identical to the one we solve here (see the Appendix for the derivation). While the

interpretation is much less transparent, the main sorting condition (16) is still necessary for differential

positive assortative matching under increasing returns to scale, only the steps that require homogeneity

do not apply.

3.2 Equilibrium Assignment, Firm Size Distribution and Wage Profile

In contrast to models with pairwise matching where assortativeness immediately implies who matches

with whom (the best with the best, the second best with the second best, and so forth), the matching

patter is not immediate in this framework as particular firms may hire more or less workers in equi-

librium. Our main focus is the characterization. For the following we will consider output functions

that are strictly increasing in types and distributions with continuous non-zero densities, which ensures

that all types above some cutoff are matched. If output can fall for higher types, holding all other

variables constant, than there might be holes in the matching set, and the following characterization

can only be applied on each connected component. The results hold even if output can fall, as long as

it is ensured that on the equilibrium path all agents above some cut-off trade. The next proposition

fully characterizes the equilibrium.

Proposition 2 If matching is assortative and output is strictly increasing in types, then the factor

intensity (firm size), equilibrium assignment, and wages are determined by the following system of

include those that satisfy θw(x) = M. In this case the standard single-crossing condition on f would suffice. Our condition
can be thought of as a three-good extension of the Spence-Mirlees condition, where firms can choose different budget levels
in terms of the numeraire on top of choosing θ and x.
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differential equations evaluated along the equilibrium allocation at almost all types :

PAM: θ′(x) =
H(x)Fyl − Fxr

Flr
; µ′(x) =

H(x)

θ(x)
; w′(x) =

Fx
θ(x)

, (10)

NAM: θ′(x) = −
H(x)Fyl + Fxr

Flr
; µ′(x) = −H(x)

θ(x)
; w′(x) =

Fx
θ(x)

, (11)

where H(x) = hw(x)/hf (µ(x)).

Proof. Consider the case of PAM – the case of NAM can be derived in a similar way. Differentiating

market clearing condition (5) readily establishes the equation for µ′(x) in (10). The equation for w′(x)

follows from (8) since Fx = fx. Finally, totally differentiating (7) with respect to x and substituting for

w′ and µ′ we obtain:

fxθ + fyθH(x)/θ(x) + fθθθ
′(x)− fx/θ(x) = 0

where we again suppressed the arguments (x, µ(x), θ(x)) of the production function and its derivatives.

This defines θ′(x). Using (2) we can replace fxθ(x, y, θ) with Fxl(x, y, θ, 1), and similarly for the other

derivatives. Moreover, in the Appendix (between (15) and (16)) we review that Fx = θFxl + Fxr and

Flr = θFll when evaluated at (x, y, θ, 1). Substitution then yields the condition for θ′(x) in (10).

This first order differential equation system in µ and θ together with appropriate boundary condi-

tions can be used to compute an equilibrium.12 Proposition 2 is stated from the point of view of workers,

and θ(x) is the size of the firm in which worker type x is employed. From the firms’ perspective, the

firm size is l (y) = θ(ν(y)) where ν(y) is the inverse of µ(x). Applying the chain rule then immediately

implies that l′(y) = θ′(ν(y))θ(ν(y))/H(ν(y)) in the case of PAM and the same but with opposite sign in

the case of NAM. This immediately generates the following corollary on the size of different firm types:

Corollary 1 If matching is assortative and and output is increasing in types, better firms hire more

workers if and only if along the equilibrium path:

1. H(ν(y))Fyl > Fxr under PAM,

2. H(ν(y))Fyl > −Fxr under NAM.

To gain intuition, these results can be interpreted as follows. Consider the case of PAM, and

to simplify the exposition we set H(x) = 1 by assuming uniform type distributions, which can be

12For PAM, one boundary condition is µ(x̄) = ȳ. For a guess of θ(x̄), an equilibrium allocation has to solve the first
order differential equation system in µ and θ for all lower worker types. Along the differential equation wages w(x) and
firm profits π(µ(x)) ≡ f(x, µ(x), θ(x))− θ(x)w(x) have to be positive. The guess for θ(x̄) has to be such that at the lowest
active type x̂ the differential equation stops at one of three possible end-point conditions: x̂ > x and w(x̂) = 0 as not all
worker types are used in production, x̂ = x and µ(x̂) > y with π(µ(x̂)) = 0 as not all firm types are used in production,
or x̂ = x and µ(x̂) = y.
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interpreted as a normalization.13 First, if better firms have a higher marginal value of hiring many

workers (the span-of-control complementarity Fyl is large), this gives rise to better firms being large.

Nevertheless, under PAM they also hire better workers. If these workers have a high marginal value

from getting many resources of the firm (Fxr large), then the firm will tend to be small. Clearly, if Fxr is

negative, meaning that better workers need less resources, this generates an even stronger force for firm

size to increase in y. Under NAM, the first effect is the same, but now better firms are matched with

worse workers. In this case, firms become exceptionally large if better workers need more resources,

meaning that worse workers need less resources.

Propositions 1 and 2 provide us with a description of the economy expressed in four interaction

terms: Fxy, Fxr, Fyl and Flr, which determine the sorting patterns and the size distribution. These

can be used to discuss the determinants that are likely to drive matching in various industries. For

example, the most productive firms in the retail market have invested heavily in information technologies

to monitor cash registers, the logistics of stocks, and employee performance. This allows a single store

manager to supervise a large number of employees, which in our model is captured by a large Fyl term.

Since top retailers such as Walmart actually pay low wages and hire low skilled employees compared to

smaller and less profitable mum-and-pop stores, NAM seems to prevail. From condition (9) we therefore

infer that the type complementarity Fxy is not too high relative to the span-of-control complementarity

Fyl. Since top retailers also operate much larger businesses, by the previous corollary we would infer

that their span-of-control complementarity must be larger than the negative of the managerial resource

complementarity Fxr.

In other industries such as management consulting or in law firms, matching appears positive assor-

tative, since top firms hire top graduates. From this we infer that the type complementarityFxy must

be large. While it seems natural that the best managers benefit more from having many team members

in order to leverage their skills (Fyl > 0), it is also very beneficial to spend time with the very talented

team that they assembled to transfer their knowledge (Fxr > 0). The type complementarity must be

large to outweigh the product FylFxr. Firm size changes according to Fyl − Fxr. The fact that top

consultancy firms do not operate much larger groups than lower level ones indicates that the difference

between these two complementarities is small.

Interestingly, if matching is PAM and Fyl = Fxr holds exactly, then the economy operates as in

a one-to-one matching model: the ratio of workers to resources is constant, the assignment and the

wages are as in Becker (1973). The reason is that the improvements of the firm in taking on more

workers are exactly offset by the advantages of the workers to obtain more resources. Since the size

13Intuitively, we can always call workers and firms by their rank in the type distribution. Start with an economy with
production function F and type distributions Hw and Hf with continuous non-zero densities. Give each worker x a new
name x̂ that corresponds to his rank in the type distribution: x̂(x) = Hw(x). For firms use similarly ŷ(y) = Hf (y). Now

production is F̂ (x̂, ŷ, l, r) = F ((Hw)−1 (x̂),
(
Hf
)−1

(ŷ), l, r), where (Hw)−1 and
(
Hf
)−1

are the inverse of Hw, and Hf ,

respectively. Clearly, the new economy with ”names” x̂ and ŷ and production F̂ generates exactly the same output, but
type distributions are by construction uniform.
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distribution does not vary across types, the remuneration also does not stray from the one that arises

if we exogenously imposed a one-to-one matching ratio.

A final observation concerns the role of the type distribution when it is not normalized. An immedi-

ate implication of interest of these equilibrium conditions is that the size distribution l(y) may change

even if we hold the production function and the distribution of firms type constant. This occurs when

the distribution of workers changes. In particular, for some distributions of worker skills better firms

will be smaller, while for other distributions better firms might be larger. That means that even if the

technological determinants of firms and their production capabilities are identical in two economies, as

is often assumed in the misallocation debate mentioned in the introduction, the firm size distribution

can vary even without distortions in the economy, once the skill distribution is taken into account. We

will return to this and how the model can be used to analyze some issues within this debate below.

4 Discussion: Special Cases and Relation to the Literature

Before we proceed to the main application of our framework in a tangible economic setting, in this

Section we discuss the relation to the existing literature as well as possible simple extensions of our

setup. Wherever possible, we derive existing models as special cases within our own setup. This

documents how our model nests a number of models that have been heavily used in the literature. It

also highlights that our model can capture new settings that have not been analyzed before.

Efficiency units of labor have been a long-standing instrument to incorporate differences in labor

productivity (see, e.g., Stigler (1961)) and are still a prevalent assumption in many models in macro

and labor economics. It relies on the assumption that workers of a given skill are exactly replaceable

by a number of workers of a different skill proportional to their skill difference: workers with half the

skill level are perfect substitutes as long as there are twice as many of them. Sorting is then arbitrary.

Each firm cares only about the total amount of efficiency units, but not whether they are obtained by

few high-type workers or many low-type workers. Our setup captures efficiency units of labor under

the production function F (x, y, l, r) = F̃ (y, xl, r). It is easily verified that FxyFlr = FylFxr in this case.

One-to-one matching models originating from Kantorovich (1942), Koopmans and Beckmann (1957),

Shapley and Shubik (1972), and Becker (1973), introduced a meaningful interaction between worker

and firm types and have been informative for analyzing interactions in markets with two-sided hetero-

geneity.14 They restrict attention to settings where agents have to be matched in pairs, which limits

insights into the size of the firm and its capital intensity.15 Within our setup, one-to-one matching

can be captured with the functional form F (x, y,min{l, r},min{r, l}) = F (x, y, 1, 1) min{l, r} so that

14For a recent review article, see Chade, Eeckhout, and Smith (2016).
15Notice that the matching models by Tervio (2008), and Gabaix and Landier (2008) which explain the changes of CEO

compensation are of this kind. While they use firm size to determine the type of firm, only one worker (the CEO) is
matched to one firm, where the firm size is exogenously given.
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each unit of labor needs exactly one unit of resource to be productive, and vice versa. This Leontief

formulation is only weakly concave, but its well-known sorting condition Fxy > 0 arises in the limit as

our production function approaches this, which is most easily shown in the limit of the following two

special cases.

