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Abstract

This paper studies information transmission in social surveys where a welfare max-

imizing decision maker communicates with a random sample of individuals from a

large population who have heterogeneous preferences. The population distribution

of preferences is unknown and has to be estimated, based on answers from the re-

spondents. The decision maker cannot identify the true distribution of preferences

even if the sample size becomes arbitrarily large, since the respondents have incentive

to "exaggerate" their preferences especially as the sample size becomes larger and

each respondent has weaker influence on the decision. The quality of communication

with each respondent may improve as the sample size becomes smaller, and thus we

identify the trade-off between the quality and quantity of communication. We show

that the decision maker may prefer to sample a smaller number of individuals when

the prior is weaker.
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1 Introduction

Good public policy requires a considerable amount of information about the preferences

of affected individuals. In many instances, authorities, the press, and researchers collect

such information through consultation with representatives, polls of randomly selected

individuals, or referendums. Private firms may also be interested in communicating with

the public to find their "tastes" for marketing purposes. Indeed, policy makers’reliance

on opinion polls is well documented,1 and the design and analysis of surveys are central

concerns in marketing research.

It is widely recognized, however, that data collected through surveys may not reflect

respondents’true beliefs or opinions. In particular, a disproportionately high proportion

of respondents to social surveys tend to choose extreme answers, such as endpoints (e.g.

1 and 5, for a five-point item) on a rating scale. This strongly suggests the presence of

a systematic bias in answering survey questions, and indicates that even in the absence

of (or after correcting for) selection bias, policy makers and researchers may still have to

take into account the possibility of misreporting, when estimating the "true" population

distribution.2

It should also be noted that the way questions are constructed can also affect the

quality of information from respondents. For instance, in opinion polls on current or

proposed government policies, questions are asked often in a simple binary form "agree

or disagree", even when the preference intensity (how much they agree or disagree) varies

across individuals and such information can be of use for policy making. As of 2013 the UK

government has held eleven (consultative) referendums, the first in 1973, all of which asked

"yes or no" questions.3 Interestingly, nine of the referendums were about devolution from

the central government to local authorities, for which people would have had a wide range

of preferences as to how much power should be devolved. Indeed, the actual policy space

is not binary either, as the central government ultimately determines the precise degree of

devolution, which can also be affected by the margin of votes. Asking simple "yes or no"

questions seems to severely limit the information elicited from the public.4

1See e.g. Shapiro (2011) for a survey of the political science literature on the impact of polls on public

policies.
2For example, online product reviews have disproportionately high numbers of five and one star ratings

(Hu et al., 2009). When asked the importance of the referendum on the independence of Scotland from the

United Kingdom on the scale of 1 ("should never be done") to 10 ("very important"), 20% (second highest

fraction) and 22% (highest fraction) of the sampled respondents gave 1 and 10, respectively (BBC, 2011).

See also e.g., Greenleaf (1992), Berinsky (2004), and De Jong et al. (2008) for evidence and discussions

on such extreme response bias.
3Parliamentary sovereignty in the UK implies no national referendums can be binding. Thus they are

thought of as information elicitation from the public to inform the central legislature.
4For example, the Welsh devolution referendum in 2011 asked the binary question "Do you want the

(Welsh) Assembly now to be able to make laws on all matters in the 20 subject areas it has powers for?".
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In contrast, small-scale field surveys or consultations with community representatives

can be thought of as attempts to obtain more elaborate information from a limited number

of respondents. How would the size of a survey affect the incidence of strategic misreport-

ing? If respondents answer strategically and not necessarily honestly, what are the effective

ways to ask survey questions? Does a larger sample always lead to better estimation of

the underlying population distribution?

This paper explores the nature of communication for obtaining information about a

large population. We introduce uncertainty about the distribution of preferences into a

simple model that consists of an uninformed welfare maximizing decision maker (or a

researcher who informs the decision maker) and a continuum of individuals with hetero-

geneous preferences. Specifically, we examine how cheap talk communication between the

decision maker and randomly sampled individuals changes according to the sample size

and the quality of the prior belief about the preference distribution of the population.

One of our main findings is the trade-off between quality of communication and sample

size. Needless to say, if every respondent fully reveals their true preference, the decision

maker is better offwith a larger sample size as it renders the estimation of the distribution

of preferences more accurate. However, as the sample size increases, each respondent

has less influence on the decision maker’s estimation of the preference distribution and

consequently her decision. This leads to incentive to "exaggerate" their preferences, in

the sense that if their type is high (low) they report that their type is even higher (lower)

than it actually is, which implies that the quality of information transmission between

the decision maker and each respondent diminishes as the sample size becomes larger. As

a result, the population distribution of preferences cannot be inferred precisely, even if

the sample size is arbitrarily large. Meanwhile, we also show that some information can

be transmitted regardless of sample size, since binary communication leaves no room for

exaggeration and thus is informative, although each piece of information obtained from

respondents is inevitably coarser than in more detailed communication.

Another related finding, which is perhaps more interesting, is that the decision maker

may be better off with sampling a smaller number of individuals when the prior belief on

the population preferences is weaker. This somewhat counterintuitive result comes from

the fact that in communication with sampled individuals, each respondent plays not only

against the other respondents but also against the decision maker’s belief. If the prior belief

is weak (i.e. if there is less ex ante information about the population distribution), the

decision maker’s estimation of the population distribution is influenced heavily by messages

from the sampled individuals. Therefore, each of them may have significant influence on

the decision maker’s belief and hence decision as long as the sample size is small, and thus

In theory, the referendum could have asked precisely which matters and which subject areas (including all

or none) they wanted legislation power for.
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they may reveal more information as they have less incentive to "exaggerate". This implies

that a larger sample size does not necessarily lead to better estimation, and the optimal

sample size may be bounded.

On the other hand, when the prior belief is strong and hence the decision maker is

more confident about the preference distribution, a respondent has little influence on the

decision maker’s estimation of the population distribution even if the sample size is small,

because a strong prior means that the decision maker’s belief is hardly affected by the

result of the survey. Consequently, each respondent has stronger incentive to "exaggerate"

just as in the case of larger sample size, and the available quality of communication may

hit the lower bound of binary communication even if, for example, only one respondent

is sampled. Insofar as the best available communication is binary, the decision maker can

better estimate the population distribution as the sample size becomes larger and thus the

optimal sample size is unbounded. This is in sharp contrast to the case where the prior is

weak and the optimal sample size is bounded.

The intuition developed in this paper sheds light on the strategic link between the size

of a survey and the quality of respondents’answers, which can potentially be of practical

use. It indicates that, given the number of choices for questions in a survey, the larger

the number of respondents is, the more extreme responses we expect see and they have

to be "discounted" for reliable estimation of the population distribution. Asking binary

questions in a large survey has the advantage that no correction is required for the incen-

tive to exaggerate, while by design the information on the intensity of the respondents’

preferences/opinions is lost. A small survey, where respondents may have less incentive to

exaggerate, can outperform a very large one in the estimation of the population distribu-

tion.