Multiplicative separability of the form F (x, y, l, r) = A(x, y)B(l, r) provides particular tractabil-

ity, and the one-to-one matching case in the previous section can be viewed as a special case where the

quantity dimensionB(l, r) is Leontief. In the multiplicative case the condition (9) for positive assortative

matching is also multiplicatively separable and can be written as [AAxy/(AxAy)][BBlr/(BlBr)] ≥ 1.

Constant elasticity of substitution in quantities for the multiplicatively separable case arises

if B(l, r)’s elasticity is constant and equal to ε. Then the sorting condition reduces to AAxy/(AxAy) ≥ ε,
or equivalently FFxy/(FxFy) ≥ ε as the quantity term B cancels. This allows us to capture two special

cases of particular relevance. The one-to-one matching model discussed earlier arises as the elasticity

of substitution approaches zero, in which case B becomes Leontief and the sorting condition reduces

to the well-known Fxy ≥ 0. Another special case is the Cobb-Douglas specification where B = lγr1−γ .

This arises either by assumption as in Grossman, Helpman, and Kircher (2016) that builds on this

special case of our work, or when output is linear in the amount of workers but is valued in the market

at decreasing returns due to CES preferences of final consumers, as e.g. in Costinot (2009). Either case

generates an elasticity of substitution of unity and the sorting condition reduces to FFxy/(FxFy) ≥ 1,

or equivalently log-supermodularity of F in worker and firm types, which is the well-known condition

in this literature.

Supervision-time models have been amongst the first to allow sorting in the presence of interaction

with more than one worker. Here the firm or its manager has a unit amount of time to supervise workers.

The supervision time t(x, y) needed by each worker depends on both the manager’s and the worker’s

type. So r units of time allow the hiring of (no more than) r/t(x, y) workers, and this determines

firm size which is no longer a real choice variable once types are known. Sattinger (1975)’s seminal

work assumes that output equals size: F (x, y, l, r) = min{r/t(x, y), l}. If we approximate this non-

differentiable output function by the inelastic limit of a CES production function with inputs r/t(x, y)

and l,16 sorting condition (9) requires t(x, y) to be log-supermodular in the inelastic limit, recovering

Sattinger’s condition. Related is Garicano (2000)’s model of problem solving that has been widely

applied in the macro and trade literature (e.g., Garicano and Rossi-Hansberg (2006); Antràs, Garicano,

and Rossi-Hansberg (2006)). Here supervision time t(x) only depends on the worker’s ability to solve

problems, but managers themselves contribute directly to production by solving problems up to level y,

leading to output function F (x, y, l, r) = ymin{r/t(x), l}. Again approximation through a smooth CES

function recovers their condition that sorting is always positive. The beauty of these models is that they

incorporate sorting and their explicit structure allows extensions for example to multiple hierarchical

16The function F (x, y, l, r) = .([r/t(x, y)](ε−1)/ε + l(ε−1)/ε)ε/(ε−1) approaches min{(r/t(x, y), l} as ε→ 0.
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levels, but size is directly tied to types and does not allow a smooth extensive margin that is the heart

of most macro models.

“Smooth” Span of Control underlies much of the work in macro-economics on firm size distri-

butions and is inspired by Lucas (1978)’s seminal work. He assumed that managers with different

types leverage their time smoothly over a (homogeneous) workforce, which can be captured through

F = ylϕ(r/l), where ϕ summarizes decreasing returns due to span-of-control problems. With the

specification ϕ(r/l) = (r/l)1−γ this recovers the common form in which a firm with a unit amount

of resources has decreasing returns in labor of form ylγ . Rosen (1982)’s supervision model can be

interpreted as introducing heterogeneous worker types into this framework through his production

function F = ylϕ(g(y)r/l, x).17 Parametrization with ϕ = min{ r
lt(x) , 1} would exactly replicate Gari-

cano (2000), but instead, Rosen imposed the smoothness assumptions of standard neoclassical theory.

Rosen never analyzed his general version, but additionally assumed efficiency units of labor. Within

our framework we can apply our sorting condition (9) to study sorting in his general model, which

yields: ϕ12 [ϕ1 − ϕ/[g(y)r/l]] ≥ ϕ2ϕ11, where subscripts denote partial derivatives of ϕ and its argu-

ments (g(y)r/l, x) are suppressed. Careful inspection of this condition yields many insights: a positive

ϕ12 is intuitively conducive to positive sorting as it captures the interaction between g(y) and x, but

this turns out only to be true if the elasticity of ϕ with respect to its first argument is above unity.

Otherwise decreasing returns to size kick in too much and the square bracket is negative, revealing

again the importance of size considerations for sorting. The converse that sorting influences firm size

distributions might also seem plausible, but again it has not received any attention, possibly due to

a lack of theory that allows for sorting in conjunction with span of control. Empirical work on firm

size distributions tends to use the span-of-control approach since firm heterogeneity allows them to

rationalize size differences. Input heterogeneity in such studies is usually absent or restricted to effi-

ciency units. To illustrate the role of such heterogeneity one can study changes within a country over

time (which constitutes our main quantitative application in the next section) or between countries of

different levels of development. Next we briefly touch on the latter.

The Misallocation Debate refers to empirical work that identified a non-trivial tail of large firms

in the US and other developed countries, whereas such a tail is absent in developing countries where

size is compressed at very low levels (e.g., Hsieh and Klenow (2009), Restuccia and Rogerson (2008),

Guner, Ventura, and Xu (2008)). The same holds for agricultural farms (Adamopoulos and Restuccia

(2014)). Span of control models have been unable to rationalize the differences, raising the worry

about misallocation of inputs away from the most productive firms in developing countries. While the

literature has discussed the role of input heterogeneity, we are not aware of frameworks that move beyond

either homogeneity or efficiency units. To illustrate how our framework might contribute, consider

17Rosen (1982)’s equation (1) for output per worker can be written as g̃(ỹ)ϕ(ỹl/r, x), where ỹ is the firm type. For a
strictly monotone function g̃ we can relabel each firm type as y = g̃(ỹ) so that output per worker is yϕ(g(y)r/l, x), where
g = g̃−1, which yields the expression in the text.
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Adamopoulos and Restuccia (2014) who rely on farmer heterogeneity y and input l which represents

land in their setting, as well as some generic capital k that can be rented at unit cost R.18 Consider an

extension to their production function of form: f̃(x, y, l, k) = a(η(xk)ρ+(1−η)(yl)ρ)
γ
ρ with parameters

a, η, ρ, γ. Farmer quality augments land holdings, but they consider only homogeneous inputs (x = 1)

despite a discussion section on heterogeneity. In the generalized form x now simply augments capital so

that better inputs use capital more efficiently, even though many other specifications would fit within

our larger theory. Optimal profit given types and land holdings is f(x, y, l) = maxk f̃(x, y, l, k) − Rk,

which allows us to use the results from the main body that did not explicitly incorporate generic capital,

and in the Appendix we show that this parametrization generates positive sorting. Taking the rental

rate of generic capital and the remaining parameters from Adamopoulos and Restuccia (2014), we see

that a mean-preserving spread in input heterogeneity reduces heterogeneity in the distribution of land

holdings across farms, as better firms buy less but better land. There are indications that land quality

in developing countries might be more dispersed, which would then limit the right tail of large firms in

such countries.19
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Figure 1: Firm size distribution for different dispersion in x (left in levels, right in logs).

Figure 1 uses the parameters for the developing countries and shows how firms of different types

18Note that k represents a generic input such as fertilizers or tractors, while r is a specific limit on the farmer such as
his time endowment. Note also that agriculture might be a particularly suitable application of our theory once generic
capital is included: Both in the US and in developing countries a farm is generally run by the farmer and his family and
their time endowment is the relevant resource constraint (contrary to intuition seasonal help is only a minor part of overall
farm labor, while generic capital in form of tractors is the main source of additional help). Also, the restriction that all
land within the farm is of equal quality might not be that restrictive if farmers choose where to locate and local land has
somewhat uniform quality.

19Variation in land quality as measured by satellite images is positively correlated with ethnolinguistic variation
(Michalopoulos (2012)) while ethnolinguistic variation is typically negatively related to GDP (Michalopoulos and Pa-
paioannou (2012)).
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react to more dispersion: large ones shrink and small ones grow, in levels on the left and in percentage

terms on the right (details are described in the Appendix). Similar compressions that limit the right

tail might occur in the context of industrial firms and their labor inputs, since dispersion of labor inputs

is negatively correlated with the overall level of education (Thomas, Wang, and Fan (2001)). We do

not expect input heterogeneity to fully rationalize the differences between countries. Rather, we aim to

provide a tool that allows a formal discussion of these issues and their importance. A full exploration

would require a re-estimation of the generalized framework and an endogenous determination of the

rental rates of capital within the larger economy beyond the single sector that is at the heart of our

theory.

Economic geography has long been concerned with how individuals choose to locate across space,

for example within different locations of a mono-centric city, though many models tend to abstract

from spatial sorting.20 We therefore consider a model of spatial sorting within the city. Let there be

a continuum of locations y relative to the center, each with space for construction hf (y). Agents with

budget x have quasi-linear preferences u(c, s) = c+ v(s) over consumption c and housing space s. The

budget constraint is c + ps(y)s = xg(y), where x is the worker skill and g(y) is an increasing function

representing the time at work rather than in commute. Then we can write the individual citizen x’s

optimization problem as xg(y) + v(h) − ps(y)s. Net of the transfers, the aggregate surplus for all l

citizens is given by F (x, y, l, r) = xg(y)l + v
(
r
l

)
l. It is easily verified that sorting condition (9) is

satisfied if v(·) is concave, so that individuals with high incomes locate centrally and those with low

incomes in the periphery.21

Sorting in the presence of search frictions has recently attracted substantial attention, and

has been explored exclusively in the setting of one-to-one matching, as in Shimer and Smith (2000) and

Atakan (2006) under random search and Shi (2001), Shimer (2005) and Eeckhout and Kircher (2010)

under competitive search. Under competitive search, workers see the firm characteristics and wage offers

before queueing for jobs. This renders it close to competitive models, and in fact the sorting condition

in Eeckhout and Kircher (2010) can be interpreted as a special case of multiplicative separability

presented above, with the quantity dimension replacing the matching function. While multi-worker

matching has recently attracted attention within the directed search literature (e.g., Menzio and Moen

(2010), Hawkins (2011), Kaas and Kircher (2015), Schaal (2015)) we are not aware of an analysis with

large firms, with search frictions and with two-sided heterogeneity.22

20Most work in new economic geography considers the location choice of homogeneous agents through indifference
conditions. Related to our setup is in particular Lucas and Rossi-Hansberg (2002) who model the location of identical
citizens and incorporate productive as well as residential land use. Though agents are identical, they earn different wages
in different locations. The paper proves existence of a competitive equilibrium in this generalized location model which
endogenously can generate multiple business centers. For a model with spatial sorting between cities, see Eeckhout,
Pinheiro, and Schmidheiny (2014).

21A similar functional form is used in Van Nieuwerburgh and Weill (2010) to consider differences between cities rather
than within the city, where in there model g(y) is replaced by a more agnostic time-varying productivity term that differs
across cities. Clearly the sorting of more talented workers to more productive cities prevails.

22Lentz (2010) and Bagger and Lentz (2016) study sorting when firm size is limited only by search frictions, albeit with

19



To illustrate that our model is amenable to this, assume that workers cannot be hired frictionlessly,

and firms have to post a measure v of vacancies at a cost c per vacancy. They specify a worker type and

wage offer (x,w) and workers see all offers and decide where to queue for jobs after observing these. If

u workers queue for v vacancies with a particular offer, the number of matches that arise is determined

by matching function M(u, v) with the usual properties. In the Appendix we show that the techniques

developed in this paper are suitable to analyze search frictions with large firms and sorting, and notably

that the sorting condition for PAM remains unchanged at FxyFlr ≥ FxlFyr and is thus independent of

the search frictions. Obviously the matching function does affect the equilibrium allocation and the

unemployment rate, and we derive predictions about the unemployment rate of various worker types

and the vacancy rate across firms in the Appendix.

Extensions that allow for capital investment are discussed in the misallocation debate and explored

in the Appendix. In the Appendix, we additionally introduce monopolistic competition at the output

level with a Dixit-Stiglitz setup and derive the extended conditions that arise. There we also link our

model to the optimal transportation literature, and we introduce endogenous type distributions.

Limitations. While the assortative matching literature has made rather specific assumptions for

multi-worker firms that we attempt to generalize, the combinatorial matching and general equilibrium

literature has instead stayed general but has focussed mainly on existence theorems rather than on

characterizing the sorting or the wage patterns. The classic example in the combinatorial matching

literature is Kelso and Crawford (1982). They propose a many-to-one matching framework in a finite

economy and allow for arbitrary production externalities, both between the firm and its workers and

across the workers within the firm. In such a general setting it is well-known that the stable equilibrium

or the core may not exist, and Kelso and Crawford (1982) derive a sufficient condition for existence in

a finite agent model, that of gross substitutes: adding another worker decreases the marginal value of

each existing worker. This condition is satisfied in our setting where externalities are mainly between

the firm and the workers while across-worker externalities are due to scarcity of internal resources only,

and scarcity becomes more binding when there are fewer workers. Gul and Stacchetti (1999) analyze

the gross substitutes condition in the context of Walrasian equilibrium and show existence and the

relation between the Walrasian price and the payment in the Vickrey-Clarke-Groves mechanism. In the

context of auction design, Hatfield and Milgrom (2005) analyze package bidding as a model of many

to one matching. Our model differs from settings such as the Roy (1951) model and its recent variants

in e.g., Heckman and Honore (1990), where each firm (or sector) can absorb unbounded numbers of

agents. In our setup, the marginal product decreases as the firm gets larger. Models that combine the

Roy setup with decreasing returns due to price effects such as Costinot (2009) do share commonalities

to our model that are discussed under multiplicative separability above.

linear production that that there is no interaction of workers within the production process of the firm.
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5 Application: Quantity Biased and Skill Biased Technological Change

As an illustration of our theory we apply the model to analyze technological change. We consider

quantity-biased technological change that affects firms’ returns to scale and allows larger firms in equi-

librium, which highlights how accounting for changing firm size within a sorting model offers a new

view on technological change that might counteract some known determinants of wage dispersion, such

as skill-bias technological change.

We use German matched employer-employee data to gain insights in the importance of the different

forces in our model. Observing information on wages, as well as profits and firm size, we use our model to

ask how the different determinants of technology have changed between 1996 and 2010. Unfortunately,

the model does not accommodate within-firm distributions of workers, therefore we treat the worker

within the firm as a representative agent using the average characteristics of the firm’s work force. A

sequence of recent empirical papers has documented in many countries that changes in wage inequality

are driven nearly exclusively by between-firm inequality rather than within-firm inequality,23 so that our

focus on skill and wage heterogeneity between firm – while abstracting from within-firm heterogeneity

– is still be a valuable exercise. In the light of this restriction on the environment, the focus of our

attention is how the relation between firm size and average within-firm skill and pay has evolved over

that 15 year period. As we will see, the model will give us insights well beyond the standard Becker

one-to-one-matching model or the canonical Lucas span-of-control model.

Data. We use linked Employer-Employee data from IAB, the Institute for Employment Research at

the German Federal Employment Agency. In particular, our data is from the LIAB, the Integrated

Establishment and Individual Data, with observations for 1996 and 2010, the first and the last year for

which we have consistent data. We focus attention on firms with 5 or more employees. All prices are

expressed in 2010 Euros, using the HCPI to deflate the 1996 prices. For 1996 we have 2,984 firms in

150 weighted bins and for 2010 we have 5,083 firms in 255 weighted bins.24 The weights are applied

to make the sample representative of the population of German firms. The variables we use are the

number of full-time employees, the median wage in the firm, and the profits.

Technology and distribution. We assume CES in (x, y) with elasticity of substitution σ and

weights ωx, ωy and CRTS Cobb-Douglas in (l, r) with the expenditure share on l equal to ωB, where

for ease of exposition we represent the production already for a firm that uses all its resources on one

type:25

23See Card, Heining, and Kline (2013) for Germany, Song, Price, Guvenen, Bloom, and von Wachter (2015) and Barth,
Bryson, Davis, and Freeman (2014) for the US, Benguria (2015) for Brazil, and Vlachos, Lindqvist, and Hakanson (2015)
for Sweden.

24Due to privacy concerns, data can only be accessed on the IAB servers and only aggregated information can be
exported, hence the binning of the firm distribution.

25Recall that the general function for arbitrary r can be recovered simply via F (x, y, l, r) = rF (x, y, l/r, 1). Also, observe
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F (x, y, l, 1) =
(
ωxx

σ−1
σ + ωyy

σ−1
σ

) σ
σ−1

lωl .

We assume that the distribution of types x and y is log-normal, where the mean and variance are

estimated together with parameters of the production function to match the 3 moment conditions as

detailed below.

Estimation Procedure. Given the technology and using the three differential equations from Propo-

sition 2 with appropriate end point conditions, we solve the equilibrium allocation µ(x), the equilibrium

firm size θ(x) and the wage w(x). The parameters ωx, ωy, σ, ωB are chosen to minimize the sum of

squared residuals between the size-wage and the size-profits relations, as well as the firm size distribu-

tion in the data and in the model.26 The estimation is performed independently for each year. We have

also done several robustness checks, for example estimating 2010 fixing the estimated 1996 distribution

parameters. The results are qualitatively and quantitatively very similar.

Table 1: Estimated Parameters

1996 2010 % change

Technology

ωx 0.026 0.060 131.6%
ωy 0.974 0.964 -1.1%
ωl 0.123 0.217 76.1%
σ 0.998 0.982 -1.6%

Distributions

x LN (2.49, 1.35) LN (2.69, 1.35)
y LN (0.08, 1.57) LN (0.03, 1.54)

Results. We find the estimates presented in Table 1.27 With these estimates, Figure 3 shows the

model fit with the targeted moments for both years: the relations wage-firm size, and profits-firm size,

as well as the firm size distribution.

The distributions estimated to fit a log-normal distribution are plotted in Figure 2. Observe that

the distribution of firm types hardly changes. Instead, the distribution of worker types shows a first

order dominance shift to the right. While skill distributions in the US have remained fairly constant

that with a simple transformation of variables, this technology could be written as

F (x, y, l, 1) = A
(
ωAx

σ−1
σ + (1− ωA)y

σ−1
σ

) σ
σ−1

lωl

where ωx = ωAA
σ−1
σ and ωy = (1− ωA)A

σ−1
σ .

26We first pin down the parameter space – the support for the distributions of x and y is normalized to [1,100] – and
then use the L-BFGS-B algorithm for the minimization routine. To find the global minimum we use the stochastic “Basin
Hopping” algorithm.