The feature that binary communication loses information about individuals’preference

intensity is studied by Casella and Gelman (2008) for the design of referendums. In their

model the binary structure (voting in favour or against a proposal) is exogenous and the

decision maker is committed to a majority rule. In our model the decision maker best

responds to the communication outcome, as in opinion polls or non-binding referendums.

Moreover, binary communication in such large scale communication, which prevails in

reality, is endogenously derived in our model. The design problem for the decision maker

in the present paper is the size of a survey, which could range from a consultation with a

small number of individuals to a large scale opinion poll or non-binding referendum.

A recent paper by Morgan and Stocken (2008) studies information aggregation with

cheap talk communication.5 Similarly to ours, they consider a model with a decision

maker and a continuum of individuals with heterogeneous preferences. There are some

5See e.g., Feddersen and Pesendorfer (1997, 1998) and Goeree and Großer (2007) for information ag-

gregation in the context of voting.
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important differences. First, Morgan and Stocken (2008) assume that the message space is

binary, so that they do not analyze how the number of messages in equilibrium changes due

to the respondents’strategic incentive. Second, since they assume that the distribution of

biases of the individuals is known and aggregate uncertainty is only about the distribution

of binary signals they receive, information typically aggregates as the size of a poll becomes

arbitrarily large. This implies that if polling is costless, the decision maker always prefers

to poll an arbitrarily large number of individuals.6 In our model, on the other hand,

information does not aggregate due to the complexity of the underlying state and the

limited informativeness of equilibrium communication. A striking result that follows from

the complexity is that even if polling is completely costless, the decision maker may prefer

to sample a small number of individuals because the quality of communication becomes

higher. Therefore we are able to address the natural question of the optimal sample size,

and moreover illustrate its relation to the quality of the prior belief, which Morgan and

Stocken (2008) do not examine.

Kawamura (2011) develops a similar setting to the one in the present paper, and studies

how the (finite) number of interested parties affects information transmission from them.

He shows that the most informative equilibrium becomes less precise but converges to

binary communication as the number of interested parties increases since, as in the present

paper, binary messages do not allow exaggeration. However, while Kawamura (2011) offers

an insight into why large-scale polls often use binary questions, he assumes that the decision

maker communicates with all individuals affected by the decision, which implies the model

does not capture important aspects of poll design, namely how large the sample for a

poll should be and how the size of a poll affects the informativeness of each response. In

contrast, the present paper assumes that the population size is infinite throughout, but

the number of randomly sampled individuals the decision maker communicates with is a

choice variable. This enables us to study the trade-off between quality and quantity of

communication in polls, in relation to the possibility of misreporting and optimal sample

size.

The intuition behind the quality-quantity trade-off we study in the present paper is

somewhat related to that of the literature on committee design (Mukhopadhaya, 2003;

Persico, 2004; Gerardi and Yariv, 2008; Gershkov and Szentes, 2009; Koriyama and Szentes,

2009). In that literature, the optimal committee size is typically finite because committee

members engage in costly information acquisition, which is subject to the free-rider problem

even when the members have identical preferences. In our model, every agent (whether

sampled or not) is endowed with private information, which represents their heterogeneous

preferences.

6Also, in Morgan and Stocken (2008) the individuals have both common (ideological) interest and

private interest, while we focus the heterogeneity in their private interest.
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Other papers that study communication with multiple (mostly two) informed parties

include Gilligan and Krehbiel (1987, 1989), Austen-Smith (1993), Krishna and Morgan

(2001), Ottaviani and Sørensen (2001), Wolinsky (2002), Battaglini (2002, 2004), Le Que-

ment (2009), and Ishida and Shimizu (2012). Those papers assume that the number of

agents who communicate with the decision maker is either fixed, or up to two.

Misreporting in surveys has attracted considerable attention in social studies including

social psychology, marketing science, and political science, to name a few. Outside of

the economics literature, exaggeration by respondents is often attributed to psychological,

cultural and cognitive factors (e.g. Greenleaf, 1992; Berinsky, 2004; and De Jong et al.,

2008). In contrast, the present paper offers a model with strategic misreporting, which

may be particularly relevant to situations where the result of a survey is likely to influence

public policy that in turn affects the welfare of a large number of individuals in a substantive

manner.

To our knowledge, this paper offers a first attempt to incorporate complex population

uncertainty, which is certainly of interest in public decision making, into a strategic setting.

Estimation of distributions is known to be computationally intensive, and in order to keep

tractability we introduce the Dirichlet distribution, which is a multinomial extension of

the beta distribution.7 The Dirichlet allows us to explicitly compute posteriors for a rich

message structure (including partial pooling of types) and we can easily parametrize the

strength of the prior belief/knowledge, which captures how much the decision maker (such

as government) is informed about the population before she engages in communication.

The rest of the present paper proceeds as follows. The next section presents the model,

and Section 3 examines the relationship among informative equilibria, sample size, and

the quality of the prior. Section 4 considers the trade-off between quality and quantity of

communication and the optimal sample size. Section 5 concludes.

2 Model

Our model consists of a single decision maker and a continuum of individuals. Every

individual is labelled by a real number a ∈ [0, 1] and has type (preference) θa ∈ Θ ⊂ R.
The number of types is H ≥ 3, where the types are ordered such that θh < θh+1, for

h = 1, 2, ..., H. The location for each type θh is fixed and common knowledge. We assume

that the individuals have a quadratic payoff function−(y−θa)2, where y ∈ R is the decision
maker’s policy. Clearly an individual’s payoff is higher as y becomes closer to his type θa,

and the "ideal" policy for individual a is y = θa. The decision maker’s objective is to

7See DeGroot (1970) pp.49-51, 174-175. We also use formulas from Dickey et al. (1987). The Dirichlet

distribution has been used in the economic literature for (non-strategic) search from an unknown distrib-

ution (e.g. Rothschild, 1974; Talmain, 1992).
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maximize utilitarian "social welfare"

−
H∑
i=1

qi(y − θi)2, (1)

where qi ≥ 0 denotes the proportion of individuals whose type is θi, such that
∑H

i=1 q
i = 1.

Since y affects all the individuals with different types, the decision maker is unable to

implement the ideal policy for every individual (or type). Instead she chooses the policy

that maximizes the total "welfare" of the individuals’(1).

The decision maker does not observe the frequency vector q ≡ (q1, ..., qH) or any individ-

uals’types directly. Each individual a learns only his own type θa. Therefore, the decision

maker communicates with randomly sampled n individuals to estimate q. In particular,

the selected individuals independently send cheap talk messages to the decision maker. In

other words, communication is assumed to be completely costless and payoff irrelevant.