27Because of the time intensity of the solution to the differential equations, each minimization round takes several hours.
We can therefore not provide any confidence bounds for the precision of the parameters, since bootstrapping methods are
not feasible.
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Figure 2: The Distributions of Worker Types x and Firm Types y.

since the 1970s, it is well known that in most European countries skills have increased.28 An immediate

implication is that firms can hire better workers, which is picked up in the theory (see the changed

assignment in Figure 5b below).

Now we turn to the estimated technology. First, observe that σ < 1 is consistent with PAM. This

follows immediately from verifying condition (9) in Proposition 1. PAM is necessary to rationalize

that both profits and wages are high in large firms, implying that high types from both sides match.

Second, given that σ ≈ 1, the CES term in the inputs (x, y) can be approximated by the Cobb-Douglas

technology.29 The approximate technology can therefore be written as:

F (x, y, l, 1) ≈ xωxyωy lωl .

Quantity-Biased Technological Change. We now turn to the evolution of the technology be-

tween 1996 and 2010. Eyeballing the data, the main difference between these years is a changed wage

profile and the presence of larger firms. We discuss how this is reflected in the evolution of the tech-

nological parameters in Table 1. In addition, in Figure 4 we decompose the estimated technology by

calculating the complementarity terms Fxy, Flr, Fyl and Fxr.

We find that the marginal product of the skill coefficient ωx has increased by 3.4 percentage points

and has more than doubled. In contrast, the marginal product of firm technology has decreased by

28It may appear that the measures of both distributions in Figure 2a are not the same, but that is merely due to the
log scale. In the Appendix we report the CDF in levels.

29It is important that the estimate is strictly less than zero because with σ exactly equal to 1, the sorting condition
holds with equality and the allocation µ(x) is indeterminate, i.e., any allocation is consistent with equilibrium.
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Figure 3: The fit of the targeted moments in 1996 and 2010. The shading of the data points in figures
(a) and (b) reflects the sample weights used to normalize the sample to the German size distribution.

1 percentage point, though the relative change is small given the high level. This reflects the fact

that technological progress has been predominantly in labor productivity, and allows to rationalize an

increased skill premium that has long been associated with Skill-Biased Technological Change.

The complementarity between worker and firm quality x and y continues to be close to Cobb-

Douglas, but since the elasticity drops by more than 1.5 percentage points, the complementarity between

x and y has increased (Figure 4a), contributing further to Skill-Biased Technological Change since higher

skills are now more valued at better firms.

Most importantly, the biggest technological change is the increase in the coefficient ωl measuring

the marginal product of the quantity of labor. It has gone up by 71% from 0.123 to 0.217. This reflects

that there has been Quantity-Biased Technological Change (QBTC). This can be observed graphically

in different ways. The direct effect is that the quantity complementarity Flr has gone up (Figure 4b).

But also the span-of-control complementarity has increased (Figure 4c), and so has the managerial

resource complementarity Fxr, especially for high types (Figure 4d).
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Figure 4: Quantity-Biased Technological Change: Complementarities.

The quantity-bias in the technological change rationalizes the overall increase in firm sizes, as is

evident from the First-Order Stochastic Dominance shift in the distribution of firms between 1996 and

2010 (Figure 5a). In general this pushes more workers into top firms, but this is counteracted by the

increased supply of high skilled workers (Figure 5b).

The wage premium as measured by w′(x) is clearly positive and has gone up substantially since

1996 (Figure 5c).30

For those working in the lowest skilled firms, the wage premium has gone up nearly 40% from 0.023

to 0.032, as well as for those working in firms with the highest skilled workers, where it has gone up

35% from 0.07 to 0.095. In the middle of the distribution, the increase in the wage premium is close

to zero. This is consistent with the finding in the literature on job polarization that middle skill jobs

30The skill premium is often expressed as the elasticity of the wage xw′(x)/w(x) which can readily be interpreted as
the coefficient of a regression of log wages on log skills. In our model, the elasticity has a simple analytic expression –
εw = xFx/(θFθ) – and a transparent interpretation with a Cobb-Douglas technology: if θ goes down, then θFθ goes down.
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Figure 5: Firm Size, Allocation, Skill Premium: 1996 vs. 2010.

have relatively become less productive (see Goos and Manning (2007), Katz, Kearney, et al. (2006),

and Autor and Dorn (2009)).31

From this exercise we conclude that the magnitude of quantity biased technological change has been

substantial. The technology has changed favoring larger firms. But at the same time, the skill premium

has gone up substantially. Of course, these QBTC and SBTC interact: as the skill premium rises, part

of the benefits from hiring more workers is offset by higher wages (and in addition there has been a

supply response: the distribution of skills shifts outwards). The observed effect on the size distribution

therefore masks some of the technological change. From the differential equation that pins down the

wages θw′(x) = Fx, we immediately observe that an increase in firm size is mitigated by an increase

in the skill premium. In other words, even if the effect on the size distribution is relatively small (See

Figure 5a), underlying there is a huge change in both the marginal product of skilled labor ωx and the

marginal product of size ωl, with these effects offsetting each other in the equilibrium size distribution

and also in the magnitude of the skill premium. Without the QBTC, the skill premium would have

been even higher.

Counterfactual Exercises. Finally, we run some simple counterfactuals that decompose the effects

of the individual changes in parameters and illustrate the point in the previous paragraph. We fix the

economy at the 1996 estimated parameters and then substitute one-at-a-time a parameter for their

estimated counter-part in 2010. In Table 2 we report the change in the median firm size and the

average skill premium for all parameters, and we then graphically evaluate the impact on the size

distribution, on the equilibrium allocation and on the skill premium in Figure 6. For the figure we focus

on the 2010 values for ωx, ωl and the distribution parameters, respectively, and report the figures for

31Usually, when people talk about job polarization, they compare wage change w2010(x) − w1996(x) across different x.
Then the relative change between x and x′ (w2010(x)−w1996(x))−(w2010(x′)−w1996(x′)) equals

∫ x
x′ [w

′
2010(x̃)− w′1996(x̃)] dx̃,

and is therefore captured by the skill premium.
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Table 2: Counterfactuals: Change in Firm Size and Skill Premium

Median Firm Size % change 1996 Average w′(x) % change 1996

1996 11.98 0.019
2010 12.53 4.60 % 0.027 44.06%

2010 ωx 14.21 18.66% 0.049 156.90%
2010 ωy 11.95 -0.21% 0.019 1.90%
2010 ωl 14.81 23.65% 0.009 -52.04%
2010 σ 12.01 0.24% 0.022 13.68%

2010 Distributions 12.36 3.20% 0.022 13.68%

ωy and σ in the Appendix as there are virtually no effects for them.

The Table and the Figure confirm that importance of both ωx and ωl for the determination of the

firm size as well as the wage premium in 2010 compared to 1996. But what is most striking is the fact

that the individual contribution of each of these technological components is much bigger than what we

observe in equilibrium. The reason is precisely that some of the effects offset each other in equilibrium.

The contribution of the increase in the productivity of skilled labor ωx to the skill premium is enormous,

and more than 3 times the equilibrium increase. The reason that the equilibrium effect is damped is

due to the increase in the productivity of the quantity of labor ωl, which has a substantial negative

impact on the skill premium. The skill premium w′(x) = Fx/θ is increased by the presence of ωx which

raises the numerator, but the effect of ωl ends up raising the denominator to counteract this effect. At

the same time, it appears that ωx also increases firm size, but this effect is very different at different

points in the distribution. The top of Figure 6a shows that the impact on the size of firms that hire

high skilled workers is actually negative. In contrast, an increase in the size parameters ωl not only

increases the median firm size but also increases firm sizes throughout the distribution and ends up

substantially reducing the skill premium as mentioned earlier. Also the distributional parameters have

some impact, though much more modest than that of ωx and ωl. Finally, there is hardly any effect of

the change in the firm productivity ωl or the elasticity of substitution σ between x and y.
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Figure 6: Counterfactuals. The 1996 economy is simulated with one parameter changed to the estimated
value for the 2010 economy. Row 1: ωx from 2010; Row 2. ωl from 2010; Row 3. Distributions for x
and y from 2010. In the first column we report the firm size distribution, in the second column the
equilibrium allocation and in the third column the skill premium.
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6 Concluding Remarks

Assortative Matching is prevalent across firms of different sizes. We propose a tractable theory of the

labor market where firms choose both the quality of the work force and the quantity. This allows us to

study sorting and firm size simultaneously. Whether assortative matching is positive now depends on a

tradeoff of complementarities between types, between quantities, and across types and quantities. The

equilibrium allocation is completely characterized by a system of differential equations that pins down

the allocation, the firm size distribution and the wage distribution.

Our model provides a unified approach to a number of existing models in the macro and labor

literatures. It is sufficiently rich to incorporate the most relevant features of heterogeneity, in particular

worker skill, firm productivity, firm size and wage inequality. Yet, it is remarkably simple to analyze

and can readily be used to plug into a larger model of the economy. For example, we establish that

equilibrium unemployment can be incorporated, thus proposing the first analysis of frictional unem-

ployment in the presence of both sorting of heterogeneous workers and firms, and of matching in large

firms.

To further illustrate the applicability of the theory, we have analyzed the role of technological change

in the presence of both sorting and endogenous firm size. We find that Quantity-Biased Technological

Change is sizable, and much bigger than what we would impute from merely inspecting the change in

the size distribution. Likewise, Skill-Biased Technological Change is bigger than what already transpires

from observing the skill premium in isolation. The reason that these big technological determinants

of QBTC and SBTC appear muted is the interplay between the two in equilibrium, where the effects

of these technological determinants partially offset each other. This has important implications for

our understanding of technological change and wage inequality. Technological change has been even

more pronounced than what was thought, and the mechanism we propose shows that the firm size

distribution has important implications for labor market outcomes.
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7 Appendix

7.1 Convex Preferences, Existence, and Welfare Theorems

One can interpret our economy in terms of a classical exchange economy: “Consumers” in the classical
model are our firms y ∈ Y. They consume a bundles (Ly, ny) where Ly denotes the amounts of labor of
various types employed by firm y and ny is the amount of numeraire it consumes. To make this an en-
dowment economy, assume that each firm is initially endowed with some of the workers and a sufficiently
high level of the numeraire. The exact endowment of workers to firms does not matter because of the
presence of the numeraire, so endowing each firm with the average distribution of workers would suffice.
Firm preferences are represented by utility function u(Ly, ny|y) = ny + maxRy

∫
f(x, y, θy(x))dRy(x)

such that θy(x) = dLy/dRy and
∫
dRy < 1 where the first term captures the numeraire and the second

optimal production. If these preferences are convex, we can apply Ostroy (1984) or Khan and Yannelis
(1991) for existence and the former for core equivalence.

Lemma 2 Firm preferences are convex.

Proof. Consider three bundles (Ly, ny), (L′y, n′y) and (L′′y, n′′y) such that u(Ly, ny|y) ≥ u(L′′y, n′′y|y)
and u(L′y, n′y|y) ≥ u(L′′y, n′′y|y). We then establish that u(αLy + (1 − α)L′y, αny + (1 − α)n′y|y) ≥
u(L′′y, n′′y|y) for any α ∈ (0, 1) since the firm can simply assign a fraction α of its internal resources to
workers with distribution Ly and the remainder to the other workers, that is

u(αLy + (1− α)L′y, αny + (1− α)n′y|y)

= αny + (1− α)n′y + max
Ry s.t.

θy(x)=d(αLy+(1−α)L′y)/dRy∫
dRy<1

∫
f(x, y, θy(x))dRy(x)

≥ αny + (1− α)n′y + max
Ry s.t.

θy(x)=αdLy/dRy∫
dRy<α

∫
f(x, y, θy(x))dRy(x) + max

Ry s.t.
θy(x)=(1−α)dL′y/dRy∫

dRy<1−α

∫
f(x, y, θy(x))dRy(x)

= αu(Ly, ny|y) + (1− α)u(Ly, ny|y)

≥ u(L′′y, n′′y|y).

7.2 Sorting with monotone production and smooth distributions

Lemma 3 If output F is strictly increasing in x and y and the type distributions have non-zero contin-
uous densities, then almost all active firm types y hire exactly one worker type ν(y) and reach unique
size l(y) in an assortative equilibrium.

Proof. First, note that optimality requires that for any given firm type y almost all its choices
x ∈suppLy and θy(x) solve problem (6) by Lemma 1. Next, observe that if x is in the support of the
labor demand Ly for any firm y, then all x′ > x have to be active. If not, the wage for the higher type
x′ is w(x′) = 0 and therefore weakly below w(x), but x′ produces more output than x, which violates
that x is optimal for firm y (formally: it violates that x is in the support of Ly as all types in a small
enough neighborhood around x such that their type is below x′ fail to maximize (6)).

Next, we show that an assortative equilibrium requires that almost all active firm types hire only
one worker type. We proceed by contradiction. Assume this were not true, i.e., for any type y in a set



of active firm types Y ′ with strictly positive measure it holds that the support of its labor demand Ly
contains more then one element. Assortativeness still means that for almost all active firm types with
y > y′ it holds that x is in the support of Ly and x′ is in the support of Ly′ only if x ≥ x′. In particular,
this applies also to almost all types in Y ′. So for a non-generic y ∈ Y ′ with x and x̃ > x in the support
of its labor demand Ly the following has to hold: almost all firms with higher types have labor demands
that only place support on types above x̃, while almost all firm types below have labor demands that
only place support on types below x. Therefore, labor demand for all worker types in interval (x, x̃) has
measure zero. But the supply of workers in this set has strictly positive mass since the type distributions
have non-zero densities. Market clearing then implies that wages are almost everywhere zero for the
types in (x, x̃), meaning that these types are inactive which violates the previous paragraph.

Finally, given a unique choice x = v(y), there exists a unique choice of intensity (or firm size): Since
optimality requires solving (6), and this problem is strictly concave in intensity, there is a uniquely
optimal intensity choice.

7.3 Derivations for Assortative Matching Omitted in the Text

Here we lay out the derivations that follow from the firm’s maximization problem (6) in Lemma 1 to
the sorting conditions that are built up towards Proposition 1.

Maximization (6) gives rise to first order conditions (7) and (8). The second order condition for
optimality requires the Hessian H to be negative definite, where:

H =

(
fθθ fxθ − w′(x)

fxθ − w′(x) fxx − θw′′(x)

)
.

This requires fθθ to be negative and the determinant |H| to be positive, or

fθθ[fxx − θw′′(x)]− (fxθ − w′(x))2 ≥ 0. (12)

We can differentiate (7) and (8) with respect to the worker type to get

fxθ − w′(x) = −µ′(x)fyθ − θ′(x)fθθ (13)

fxx − θ(x)w′′(x) = −µ′(x)fxy − θ′(x)
[
fxθ − w′(x)

]
. (14)

In the following three lines we successively substitute (13), (14) and then (8) into condition (12):

−µ′(x)fθθfxy −
[
θ′(x)fθθ + fxθ − w′(x)

] [
fxθ − w′(x)

]
> 0

−µ′(x)fθθfxy + µ′(x)fyθ
[
fxθ − w′(x)

]
> 0

−µ′(x)[fθθfxy − fyθfxθ + fyθfx/θ] > 0

Since fθθ < 0 we can devide by −fθθ to get the condition reported in the main body. For strictly
positive assortative matching (µ′(x) > 0) it has to hold that the term in square brackets in the last line
is negative, for strictly negative assortative matching the term in square brackets in the last line needs
to be positive. Focussing on positive assortative matching, and using the relationship in (8), we obtain
the condition:

fθθfxy − fyθfxθ + fyθfx/θ ≤ 0. (15)

This condition can be summarized more conveniently in terms of the original function F (x, y, r, s),
for which we know that F (x, y, θ, 1) = f(x, y, θ). The following relationships will also prove useful.
Homogeneity of degree one of F in l and r implies that −Flr = θFll. Since F is constant returns, so



is Fx.32 A standard implication of constant returns it then Fx(x, y, θ, 1) = θFxl + Fxr. We can now
rewrite (15) in terms of F (x, y, θ, 1) and rearrange to obtain the following cross-margin-complementarity
condition:

FllFxy − Fyl [Fxl − Fx/θ] ≤ 0 (16)

⇔ FllFxy + FylFxr/θ ≤ 0

⇔ FxyFlr ≥ FylFxr. (17)

Since Flr > 0 we can divide through to obtain inequality (9) in Proposition 1. This derivation provides
a necessary condition for assortative matching for the specific conditions with increasing output and
non-zero type densities. It does not deal with distributions that have mass points, nor does it provide
sufficient conditions to rule out the existence of other equilibria, for example those where the bottom
half of workers matches positively assortatively with the top half of firms and the top half of workers
matches positively assortatively with the bottom half of firms. The following proof of Proposition 1
accounts for these cases.

7.4 Proof of Proposition 1

Proof. Part I: sufficiency. Focus on sufficiency for positive assortative matching. (The same logic
applies to negative assortative matching.) We need to prove that condition (9) is sufficient to rule
out any equilibria that are not positive assortative. This part of the proof relies on the first welfare
theorem. Since we have quasi-linear utility, Pareto optimality requires output maximization. A feasible
collection of labor demands L = {Ly}y∈Y and resource allocations R= {Ry}y∈Y for all firm types yields
aggregate output

S(L,R) =

∫
y∈Y

∫
x∈X

F (x, y, θy(x), 1)dRydHf , (18)

where θy = dLy/dRy. The first welfare theorem implies that the equilibrium (L∗,R∗) combination
yields a weakly higher aggregate output than any other feasible (L,R) combination. In the following
we will show that if (9) holds strictly, then any allocation (L,R) that is not positive assortative can be
improved upon by some (positive assortative) reallocation of workers that improves aggregate output,
and therefore (L,R) cannot be an equilibrium.

Assume that Fxy > FxrFylFlr for all (x, y, l, r) ∈ R4
++ but an equilibrium allocation (L,R) is not

positive assortative. The lack of positive sorting implies that there exist two combinations (x1, y1, θ1)
and (x2, y2, θ2) with x1 > x2 but y1 < y2, that have strictly positive probability: i.e., for any ε there is
a strictly positive measure of firm types in any ε−neighborhood around yi with labor demands whose
support includes worker types in an ε−neighborhood around xi that get resources at intensity in an
ε−neighborhood around θi. These firms are active as otherwise the support of their labor demand
would be empty, and for active firms optimality requires a strictly positive intensity, so we can focus
on combinations with θi > 0. The rest of the proof will proceed by assuming that a mass of workers of
type xi is employed by firms yi and receives resources with intensity θi, and we will show that assigning
some of the low type workers to the low type firms while assigning some of the high type worker to
the high type firms strictly increases output, yielding a contradiction to the First Welfare Theorem.
If this is the case, then the same argument holds if the mass of workers is not at (xi, yi, θi) but in its
neighborhood, since for a small enough neighborhood the output is arbitrarily close to the output that
arises if all mass were concentrated only on the exact point, by continuity of F. We proceed in two
steps. Step 1 has the key insight.