We allow n to be any finite number, which can be arbitrarily large.8 Also, n is assumed

to be common knowledge, which implies that the sampled individuals (respondents) know

the size of the survey.9

We assume that the frequency vector q follows the Dirichlet distribution with parame-

ters α ≡ (α1, α2..., αH) = (α0p1, α0p2..., α0pH) such that α0 > 0, pi > 0 for all i = 1, ..., H,

and
∑H

i=1 p
i = 1. It follows that

∑H
i=1 α

i =
∑H

i=1 α
0pi = α0. The density function with

respect to the frequency vector q is given by

f(q;α) =
Γ (α0)∏H
i=1 Γ (αi)

H∏
i=1

(
xi
)αi−1

,

where Γ(·) denotes the gamma function

Γ(ζ) ≡
∫ ∞

0

tζ−1e−tdt for ζ > 0.

The density function may look complex but a convenient and intuitive feature of the

Dirichlet is that the marginal distribution of qi is the beta distribution B(αi, α0 − αi).

This implies that the prior expectation of the frequency of the ith type is

E[qi] =
αi

α0
=
α0pi

α0
= pi. (2)

Therefore we can see p ≡ (p1, p2, ..., pH) as the expected prior population distribution

of preferences. The decision maker and all individuals share the same prior, before the
8We rule out the case where n is infinitely large, so that each respondent’s message has some (however

small) influence on the decision maker’s belief and policy.
9In practice, respondents should be able to have a good idea about the size of a survey, from the way

the survey is conducted and how it is publicized. For instance, detailed in-person interviews would be

adopted for a relatively small sample, while phone polls or online questionnaire would typically be used

for a larger sample.
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individuals learn their types. In our common prior Bayesian framework, each individual

updates his belief on the population distribution through his own type, while the decision

maker updates her belief on the population distribution through n messages she receives

from the respondents. Let the prior expected mean of the individuals’types be

µ ≡
H∑
i=1

piθi.

For expositional convenience we assume µ 6= θi for all i = 1, ..., H. In other words, we

rule out the non-generic case where the prior mean coincides exactly with one of the

types. Suppose that every respondent reveals their type truthfully. Let x = (x1, ..., xH)

be the count vector where xi denote the number of individuals whose type is θi, out of

n respondents. Clearly we have
∑H

i=1 x
i = n. From the decision maker’s viewpoint the

posterior distribution of qi is the beta distribution B(αi + xi, α0 − αi + n − xi) and the
expected frequency qi conditional on xi is given by

E[qi | xi] =
α0pi + xi

α0 + n
. (3)

This reflects the convenient property of the Dirichlet distribution that the posterior of qi

is affected only by xi and the sample size n, and not by the count of any other individual

x−i.

From each individual’s viewpoint, after he learns his type θa = θi, the posterior distrib-

ution of the probability mass of his type, qi, is B(αi + 1, α0−αi). That of any other type,
denoted by q−i, is given by B(α−i, α0 − α−i + 1). Hence we obtain{

E[qi | θa = θi] = α0pi+1
α0+1

E[q−i | θa = θi] = α0p−i

α0+1

(4)

That is, (4) describes the expected posterior distribution of the population preferences

from the viewpoint of an individual whose type is θi. Note that each individual updates

his belief according to the sample size of 1, which is his own type.

The Dirichlet distribution is used widely in problems where the underlying distribution

is unknown. It provides a tractable way to model a "distribution of distributions". By

construction, the expected prior distribution p can be completely arbitrary. Furthermore,

α0 can be interpreted as the "strength" of the prior belief. That is, from (3) the "sensitivity"

of the posterior with respect to the count vector of the respondents’types

∆E[qi | xi]
∆xi

(5)

is strictly decreasing in α0. This implies that the prior is influenced by the sample less (and

hence the prior belief is "stronger"), as α0 becomes larger.10 In addition, α0 can also be

10We can also see α0 as inversely related to the informativeness (strength) of a given set of data.
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seen as the level of ex ante aggregate uncertainty, conditional on prior common knowledge

about the population distribution. When α0 is high, the realized population distribution

is likely to be similar to the prior. For example, if α0 → ∞ then E[qi | xi] → E[qi] = pi

for any xi. In this case, the prior is identical to the posterior (and hence the realized

population distribution) with probability 1, which corresponds to a completely known

population distribution (i.e. no aggregate uncertainty). Consequently the decision maker

can choose the (near) first-best policy even without any communication. In contrast, when

α0 is a finite number, the realized distribution may well be different from the prior and

there is uncertainty in the population distribution of preferences.

From an individual’s perspective, the other individuals’types are correlated with his

own since (4) implies E[qi | θa = θi] > E[qi] for finite α0. The level of correlation is

decreasing in α0, as we have
dE[qi | θa = θi]

dα0
< 0.

In other words, the lower α0 is, the more likely the others are of his type. In particular, if

α0 → 0 we have E[qi | θa = θi]→ 1, which means the other individuals’types are perfectly

correlated with his (i.e. all the others share the same type as his own). Thus aggregate

uncertainty implies correlation of types (and vice versa) in the present framework. The

link between the weakness of the prior as measured in (5) and correlation takes an extreme

form under the Dirichlet assumption especially for α0 close to 0. As we will see later,

what is necessary for the intuition behind our results is that, an additional observation of a

particular type skews the posterior towards that type, and the magnitude of the additional

skew is parametrized monotonically by a single variable (α0 under the Dirichlet). This

feature requires some form of correlation of types but not necessarily the Dirichlet (apart

from its tractability). For example, the same intuition would hold if from an individual’s

viewpoint the types of the others are correlated not only to his own type but also types

close to his.11

The timing of the game is as follows:

1. All individuals and the decision maker are endowed with a common prior on the

preference distribution;

2. individuals privately learn their types;

11The negative association between the strength of the prior and correlation follows directly from the

Dirichlet assumption. The covariance of any two different types is given by −αiα−i
(α0)2(α0+1)

, so that any type is

negatively correlated with the other types. In particular, from each individual’s viewpoint the correlation is

with respect to his own type only, and not to any other types. This suggests that each type in our discrete

type space could be better interpreted as a simplified representation of (possibly continuous) types that

are close to each other and positively correlated.
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3. The decision maker randomly samples n individuals who report costless, non-verifiable

messages;

4. The decision maker estimates the population distribution from the messages and

chooses y;

5. Payoffs are realized.

In what follows we introduce the possibility that the individuals may not fully reveal

their types. In particular, we will see that the type space may be partitioned. Note that

while the decision maker has n pieces of information (messages), each individual has only

one (his own type).