32It holds that F (x, y, l, r) = rF (x, y, l/r, 1), so differentiation implies that Fx(x, y, l, r) = rFx(x, y, l/r, 1)



1. Establish the marginal benefit from assigning additional workers to some resource type:
Consider some (x, y, θ) such that a total measure r of resources are deployed in this match (where

r is the product of the number of firms and their internal resources deployed to x workers at intensity
θ). To achieve this intensity, they are obviously paired with the appropriate number of workers (of
measure θr). As a preliminary step to the variational argument that follows, we are interested in the
marginal benefit of pairing an additional measure r′ of resources of type y′ firms with workers of type
x. The optimal output is generated by withdrawing some optimal measure θ′r′ of the workers that were
supposed to be working with resources of type y and reassigning them to work with resources of type
y′. The joint output at (x, y) and (x, y′) in (18) is given by

rf(x, y, θ − θ′r′/r) + r′f(x, y′, θ′). (19)

Optimality of θ′ requires, according to the first order condition, that fθ(x, y, θ − θ′r′/r) = fθ(x, y
′, θ′),

which shows that the optimal θ′ is itself a function of r′. Denote β(y′;x, y, θ) the marginal increase of
(19) from increasing r′, evaluated at r′ = 0. It is given by

β(y′;x, y, θ) = f(x, y′, θ′)− θ′fθ(x, y′, θ′) (20)

where θ
′

is determined by fθ(x, y
′, θ′) = fθ(x, y, θ). (21)

The constraint (21) reiterates the optimality of θ′. Sometimes we will write θ′(y′;x, y, θ) to highlight
that θ′ is a function of y′, y, x and θ. The cross-partial βxy of the marginal benefit in (20) with respect
to x and y′ is strictly positive, evaluated at y′ = y, iff

fxy > − [θfyθfxθ + fyθfx] / [θfθθ] ,

i.e., exactly when our cross-margin condition holds (see (15)). Therefore, it is optimal to assign higher
buyers to higher sellers locally around (x, y). This is at the heart of the argument. The next step simply
extends this logic to a global argument where y′ might be far away from y.

2. Not PAM has strictly positive marginal benefits from matching the high types:
We started under the assumption that matching is not assortative, so that x1 is matched to y1 at

intensity θ1 and x2 to y2 at intensity θ2, but x1 > x2 while y1 < y2. For this to be efficient, it must be
more efficient to pair the last unit of resources of type y′ = y1 to workers with combination (x1, y1, θ1)
than we workers that are otherwise matched at (x2, y2, θ2) :

β(y1;x2, y2, θ2) ≤ β(y1;x1, y1, θ1), (22)

where β(·; ·, ·, ·) was defined in (19). Similarly, the marginal gains from pairing the last unit of resources
of type y′ = y2 to workers otherwise matched at (x2, y2, θ2) than to workers matched at (x1, y1, θ1) :

β(y2;x2, y2, θ2) ≥ β(y2;x1, y1, θ1). (23)

We will show that if (22) holds, then (23) cannot hold, which yields the desired contradiction. We
will show this by proving that the benefit β(y′;x1, y1, θ1) on the right hand side of (22) and (23) always
remains above the benefit β(y′;x2, y2, θ2) on the left hand side, for all y′. By (22) this has to be true
at y′ = y1, and we will show that it remains true when we move to higher y′. The marginal increase of
β with respect to its first argument y′ is given by

β1(y
′;x, y, θ) = f(x, y′, θ′), (24)



where θ′ is again determined as in (21). Assume there is some y′′ ≥ y1 such that marginal benefits are
equalized, i.e., β(y′′;x2, y2, θ2) = β(y′′;x1, y1, θ1). We obtain a contradiction if we can show that at such
a point β1(y

′′;x2, y2, θ2) < β1(y
′′;x1, y1, θ1), since this implies that whenever the marginal benefits are

nearly equalized the right hand side rises faster than the left hand side.
The inequality β1(y

′′;x2, y2, θ2) < β1(y
′′;x1, y1, θ1) is by (24) equivalent to f(x2, y

′′, θ′2) < f(x1, y
′′, θ′1),

where θ′1 = θ′(y′′;x1, y1, θ1) and θ′2 = θ′(y′′;x2, y2, θ2) as in (21). To show this, define ξ(x) for all x in
resemblance of (20) by the following equality

f(x, y′′, ξ(x))− ξ(x)f3(x, y
′′, ξ(x)) = β(y′′;x2, y2, θ2),

which implies ξ(x2) = θ′2 and ξ(x1) = θ′1 by equality of the marginal benefits at y′′, i.e., by β(y′′;x2, y2, θ2) =
β(y′′;x1, y1, θ1). Differentiating f(x, y′′, ξ(x)) with respect to x reveals that it is strictly increasing ex-
actly under our strict inequality fθθfxy − fyθfxθ + fyθfx/θ < 0. This in turn implies f(x2, y

′′, θ′2) <
f(x1, y

′′, θ′1). This establishes that output can be improved by pairing types positively assortatively,
which proofs sufficiency.

Part II: necessity. We need to show that (9) is necessary to have PAM under any distribution of
types. That is, if it is not true that (9) holds for all (x, y, l, r), then there will be a type distribution for
which PAM will not be an equilibrium. Assume that (9) fails at some (x′, y′, l′′, r′′). By continuity it also
fails at some (x′, y′, l′, r′) with l′ > 0 and r′ > 0 sufficiently close to (x′, y′, l′′, r′′). Then it also fails at
(x′, y′, θ′, 1) for θ′ = l′/r′. By continuity, this means that FxyFlr < FylFxr for all (x, y, θ, 1) ∈ N , where
N is a small enough open neighborhood of (x′, y′, θ′, 1). If we can restrict the equilibrium allocation to
lie in N , then by the analogy of the preceding section for negative assortative matching we know that
matching can only be negative assortative, and therefore (9) cannot fail if we want to obtain positive
assortative matching. Since we want to ensure positive assortative matching for all type distributions,
we can choose the support of x and y within this neighborhood. But since θ is endogenous, this requires
slightly more work. Assume that X = [x′, x′ + ε] and Y = [y′, y′ + ε], and uniform type distributions
with mass Hε

w(x′+ ε) = θ′ and Hε
f (y′+ ε) = 1. For small enough ε′, firms make nearly identical profits.

Since they can only match with nearly identical types, identical profits require them to have nearly
identical factor ratios θ(x). These have to be close to the average ratio in the population. Therefore,
for ε small enough all matches lie in N , which rules out that matching can be positive assortative for
all type distributions if (9) fails.

7.5 The Non-Homogeneous Production Technology

Let output of the firm be F (x, y, r, s), and the firm of type y chooses the worker type and the labor
intensity l. As before, let the capital intensity r be given, but we no longer require constant returns to
scale in the quantity dimensions. Then the problem of a firm that chooses exactly one type x is

max
x̃,l̃

F (x̃, y, l̃, r)− l̃w(x̃)− rv(y).

The first order conditions for optimality are

Fx(x, µ(x), l, r)− lw′(x) = 0

Fl(x, µ(x), l, r)− w(x) = 0



where µ(x) and l are the equilibrium values. The second order condition of this problem requires the
Hessian H to be negative definite:

H =

(
Fxx − lw′′ Fxl − w′
Fxl − w′ Fll

)
which requires that all the eigenvalues are negative or equivalently, Fxx − lw′′ < 0 (which follows from
concavity in all the arguments (x, y, l, r)), and∣∣∣∣ Fxx − lw′′ Fxl − w′

Fxl − w′ Fll

∣∣∣∣ > 0.

After differentiating the two FOCs along the equilibrium allocation to substitute for Fxx−lw′′ = −Fxyµ′
and Fxl − w′ = −Fylµ′ and also using the first FOC to rewrite w′ = Fx/l we get∣∣∣∣ −Fxyµ′ −Fylµ′Fxl − w′ Fll

∣∣∣∣ > 0

or −FxyFllµ′ + (Fxl − Fx/l)Fylµ′ > 0 and thus PAM requires (knowing that Fll < 0)

Fxy >
(Fx/l − Fxl)Fyl

|Fll|
. (25)

Observe that this condition is similar to the one we obtained for the homogeneous case, only that now
it depends on the marginal product Fx and the concavity of F in l, Fll.

33 Finally, it is easy to show
that the firm finds it strictly optimal to indeed concentrate all its resources on one worker type if F has
increasing returns to scale in l and r. With decreasing returns to scale this is not true, and one has to
additionally impose the restriction that firms can only hire one worker type to use our methodology.

7.6 Misallocation Debate

This section supplies additional material for the discussion on misallocation in Section 4. Our illustration
is based on Adamopoulos and Restuccia (2014), who use the following production function f̃(x, y, l, k) =

a(η(xk)ρ + (1 − η)(yl)ρ)
γ
ρ with x = 1 and parameters η, ρ, γ and productivity a = Apaκ, where A is

aggregate productivity, pa is the output price, and κ is a scalar that can distinguish developing and
developed countries. They determine the rental rate R of generic capital within a larger multi-sector
model, we take it as given for our illustration that only focusses on the agricultural sector. We use their
values for their case with different aggregate factors but without distortions, as summarized in Table 3.

The distribution of farmer skill is assumed to be a lognormal with the parameters specified above.
Average land per capita plays a role as a scaling factor for the distributions of x and y. Our only
adjustment is to round the elasticity of substitution to ρ = 0.25 from their original value of 0.24, which
allows us to use third degree polynomials to calculate the optimal capital. Figure 7 shows that this does
not matter much for our ability to replicate their firm size distribution in developed and developing
countries within our matching setup with nearly identical workers (x ≈ 1).

Defining F̃ (x, y, l, r, k) = rf̃(x, y, l/r, k) and F (x, y, l, r) = maxk F̃ (x, y, l, r, k)−Rkr, we can either
use (9) directly to see whether sorting is PAM. Alternatively we can use the envelop condition developed

33The condition for sorting here depends on Fxl which is not the case in condition (9). Of course, there are transforma-
tions of (9) that include different derivatives (e.g. Fxl), obviously with a less concise and intuitive interpretation.