3 Equilibrium

Throughout this paper we focus on symmetric partitional strategies of the individuals, in

which there are K non-overlapping groups, each of which consists of one or more consec-

utive type indices. Naturally we have K ≤ H, that is, the number of groups is weakly

smaller than the number of types. Any respondents in the same type group induce (from

their viewpoint) the same distribution of policy by the decision maker, and without loss of

generality we assume that all respondents in the same group send an identical message.12

As in any cheap talk models, there may be multiple equilibria in our model, and in par-

ticular for any parameter values there exists an uninformative ("babbling") equilibrium

where all respondents send uninformative messages and the decision maker chooses her

policy based only on her prior. However, the decision maker is strictly better off in an in-

formative equilibrium as she can use additional information from respondents to maximize

her conditional expected payoff. This also implies that all individuals are ex ante better

off in an informative equilibrium than in the uninformative equilibrium, since ex ante they

share common interest with the decision maker. In what follows we will derive informative

equilibria of the game.

Let Gk be the set of type indices in the kth group from the left hand side of the type

space. For example, if K = H each type reports a distinct message to the decision maker,

and Gk = {k}. On the other hand, if K = 1, then G1 contains all types: G1 = {1, 2, .., H}.
Let z ≡ (z1, ..., zk, ..., zK) be the count vector of messages from the respondents in each

12Respondents in the same group do not have to send the identical message, as long as they induce

the same probability distribution of policy (or equivalently the same belief of the decision maker on their

types). However, such an equilibrium is outcome equivalent to the one where all respondents in the same

group send an identical message, in the sense that the same combination of the respondents’types results

in the same policy.
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group. Naturally we have
∑K

k=1 z
k = n. The first order condition with respect to (1) gives

the decision maker’s best response conditional on the messages:

ȳ(z) =

H∑
i=1

E[qi | z]× θi, (6)

where E[qi | z] is the posterior expected frequency of type i.

Let G(i) denote the set of type indices (group) that has i as an element. By definition,

if i+1 ∈ G(i) then G(i) = G(i+1). If type i is in the kth group, then G(i) = Gk. Suppose

that all types in G(i) send the same message to the decision maker and hence she cannot

tell exactly how many of the respondents are of type θi. The expected frequency of each

type θi, conditional on the count vector of messages z is given by

E[qi | z] =
α0
∑

l∈G(i) p
l + z(i)

α0 + n︸ ︷︷ ︸
expected frequency of G(i)

pi∑
l∈G(i) p

l︸ ︷︷ ︸
weight within G(i)

, (7)

where z(i) denotes the number of respondents in G(i), i.e. z(i) ≡
∑

l∈G(i) x
l.13 Since the

decision maker does not observe xi directly for group G(i) that contains two or more types,

the estimation of qi is more complex than in (3), where xi is known. We can interpret the

construction of (7) in the following two steps: i) we first calculate the expected frequency

of G(i) respect to the other groups; and ii) "allocate" the expected frequency of the group

according to the relative prior frequency (weight) of θi within the group. The first step is

analogous to (3) but here the difference is that the numerator involves the sum of prior

frequencies and the number of messages for the group, rather than those of a specific type.

From each respondent’s viewpoint, his message induces a distribution of the decision

maker’s policy, which is influenced also by the other respondents’messages. Note from (6)

and (7) that, for any possible count vector of the other respondents, the difference in the

induced policy by sending two different messages, respectively for Gj (thereby increasing

zj by one) and Gk (increasing zk by one), is given by∑
i∈Gj

1

α0 + n

pi∑
l∈Gj p

l
θi −

∑
i∈Gk

1

α0 + n

pi∑
l∈Gk p

l
θi, (8)

which is independent from the messages from the other respondents. This implies that from

each respondent’s viewpoint his message influences the expectation but not the variance of

the policy. Therefore, as we assume quadratic payoffs, we can focus on the expected policy

induced by each message when we consider a respondent’s strategy.

Every individual updates his own belief on the population distribution, according to

his own type. Given that the individual’s type is θi, the types of all the other individuals

13See Dickey et al. (1987), pp777-780.
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are Dirichlet distributed with parameters α′ = (α1, ..., αi+1, ..., αH). This implies that the

posterior distribution of his own type is B(αi + 1, α0 − αi) while that of the other types is
B(α−i, α0 − α−i + 1), where θ−i denotes a type other than θi.

If the underlying preference distribution is Dirichlet distributed, the count vector x fol-

lows the multivariate Pólya distribution (also known as the Dirichlet compound multino-

mial distribution):

Pr(x | α) =
n!

ΠH
i=1(xi!)

Γ (α0)

Γ (α0 + n)

H∏
i=1

Γ (αi + xi)

Γ (αi)
,

where xi is the number of respondents whose type is θi.

Let us consider the respondents’choice of messages. We denote the message sent by

any individuals in G(i) by m(i); and the message sent by any individuals in Gj by mj. If

a respondent’s type is θi and he sends the message m(i), then his expected payoff is given

by

u(θi,m(i)) =

−
n∑

x1=0

n−x1∑
x2=0

...

n−x1−,...,−xH−1∑
xH=0

Pr(x | α′)
(
θi −

H∑
t=1

E[qt | z1, ..., z(i) + 1, ..., zK ]× θt
)2

,

where zk =
∑

l∈Gk x
l for k = 1, ..., K. If he deviates and mimics a type in the jth group

such that Gj 6= G(i), then

u(θi,mj) =

−
n∑

x1=0

n−x1∑
x2=0

...

n−x1−,...,−xH−1∑
xH=0

Pr(x | α′)
(
θi −

H∑
t=1

E[qt | z1, ..., zj + 1, ..., z(i), .., zK ]× θt
)2

.

Note that the expected payofffunction u(θi, ·) already incorporates (6), the decision maker’s
best response to the messages from the respondents given that all of them follow the

partitional strategy. Hence partitional strategies form a perfect Bayesian equilibrium if,

for any θi

u(θi,m(i)) ≥ u(θi,mj) ∀mj = m1,m2, ...,mK .

The expected payoff function u(θi, ·) is complex, but since the original payoff function is
quadratic, for each respondent’s best response conditional on his type, we can focus on the

decision maker’s expected policy (from a respondent’s viewpoint) induced by his message.

Specifically, it suffi ces to find which message induces the expected policy closest to his ideal

policy θa.

How does communication between the decision maker and the respondents take place

in equilibrium? As we will see clearly in the next section, unlike cheap talk models with
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continuous types there can be a fully revealing equilibrium when the prior is weak (α0 low)

and the sample size is small. Since in such a case each respondent has relatively large

influence on the policy and thus less incentive to exaggerate, the best response is to reveal

his type truthfully rather than mimicking another type and thereby shifting the expected

policy further away from his ideal.14 This points to the possibility that we have more

informative equilibria with each responder, when a small sample size is combined with a

weak prior.

Meanwhile, the following proposition states that, when the prior belief about the pop-

ulation distribution is strong enough, generically the only informative equilibrium commu-

nication is the one that can be played with binary messages (e.g. "yes or no"). In this

equilibrium, the respondents’types are partitioned into only two groups, and any respon-

dent from a group induces the same belief as the other respondents in the group. In other

words, the decision maker can correctly infer to which of the two type groups a respondent

belongs, but cannot precisely know the respondent’s type.

Proposition 1 If the prior belief about the population distribution of preferences is suf-
ficiently strong (α0 is suffi ciently large), a binary equilibrium in which only two messages

are used exists for any sample size n, whereby all types below the ex ante average type µ

send one message and those above µ send the other. The binary equilibrium is the only

informative equilibrium in partitional strategy.

Proof. See Appendix I.

As we have already suggested in the Introduction, this proposition has a simple in-

tuition. Note that, the prior stronger is, the smaller influence each respondent has on

the decision maker’s belief and hence her policy, regardless of the sample size. Also, the

expected prior policy from each respondent’s viewpoint becomes closer to the prior expec-

tation µ. Suppose there are three or more groups (K ≥ 3) partitioning the type space,

and consider a middle group which is neither the bottom G1 or the top GK . When α0 is

high, a respondent in such a group whose ideal policy is lower (higher) than µ deviates and

mimics one in a lower (higher) group, since by doing so he can render the expected policy

closer to his ideal. In other words, respondents whose types are above µ wish to overstate

their types as much as they can, and respondents below µ understate their types as much

as they can. Binary communication is "robust" to the incentive to exaggerate, because the

respondents may not possibly exaggerate their types when they have the choice between

two messages (above or below µ).

A larger sample size has a similar effect on communication to a stronger prior, in that

it weakens the decision maker’s response to each respondent’s message.

14If the type space is continuous, even infinitesimally small incentive to exaggerate leads to misreport

as a neighbourhood type, so that the fully revealing equilibrium would not exist.
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Proposition 2 For sample size n suffi ciently large, either i) no informative equilibrium in
partitional strategy exists; or ii) the most informative equilibrium in partitional strategy

is binary.

Proof. See Appendix I.

When a large sample size is combined with a moderate or strong prior, it leads to binary

communication for essentially the same reason and intuition as in Proposition 1: if there

are more than three groups, respondent types in a middle group deviate and mimic one

in an extreme group due to their weak influence on the policy.15 On the other hand, if

the prior is extremely weak, even binary communication equilibrium may not exist for a

very large sample size since types close to the boundary types in the binary partition has

incentive to deviate.

Note that when α0 is close to 0 a large proportion of the population are likely to

be concentrated on one type due to high correlation. Consider the highest type in the

lower group of a binary partition. From the viewpoint of a respondent who finds himself

having this type, the expected action (given that the other respondents follow the binary

partitional strategy) will be lower than his ideal, since the other respondents are very likely

to share the type and induce the decision maker’s belief that their expected type is the

expected type of the lower group, not the highest type in the group. Thus, the respondent

may mimic a type in the higher group to render the expected policy higher, which upsets

the binary equilibrium.

This does not imply that there is no informative equilibrium. In fact, even for small

α0 and large n there could be a mixed strategy equilibrium where respondents randomize

their messages. Unfortunately it is impossible to characterize a mixed strategy equilibrium

since the posterior is no longer the Dirichlet and hence does not have a closed form.16

However, in our framework very small α0 has a somewhat unrealistic feature that, due to

high correlation, a vast majority of the individuals is likely to be concentrated on one type,

which the decision maker does not know. In practice, such situations may be of less interest

because there is little conflict of interest between the decision maker and any individuals.

In what follows we focus on α0 such that a binary equilibrium exists, which implies we

expect to see at least some dispersion of realized preferences.

15Kawamura (2011) has given a related proposition but with a finite number of individuals all of whom

send a message to the decision maker (hence there is no sampling), where the decision maker concerns only

the types of those individuals, not the underlying probability distribution of types itself. In the present

framework the decision maker’s Bayesian updating is much more complex because she has to estimate

the entire population distribution regardless of the sample size n. In other words, the decision maker has

to assign a (strictly positive) posterior probability mass to all possible types θ1, θ2, ..., θH even when the

sample size is very small or when no respondent turns out to be of certain types.
16Moreover, as there is no guarantee that messages shift the policy linearly, we cannot focus on the

expectation of y and have to take into account the variance, which also makes our analysis intractable.
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θ 1 θ 2 θ 3
µ θ 1 θ 2 θ 3

µ

Figure 1: Two observationally equivalent preference distributions for binary data

It is easy to see that, given binary communication, the decision maker can never esti-

mate the preference distribution precisely. Figure 1 shows an example of two distributions

that the decision maker is unable to distinguish even if the sample size is arbitrarily large:

she can (almost) precisely estimate the proportions of the individuals are below and above

µ, but she can never accurately infer how the types are distributed above µ. This makes

it impossible for the decision maker to implement the first best policy for any sample size,

and suggests the possibility that limiting the sample size may improve the decision maker’s

estimation, which is the focus of the next section.

Propositions 1 and 2 assume that there does not exist a type that coincides with the

prior expected mean µ. If such a type exists, this type does not have incentive to exaggerate

as his posterior expectation on the other respondents’types also coincides with his type

and the most informative equilibrium features three groups, not two. Clearly, when H ≥ 4,

even if we have ternary communication where all individuals whose type coincides with µ

send a distinct message, there does not exist a fully revealing equilibrium for large n or α0.

So far we have assumed H ≥ 3, so as to capture the complexity of the population

distribution of preferences. When the distribution has a simpler form, information does

aggregate for large n, as already found in e.g. Morgan and Stocken (2008):

Remark 1 If there are only two types (H = 2), then the binary communication (full

revelation) equilibrium exists for any α0 and n. The information aggregates for n arbitrarily

large.

With two types, each type renders the decision maker’s action closer to their ideal only

by revealing truthfully, since mimicking the other type merely shifts it away from his ideal

policy. That is, there is neither any room for exaggeration nor incentive to misreport, and

hence respondents reveal their types truthfully. Remark 1 highlights the importance of
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the complexity (specifically, the presence of varying preference intensity) in the underlying

preference distribution for our analysis.