Table 3: Parameters

Parameter US Baseline (Rich) Less A (Poor) Source

TFP (A) 1.0 0.3987 Normalization
Price of agricultural good (pa) 0.3159 0.5209 Calibration

Rental price of Capital (R) 0.13099 0.3958 Equilibrium
Average and per capita (L/N) 169.249 19.595 Data

κ 1.0 1.0 Normalization
ρ 1/4 1/4 Calibration
η 0.89 0.89 Calibration

Mean farmer skill (µy) -1.8316 -1.8316 Calibration
Std farmer skill (σy) 4.6553 4.6553 Calibration
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Figure 7: Replication of the firm size distribution in Adamopoulos and Restuccia (2014) with our
computational algorithm with negligible spread in x and ρ = .25.

in Extension II below in this Appendix and PAM arises if

{FxyFlrFkk − FxyFlkFrk − FxkFykFlr} − {FxrFylFkk − FxrFykFlk − FxkFylFrk} > 0

⇔
0.00272284375A3p3ar

2 (kx)0.5
(
ly
r

)0.25
k2lxy

(
0.89 (kx)0.25 + 0.11

(
ly

r

)0.25
)3.0

> 0,

so that it holds for the chosen parameters in both the rich and the poor country as long as x, y, l, r, k
are positive. We find the equilibrium by first finding the optimal generic capital level given x, y, l, r and
for computational ease we approximate it by a high-order polynomial. Substituting this out to obtain
F (x, y, l, r), we can use the first two equations in (10) as a differential equation system in µ(x) and
θ(x). We use truncated distributions on both sides, and know that the top agents are matched. The
other end-point condition is that the lowest types are matched if all agents can get positive payoffs,
otherwise the cutoff type at the side that is not fully matched makes zero payoffs. We use a shooting
algorithm to hit the end-point conditions along the equilibrium path.



When we spread the type distribution for land, we use a truncated lognormal distribution with
µx = 1 and σx = 0.2. That is, the mean of land quality is still 1. We increase the spread by increasing
the distance between the truncation points. The actual algorithm is solved on a grid. Supplementary
material with construction and code are available.

7.7 Extension I. Frictions and Involuntary Unemployment

Frictional unemployment is an important aspect in the study of labor markets. Moreover, in recent
years substantially more has been understood about both the determinants of unemployment across
heterogeneously skilled agents in the presence of sorting (amongst others Shimer and Smith (2000),
Eeckhout and Kircher (2010)) and about how unemployment varies across firms of different sizes (Smith
(1999), Hawkins (2011), Kaas and Kircher (2015), Menzio and Moen (2010); Garibaldi and Moen
(2010)). Yet, little is known about how unemployment varies in the presence of sorting and variation
in firm size jointly.

The sorting framework that we laid out in the previous section is well-suited to capture multi-worker
firms with decreasing returns in production. In this section we embed a a costly recruiting and search
process in the previous setup in order to capture the hiring behavior of large firms. This setup builds
on the directed search literature (e.g., Peters (1991); Acemoglu and Shimer (1999); Burdett, Shi, and
Wright (2001); Shi (2001); Shimer (2005); Guerrieri, Shimer, and Wright (2010)), now with sorting
of heterogeneous agents and large firms. As in the previous literature, we assume for simplicity that
workers and firms are risk-neutral.

Consider a situation where the workers are unemployed and can only be hired by firms via a frictional
hiring process. As part of this process, each firm of type y decides how many vacancies vy(x) to post
for each unit of resources devoted to workers of type x that it wants to hire. Posting vy(x) vacancies
has a linear cost cvy(x). It also decides to post wage ωy(x) for this worker type. Observing all vacancy
postings, workers decide where to search for a job. Let qy(x) denote the “queue” of workers searching
for a particular wage offer, defined as the number of workers per vacancy. Frictions in the hiring
process make it impossible to fill a position for sure. Rather, the probability of filling a vacancy is a
function of the number of workers queueing for this vacancy, denoted by m (qy(x)) , which is assumed
to be strictly increasing and strictly concave. Since there are qy(x) workers queueing per vacancy, the
workers’ job-finding rate for these workers is m(qy(x))/qy(x). The job finding rate is assumed to be
strictly decreasing in the number of workers qy(x) queueing per vacancy. Firms can attract workers to
their vacancies as long as these workers get in expectation their equilibrium utility, meaning that qy(x)
adjusts depending on ωy(x) to satisfy: ωy(x)m(qy(x))/qy(x) = w(x). Note the difference between the
wage ωy(x) which is paid when a worker is actually hired, and the expected wage w(x) of a queueing
worker who does not yet know whether he will be hired or not. In equilibrium the firm takes the latter
as given because this is the utility that workers can ensure themselves by searching for a job at other
firms, while the former is the firm’s choice variable with which it can affect how many workers will
queue for its jobs. Therefore, a firm maximizes instead of (3) the new problem

max
Ry ,θy ,ωy

∫
[F (x, y, θy, 1)− θyωy(x)− vy(x)c] dRy(x) (26)

s.t. θy(x) = vy(x)m(qy(x)); and ωy(x)m(qy(x))/qy(x) = w(x)

and Ry(x) integrates to unity. The first line simply takes into account that the firm has to pay the
vacancy-creation cost, and that the number of hires depends on the amount of hiring per vacancy which
is in turn related to the wage that it offers. There are two equivalent representations of this problem
that substantially simplify the analysis. It can easily be verified that problem (26) is mathematically



equivalent to both of the following two-step problems:

1. Let G(x, y, s, r) = maxv [F (x, y, rvm(s/vr), r)− rvc] , and solve maxsy(x),Ry(x)
∫

[G(x, y, s(x), 1)−
w(x)s(x)]dRy(x) where Ry(x) integrates to unity.

2. Let C(l, x) = minv,q[cv + vqw(x)] s.t. l = vm(q), and solve maxθ(x),Ry(x)
∫

[F (x, y, θ(x), 1) −
C(θ(x), x)]dRy(x) where Ry(x) integrates to unity.

In the first equivalent formulation, the firm attracts “searchers” sy(x), who queue up to get jobs
at this firm. To these s searchers it allocates vr vacancies, so the queue length that is relevant in
the matching function is s/(vr). In order to entice searchers to come to the firm, it has to offer in
expectation a wage w(x) to them, whether or not they actually get hired. The definition of G then
reflects the fact that the firm can still decide how many vacancies to create for these workers. If the
firm creates more vacancies, searchers have an easier time finding a vacancy suitable to them, and this
increases the amount of actual labor that is employed within the firm. In the second formulation the
firm maximizes the output minus the costs of hiring the desired amount of labor. The costs include
both the vacancy-creation costs as well as the wage costs, where again the expected wage has to be paid
to all workers that are queueing for the jobs. Writing the problem in terms of G and C, respectively,
has two direct consequences:

Problem 1 has the beauty that G is fully determined by the primitives, and can be directly integrated
into the framework we laid out in Section 2 (where now G replaces F ). The firm can be viewed as if it
hires “searchers” who have to be paid their expected wage. Applying the machinery from the previous
section allows us to assess whether sorting is assortative, and what the expected wages w(x) are that are
paid in equilibrium. We take this formulation embedded in the equilibrium definition of the previous
section as the definition of a competitive search equilibrium with large firms. This allows the application
of our sorting condition (9) to G:

Proposition 3 Even in the framework with directed search frictions, a necessary condition to have
equilibria with positive assortative matching under any arbitrary distribution of types is that inequality
(9) holds for all (x, y, l, r) ∈ R4

++. With a strict inequality, it is also sufficient to ensure that any
equilibrium entails positive assortative matching. The opposite inequality provides a necessary and
sufficient condition for negative assortative matching.

Proof. Let v∗(x, y, s, r) maximize F (x, y, rvm(s/vr), r) − rvc. Also, define V ∗(x, y, s, r) as the maxi-
mizer of F (x, y, V m(s/V ), r) − V c with respect to V . Given our assumptions on the production and
matching function, it is easy to show that V ∗ is unique and determined by the appropriate first or-
der condition, which in turn implies that it is differentiable by the implicit function theorem. Clearly
V ∗(x, y, s, r) = rv∗(x, y, s, r) and we can writeG(x, y, s, r) = F (x, y, V ∗(x, y, s, r)m(s/V ∗(x, y, s, r)), r)−
V ∗(x, y, s, r)c. We obtain the first order conditions

Gy = Fy(x, y, V
∗(x, y, s, r)m(s/V ∗(x, y, s, r)), r)

Gr = Fr(x, y, V
∗(x, y, s, r)m(s/V ∗(x, y, s, r)), r)

where we drop arguments from the equation whenever there is no possibility of confusion. The argu-
ments related to ∂V ∗/∂y and ∂V ∗/∂r do not appear because of the envelop condition. Cross-partial
derivatives are



Gxy = Fxy + Fyl
∂(V ∗m(s/V ∗))

∂V ∗
∂V ∗

∂x

Gsr = Flr

[
∂(V ∗m(s/V ∗))

∂s
+
∂(V ∗m(s/V ∗))

∂V ∗
∂V ∗

∂s

]
Gys = Fyl

[
∂(V ∗m(s/V ∗))

∂s
+
∂(V ∗m(s/V ∗))

∂V ∗
∂V ∗

∂s

]
Gxr = Fxr + Frl

∂(V ∗m(s/V ∗))

∂V ∗
∂V ∗

∂x
.

Now the sorting condition GxyGsr ≥ GysGxr is equivalent to the condition on output FxyFrl ≥ FylFxr.