What if the decision maker’s action y is binary for exogenous reasons? This may apply

to, for instance, the ratification of a treaty or the choice of two candidates for a particular

position who are perfectly committed to fixed policies. If the preferences are also binary

(H = 2), then there is no strategic incentive to misreport and the decision maker knows

the true distribution. However, if H ≥ 3, while the decision maker wants to implement the

action closer to the average type of the population, it may not be correctly estimated even

with an arbitrarily large sample, for the same reason as in the case where the policy space

is continuous. To see this, suppose the prior distribution is such that the decision maker’s

optimal choice from the two possible actions y ∈ {y0, y1} ⊂ R changes according to the
true population distribution. Then if the decision maker takes the respondents’messages

at face value, every non-extreme respondent has incentive to mimic the extreme type whose

favoured policy is the same as his. This does not depend on the sample size, because even

if a non-extreme respondent has large influence on policy (because of small α0 or n), he

does not gain by revealing truthfully since the policy cannot be "fine-tuned" in response

to his message.17 At the same time, the binary equilibrium exists as it is consistent with

the respondents’incentive. The above discussion is summarized as follows:

Remark 2 If the policy space is binary and there are three or more types (H ≥ 3), then

the binary equilibrium is the only informative partitional equilibrium for any sample size.

Remarks 1 and 2 indicate that both type space and policy space have to be richer

than binary for sample size to affect the quality of communication. However, as we have

discussed in the Introduction, in many situations of interest the actual policy space is

much richer than binary, while it may well be presented as binary in large-scale surveys or

referendums. Indeed, in light of Proposition 2 we can understand such binary questions as

an equilibrium outcome under a non-binary environment. In the following, we return to

H ≥ 3 and continuous policy space to study the choice of sample size.

4 Sample Size and Quality-Quantity Trade-off

In the previous sections we have seen that the sample size may be negatively associated

with the quality of each message. Meanwhile, it is clear that given the quality (infor-

mativeness) of communication between the decision maker and each individual, a larger

sample size allows the decision maker to estimate the population distribution more accu-

rately. This suggests an interesting trade-off between quality and quantity of messages

17In other words, all he can do is to increase the probability of his preferred policy (between the two)

being implemented, by pretending to be an extreme type.

16



from respondents.

When the underlying uncertainty on the preference distribution is simple, even coarse

communication may allow the decision maker to identify the population distribution pre-

cisely, as the sample size becomes arbitrarily large. This is the case, for example, when the

population distribution is normal with an unknown mean, where the exact proportion of

the individuals below or above a threshold type gives suffi cient information to precisely in-

fer the entire distribution. The Dirichlet has much less structure on its posterior. Hence in

order for the decision maker to estimate the population distribution exactly, every respon-

dent must reveal truthfully and also the sample size must be arbitrarily large. However,

from Proposition 2 we know that this cannot be an equilibrium outcome.

In the following we study how the decision maker’s ex ante expected equilibrium payoff

("social welfare") changes according to the number of respondents, by assuming that the

decision maker can commit to a sample size and the respondents know it. This is an impor-

tant assumption in our model not least because conditional on a certain number of received

messages from the respondents, the decision maker is always tempted to sample more to

estimate the population distribution better.18 Likewise, individuals in the population who

are not sampled would always like to communicate and influence the policy in their favour.

If the decision maker cannot commit to an announced sample size, the respondents would

anticipate that the actual sample size is arbitrarily large, in which case only binary commu-

nication is available. However, if the decision maker has to choose her policy immediately

after communication (and no time is left for a second round communication) then this time

constraint itself may function as a commitment device.

The decision maker’s expected payoff conditional on the sample size n and the best

response (6) is computed by

uDM(n) = −
n∑

x1=0

n−x1∑
x2=0

...

n−x1−,...,−xH−1∑
xH=0

Pr(x | α)︸ ︷︷ ︸
dist. of type counts

(
H∑
i=1

E[qi | z]
(
ȳ(z)− θi

)2

)
︸ ︷︷ ︸

exp. payoff conditional on message counts

, (9)

where Pr(x | α) denotes the multivariate Pólya distribution, z = (z1, .., zK) is the count

vector of the messages in a partitional equilibrium and zk =
∑

l∈Gk x
l as described above.

Let us observe the quality-quantity trade-off through an example, the details of which

can be found in Appendix II. Table 1 presents the decision maker’s ex ante expected payoff

(i.e. ex ante "social welfare") according to sample size n when H = 3 (θ1 = 0, θ2 = 1/2,

θ3 = 1) and the prior expected mean µ = 7/16 < 1/2. In this example the middle type

18Throughout this paper we maintain the assumption that the decision maker does not commit to any

decision rule that ex ante specifies the policy to be implemented according to the messages sent. This

assumption would be appropriate to analyze information transmission through interviews with represen-

tatives, opinion polls, and non-binding referendums where the decision maker determines the policy after

obtaining information from a population.
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α0 = 1.5

n full binary

0 −0.0898

1 *−0.0742 −0.0788

2 *−0.0678 −0.0742

3 *−0.0643 −0.0717

4 *−0.0621 −0.0702

5 *−0.0606 −0.0691

6 N/A −0.0683

→∞ N/A *−0.0633

α0 = 4.5

n full binary

0 −0.0898

1 N/A −0.0877

2 N/A *−0.0863

3 N/A *−0.0852

4 N/A *−0.0844

5 N/A *−0.0837

6 N/A *−0.0832

→∞ N/A *−0.0782

Table 1: Decision maker’s expected payoff (= "social welfare") when θ1 = 0, θ2 = 1/2, θ3 =

1, p1 = 2/8, p2 = 5/8, p3 = 1/8. An asterisk(*) denotes social welfare in neologism proof

equilibrium.

θ2, which is above the expected mean, has incentive to exaggerate and mimic the high

type θ3. There are multiple equilibria in this game, and the payoff in the uninformative

equilibrium is the same as that of no communication at all n = 0. The most informative

equilibrium in partitional strategy is either fully revealing, in which case each type θi for

i = 1, 2, 3 sends a distinct message; or binary, in which case respondents with θ1 and θ2

send the same message and those with θ3 send a separate message.

Assuming that all respondents play the same equilibrium strategy, we can see that,

if α0 = 1.5 and the most informative equilibrium is chosen, the social welfare is non-

monotonic in the sample size since the welfare under full revelation for n = 5 (−0.0606) is

higher than the welfare under binary communication for n = 6 (−0.0683). Moreover, the

social welfare for n = 5 is higher than for n→∞, which implies that the optimal sample
size is bounded even if sampling itself is completely costless. This is because for n ≥ 6

the incentive to exaggerate is so strong for the respondents that, there does not exist an

equilibrium where every type reveals truthfully. When the prior is stronger (the expected

payoffs are listed for α0 = 4.5), each respondent has weaker influence on the decision

maker’s posterior hence her policy as we have seen in (3). This leads to larger incentive

to exaggerate even if the sample size is very small. Consequently the only informative

partitional equilibrium is binary, regardless of the sample size. Therefore, the expected

social welfare is monotonically increasing in the sample size n.

The two cases in Table 1 indicate that, given the same expected prior distribution,

the decision maker may prefer to sample a smaller number of individuals when the prior

is weaker. Figure 2 shows how the optimal sample size changes according to α0. As we

discussed in the previous section, when α0 is very small the binary equilibrium may not

exist. In this example α0 ≥ 4/3 guarantees its existence for any n. It is easy to check
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n = 5

n = 4

n = 3

n

1.4 1.5 1.6 1.7 1.8 1.9 2.0
0

0.072

0.070

0.068

0.066

0.064

0.062

0.060

Welfare

Figure 2: Welfare under full (n̄) and binary (n→∞) communication

that the largest sample size that supports full revelation, denoted by n̄, is decreasing in α0.

Intuitively, as the decision maker’s belief is less influenced by the respondents’messages, the

incentive to exaggerate becomes stronger, which makes it harder to sustain full revelation.

The solid lines in Figure 2 represent the welfare under full revelation with the largest feasible

sample size, and the dashed line represents the welfare under binary communication with

an arbitrary large sample.19 We can observe that, for α0 ≥ 4/3, the optimal sample size is

5 up to α0 ≈ 1.562, and 4 when α0 is between 1.562 and 1.633. For α0 larger than 1.633,

although full communication can be supported in an equilibrium for small n, the optimal

sample size is unbounded. Thus the optimal sample size is non-monotonic in the strength

of the prior.

Our argument regarding optimal sample size is based on symmetric strategies. In prin-

ciple, if we allow asymmetric strategies, having a larger sample than the "optimal" one

above may never hurt, since those additionally respondents can play the uninformative

equilibrium without decreasing the welfare. However, we can interpret our result with

asymmetric strategies (or equilibrium), as long as we define optimal sample size to be the

smallest n that yields the highest welfare. This can be justified, for example, if there is a

small sampling cost that is increasing in n and the decision maker knows which communica-

tion equilibrium she will play when deciding n. Alternatively, we can use the uninformative

equilibrium for respondents beyond n as a justification for pre-determined sample size: even

19The reason why the welfare is decreasing in α0 is that the prior expected distribution is relatively

dispersed in this setup. In general, if the population is dispersed the welfare tends to be lower, and here

higher α0 means that the realized distribution is indeed more likely to be dispersed. When the prior

expected distribution is concentrated, the welfare in an informative equilibrium can be increasing in α0.
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without commitment to sample size n, the decision maker can play the most informative

equilibrium with n respondents, and the uninformative equilibrium with the others.

The discussion in this section can be summarized as follows.

Proposition 3 If the prior belief about the population distribution of preferences is suffi -
ciently strong (α0 is suffi ciently large), the optimal sample size is unbounded. Otherwise,

the relationship between social welfare and sample size may be non-monotonic and the op-

timal sample size may be bounded. The relationship between α0 and the optimal sample

size may be non-monotonic.

The result that the optimal sample size is unbounded when α0 is suffi ciently large

follows from Proposition 1: if binary communication is the only informative equilibrium,

then a larger sample unambiguously leads to higher welfare.

We have focused on perfect Bayesian equilibria of the game, but in practice, respon-

dents to a survey may not necessarily answer the questions and instead might communicate

in their own way. For example, a respondent may send a detailed message about his pref-

erence, even when he is asked a "yes or no" question. How would the decision maker

react to such an off-the-equilibrium message? As indicated in Table 1, the binary equilib-

rium is "neologism proof" (Farrell, 1993) with a large sample size and/or α0, which means

binary communication is not only simple but also robust to potential off-the-equilibrium

messages.20 In other words, any non-binary (perhaps more detailed) off-the-equilibrium

message by a respondent cannot be credible and hence must be no more informative than

a binary message.

The intuition for the robustness of binary communication can be presented somewhat

more precisely as follows. Note that in the example of this section, θ1 and θ2 are the types

of respondents who may wish to send a more "detailed" message because they pool and

send the same coarse message in equilibrium. Clearly a respondent whose type is θ1 wishes

separate himself from θ2 by using an off-the-equilibrium message (neologism), because if

he successfully convinces the decision maker of his type he can render the policy lower

and thus closer to his ideal. However, since θ2 is lower than the prior mean µ = 7/16,

their incentive under large sample size and/or α0 is also that they want to convince the

decision maker that their type is extreme (θ1) by using a neologism. Insofar as both θ1

and θ2 in the binary equilibrium want to convince the decision maker that their type is θ1,

such a neologism can never be credible (because both types would use it), and indeed no

more informative than the original binary communication where θ1 and θ2 send the same

message. This also implies that in order to play the binary equilibrium with a large sample

size the decision maker does not need commitment to the restricted message space.

20See Appendix II for a detailed discussion on neologism proofness in the example of this section.
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5 Concluding Remarks

This paper has studied information transmission in communication with sampled individ-

uals from a large population. Our results shed light on the design and interpretation of

small to large scale social surveys and non-binding referendums, which have substantial

influence on public decisions in reality. The model developed in this paper offers an insight

into why large surveys and referendums ask simple, often binary "yes or no", questions; and

why they attract extreme responses systematically when non-binary questions are asked.

In particular, we highlight the trade-off between the quality and quantity communication

caused by respondents’strategic incentive to misreport. Since a large sample size may di-

minish the quality of communication with each respondent, the optimal sample size may be

bounded, even if communication and information processing are completely costless. We

have demonstrated that this is especially the case when the prior belief on the population

distribution of preferences is weak.

Throughout this paper we have assumed the decision maker can commit to a sample

size. Perfect commitment to a sample size may seem contradictory to the assumption that

the decision maker optimally responds to messages without committing to a mechanism.

However, if the decision maker has to choose her policy immediately after communication

(and no time is left for a second round communication) then this time constraint itself may

function as a commitment device: the decision maker may credibly sample a fixed number

of individuals to ask their preferences.

For a decision maker who is not time constrained, a natural extension of our model

is sequential sampling. In this case, the commitment problem seems severer because the

decision maker will always be tempted to ask more individuals, as long as communication

is costless and there is no time constraint. We could introduce a cost of sampling, in

which case the decision maker will determine when to stop sampling, depending on the

information she has obtained. If the decision maker can set the cost of sampling, it may

become a commitment device to sampling a small number of individuals. We would then

have to give up our parametric Bayesian approach as there is no known analytical solution

for the optimal stopping problem when the type space is non-binary.