Problem 2 then relates the expected wages w(x) that were determined in the previous problem to
job finding probabilities of the searchers. Substituting the constraint in Problem 2 into the objective
function and taking the first order condition with respect to the queue length yields the main character-
ization of this section. It can best be expressed by writing the elasticity of the matching probability as
η(q) := qm′(q)/m(q) and by denoting the queue length that solves the minimization problem by q(x).
We then obtain

w(x)q(x) =
η(q(x))

1− η(q(x))
c (27)

The right hand side is related to the well-known Hosios condition (Hosios (1990)), which showed that
efficient vacancy creation is related to the elasticity of the matching function. The condition becomes
particularly tractable in commonly used settings in which the elasticity is constant. In this case the
queue length that different workers face is inverse proportional to the expected utility that they obtain
in equilibrium. Since better workers obtain higher expected utility w(x) as determined in Problem 1
(otherwise a firm could higher better workers at equal cost), they face proportionally lower competition
for each job and correspondingly higher job finding probabilities. This arises because the opportunity
costs of having high skilled workers unsuccessfully queue for employment is higher, and therefore firms
are more willing to create enough vacancies to enable most of these applicants to actually get hired for
the job. The logic applies even if the elasticity is not constant:

Proposition 4 Assume higher worker types create more output (Fx > 0). In the competitive search
equilibrium with large firms, higher skilled workers have lower unemployment rates.

Proof. The term η(q)/[q(1−η(q))] = m′(q)/[m(q)−qm′(q)]. This term is strictly decreasing in q, since
the numerator is strictly decreasing and the denominator is strictly increasing in q. Since output at any
firm is increasing in skill (Fx > 0) it follows immediately that in any equilibrium w(x) is increasing in
x. Implicit differentiation of (27) implies that q(x) is decreasing, which in turn implies that the chances
of finding employment are increasing in x.

The reason for this result is that the opportunity cost of an unfilled vacancy is linked to the cost
of creating another vacancy, and this cost is identical for all firms. This differs from settings with one-
to-one matching (e.g., Shi (2001), Shimer (2005), Eeckhout and Kircher (2010)) where the opportunity
cost of not filling the vacancy means loss of production, which is type-dependent and can reverse this
insight.

Interestingly, the finding in Proposition 4 implies that under positive assortative matching the firm-
size can be increasing in firm type even though the number of workers that apply for jobs is decreasing.



This can be seen mathematically as follows. The amount of labor that is actually hired, l(x), relates
to the actual number of searchers and their queue per vacancy as l(x) = s(x)m(q(x))/q(x), where we
omitted the superscript for the firm type (y = ν(x)) that hires this worker type. This relationship
implies:

l′(x) = s′
m

q
+ s

m′q −m
q2

q′.

The change in the number of searchers (s′) is determined by (10) under appropriate change of variables
(θ and f replaced by s and g). Even if the number of workers that search for employment at better
firms is not increasing, the number of hires might still be increasing because the second term is strictly
positive. This is due to the fact that high productivity firms put more resources into creating jobs for
their high-skilled applicants. If a firm tries to attract workers for whom their time-constraints make
it very costly to apply, it will invest resources to make sure that the applicants perceive a sufficiently
high probability that they will find a suitable appointment in the hiring process. In this model this is
captured through creating a sufficient number of different vacancies.

In contrast to the finding of monotonicity for the hiring probability across different workers, the
vacancy rate across firms of different sizes is ambiguous.

Proposition 5 The vacancy rate (v/l) is increasing in firm productivity (y) und PAM and decreasing
under NAM. It ambiguous in firm size.

Proof. Consider PAM (likewise for NAM). The vacancy rate (v/l=1/m(q)) is increasing in x, and
under PAM then also in y. However, from Proposition 1, firm size ambiguous in y. In particular, it is
increasing if Gyl ≥ Gxr and decreasing if −Gyl ≤ Gxr.

This result immediately stems from the fact that firm size in general is ambiguous in firm type y.

7.8 Extension II. Capital Investment

As in the discussion on the misallocation debate, consider a production process that not only takes
as inputs the amount of labor and of proprietary firm resources, but also some amount k of a generic
capital good, and creates output F̂ (x, y, l, r, k). The generic capital can be bought on the world mar-

ket at price i per unit. Optimal use of resources requires F (x, y, l, r) = maxk

[
F̂ (x, y, l, r, k)− ik

]
,

where F is constant returns in its last two arguments if F̂ is constant returns in its last three ar-
guments. Rewriting the cross-margin-complementarity condition (9) in terms of the new primitive
yields the following condition for positive assortative matching: F̂xyF̂lrF̂kk − F̂xyF̂lkF̂rk − F̂xkF̂ykF̂lr ≥
F̂xrF̂ylF̂kk − F̂xrF̂ykF̂lk − F̂xkF̂ylF̂rk. We expect that particular functional form assumptions for the
way that generic capital affects the production process will simplify this condition and make it more
amenable for interpretation in specific cases.

7.9 Extension III. Monopolistic Competition

In the previous sections, we analyzed the case where the firm’s output is converted one-for-one into
agents utility. Therefore, there are no consequences of output on its price, which is normalized to one.
An often used assumption in the industrial organization and the trade literature concerns consumer
preferences pioneered by Dixit and Stiglitz, which are CES with elasticity of substitution ρ ∈ (0, 1)
among the goods produced by different firms. For these preferences it is well-known that a firm that
produces output f̃ achieves sales revenues χf̃ρ, where χ is an equilibrium outcome that is viewed as



constant from the perspective of the individual firm.34 The difficulty in this setup is that, despite the
fact that output is constant returns to scale in employment and firm resources, the revenue of the firm
has decreasing returns to scale. Therefore, we cannot directly apply (9). But if there is assortative
matching the firm employs only one worker type, in which case revenues are f(x, y, l) = χf̃(x, y, l)ρ, and
we can apply (15) directly. If f̃(x, y, l) is multiplicatively separable and linear in l so that we can write
f̃(x, y, l) = g(x, y)l, then our sorting condition reduces to the requirement of log-supermodularity of g,
which is a known condition in the trade literature. Our condition also implies insights into the non-
separable and non-linear case. Rearranging and using F̃ (x, y, l, r) = rf̃(x, y, l/r) we get the condition
for positive assortative matching[

ρF̃xy + (1− ρ)(F̃ )
∂2 ln F̃

∂x∂y

][
ρF̃lr − (1− ρ)lF̃

∂2 ln F̃

∂l2

]

≥

[
ρF̃yl + (1− ρ)F̃

∂2 ln F̃

∂y∂l

][
ρF̃xr + (1− ρ)

(
lF̃xl − lF̃

∂2 ln F̃

∂x∂r

)]
.

Several points are note-worthy. First, the condition is independent of χ, and therefore can be checked
before this term is computed as an outcome of the market interaction. Furthermore, for elastic prefer-
ences (δ → 1) the condition reduces to our original condition (9). Otherwise, log-supermodularity also
appears in the condition.

7.10 Extension IV. Optimal transportation

Assume it costs −r · c(x, y) to move r units of waste from production site x into destination storage
y, and if one attempts to move more units r into any given amount l of storage then there is some
probability of damage d(r/l) that each unit that is stored gets destroyed. This leads to function
F (x, y, l, r) = −rc(x, y)− αrd(r/l), where α represents the lost revenue because of destruction. Unlike
in the standard Monge-Kantorovich transportation problem, storage sites do not have a fixed capacity
(except if d(r/l) is zero when r/l is below unity and a very large number if it is above). Rather, more
or less can be stored in a given location, but at increasing costs.

7.11 Extension V. Endogenous type distributions, technology choice, team-work

One way to endogenize the type distribution is to assume that there is free entry of firms (free entry
of resources in the model), but entry with type y costs c(y). If output increases in y, i.e., F2 > 0, then
it is crucial for a meaningful entry decision that c(y) is strictly increasing. If c is strictly increasing
and differentiable, and our sorting condition is satisfied everywhere, it is not difficult to construct an
equilibrium where profits equal the entry cost c(y) for all active firms. In fact, this formulation is easier
to construct: We know that the highest types match, so that µ (x̄) = ȳ. The problem is usually how to
determine at which ratio they match, i.e., to find θ(x̄). But here it is given simply by the requirement
that the profits of the highest firm equals the entry costs. Substituting the first order condition (7) into
the objective function yields profit f(x̄, µ(x̄), θ(x̄))−θ(x̄)fθ(x̄, µ(x̄), θ(x̄)), which have to equal c(µ (x̄)).
This can be then used together with the first order conditions and the differential equations in (10) to
construct the type distribution after entry at all lower types.

34The underlying form for the utility function is U = x1−µ0

(∫
c(y)ρdy

)µ/ρ
, where x0 is a numeraire good and c(y) is the

amount of consumption of the good of producer y. Then one obtains χ = (µY )1−ρP ρ where Y is the aggregatve income,

py denotes the price achieved by firm y through its equilibrium quantity, and P =
(∫

p
ρ/(1−ρ)
y

)ρ/(1−ρ)
represents the

aggregate price index.



More complicated is the analysis when one considers a common pool of workers, some of whom
choose to be managers while others choose to remain workers. This is then a teamwork problem, where
one team becomes the y′s and the other the x′s. While interesting, we leave this analysis for further
work.



7.12 Application QBTC: Additional Results

CDF of the worker skill Distribution

Figure 8: Worker Types x Distribution (CDF in levels).



Counterfactuals: 2010 values for ωy and σ
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(b) Equilibrium Allocation µ(x)
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Figure 9: Counterfactuals: 1996 economy with one parameter changed to 2010. For each row, we
compare the 1996 economy with the 1996 where one parameter has been changed. Row 1: ωy from
2010; Row 2. σ from 2010. In the first column we report the firm size distribution, in the second column
the equilibrium allocation and in the third column the skill premium.
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