6 Appendix I

6.1 Proposition 1

Proof. Consider an arbitrary partition of the type space {θ1, θ2, ..., θH} into J(≤ H)

disjoint groups. Let θ(j,1) be the lowest and θ(j,Sj) be the highest type in the jth group

that consists of Sj types. Let π : (j, s) 7→ {1, 2, ..., H} be a function from the identity of
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a group j and the order within the group s to the original type ordering. Clearly we have

π(1, 1) = 1 (i.e., θ(1,1) = θ1) and π(J, SJ) = H (i.e., θ(J,SJ ) = θH). For a group with a single

type, Sj = 1 and θ(j,Sj) = θ(j,1). In the following we will show that any partition such that

J ≥ 3 and θ(2,1) < µ cannot be an equilibrium if α0 is large enough, since this boundary

type θ(2,1) has incentive to deviate and mimic a type in the first group. Likewise, for any

partition such that J ≥ 3 and θ(J−1,SJ−1) > µ, this type θ(J−1,SJ−1) deviates and mimics a

type in the Jth group.

First, let us denote the expected type of an individual in the jth group by

θ̄(j) ≡
π(j,Sj)∑
g=π(j,1)

αg∑Sj
s=1 α

(j,s)
θg.

Note that θ̄(j) depends only on the parameters of the prior and is independent from the ex

post realization of individual types. As we have seen in (8) this ensures that the variance

of the decision maker’s policy from the respondent’s viewpoint does not change according

to his individual message, and thus we can focus on which message induces the closest

expected policy to the respondent’s ideal policy.

Regardless of the partition of the type space, the ex ante expected type of the individuals

from the decision maker’s viewpoint is µ. In other words,
J∑
j=1

∑Sj
s=1 α

(j,s)

α0
θ̄(j) =

H∑
i=1

αi

α0
θi = µ.

Suppose that a respondent has learnt his type, and let us consider from his viewpoint

how the other respondents affect the decision maker’s belief (and policy). Note that the

partition of types plays an important role because the decision maker’s Bayesian updating

is based on it. Let zj be the number of respondents in group j. We have
∑J

j=1 z
j = n. If

all respondents follow the partitional strategy, the decision maker’s policy conditional on

their messages is given by

y(z1, z2, ..., zJ) = µ̂(z1, z2, ..., zJ) =
J∑
j=1

∑Sj
s=1 α

(j,s) + zj

α0 + n
θ̄(j).

Suppose that all respondents except θa follows the partitional strategy and θa = θ(2,1) (i.e.

he is the the lowest type in the second group). If this respondent follows the partitional

strategy, the expected policy of the decision maker is given by

µ̄2(2) ≡
J∑
j=1

∑Sj
s=1 α

(j,s) + E[zj | θi = θ(2,1)]

α0 + n
θ̄(j) +

1

α0 + n
θ̄(2)

=
J∑

j=1,j 6=2

∑Sj
s=1 α

(j,s) + (n− 1)
∑Sj
s=1 α

(j,s)

α0+1

α0 + n
θ̄(j) +

∑S2
s=1 α

(2,s) + (n− 1)
∑S2
s=1 α

(2,s)+1

α0+1
+ 1

α0 + n
θ̄(2)

=
α0

α0 + 1
µ+

1

α0 + 1
θ̄(2). (10)
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Since this is a convex combination of the prior expected type µ and the expected type of

the group where the respondent belongs to, if θ(2,1) < µ then θ(2,1) < µ̄2(2).

If the respondent with θa = θ(2,1) mimics a respondent in the first group, then the

expected action of the decision maker is

µ̄2(1) =

∑S1
s=1 α

(1,s) + E[z1 | θi = θ(2,1)] + 1

α0 + n
θ̄(1) +

J∑
j=2

∑Sj
s=1 α

(j,s) + E[zj | θi = θ(2,1)]

α0 + n
θ̄(j)

=
J∑
j=1

∑Sj
s=1 α

(1,s)

α0 + 1
θ̄(j) +

1

α0 + n
θ̄(1) +

(n− 1)

(α0 + n)(α0 + 1)
θ̄(2)

= µ̄2(2)− 1

α0 + n
(θ̄(2)− θ̄(1)). (11)

We now observe that for large enough α0

θ(2,1) < µ̄2(1) < µ̄2(2), (12)

which implies that the decision maker’s policy is closer to his ideal when he mimics a

respondent in the first group whose expected type is lower than his own. Note that from

(6) and (7) the respondent’s message does not influence the variance of the decision maker’s

policy. Thus (12) implies that the expected payoff of a respondent in the second group is

higher if he mimics one in the first group.

Similarly, consider a respondent whose type is the largest in the (J − 1)th group:

θa = θ(J−1,SJ−1). If θ(J−1,SJ−1) > µ then θ(J−1,SJ−1) > θ̄(J − 1). Hence θ(J−1,SJ−1) > µ̂2,

which means that from the viewpoint of the respondent θ(J−1,SJ−1) > µ, the decision maker’s

expectation on any other individual is lower than his own type. Therefore, for large enough

α0, the decision maker’s policy is closer to his ideal policy when he mimics a respondent

in the Jth group:

θ(J−1,SJ−1) > µ̄J−1(J) > µJ−1(J − 1). (13)

Hence for any arbitrary partition, if θi 6= µ for all i and there exists a type of respondent

who does not belong to the first or the last group, he has incentive to deviate when α0 is

large enough.

The above argument rules out any partitional equilibrium with three or more groups.

Consider the binary partition with only two groups where θ(1,S1) < µ < θ(2,1). No respon-

dent deviates for α0 above a certain value because mimicking a type in the other group

renders the expected policy further away from their ideal:

θ1 < ... < θ(1,S1) < µ̄1(1) =
α0

α0 + 1
µ+

1

α0 + 1
θ̄(1) (14)

and

µ̄1(2) =
α0

α0 + 1
µ+

1

α0 + 1
θ̄(2) < θ(2,1)... < θH . (15)

Hence we conclude that the only informative equilibrium is binary for large enough α0.
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6.2 Proposition 2

Proof. From (11), (12) and also (13) hold for large enough n, regardless of α0. This rules

out any partitional equilibrium with three or more groups.

A binary partition equilibrium does not exist either, if n is large and α0 is close to 0.

To see this, consider any binary partition where the second group contains two or more

types. Then for α0 close enough to 0

θ(2,1) < µ̄2(2) =
α0

α0 + 1
µ+

1

α0 + 1
θ̄(2) < θ̄(2).

Hence from (11) we have θ(2,1) < µ̄2(1) < µ̄2(2) in the binary partition when n is large,

which implies that a respondent whose type is θ(2,1) mimics a respondent in the first group.

The same argument holds for the first group if it has two or more types. Therefore, an

equilibrium in partitional strategy does not exist if n is large enough and α0 is close to 0.

This completes the proof of the first part of the proposition.

Meanwhile, if α0 is not too small, with respect to the binary partition such that θ(1,S1) <

µ < θ(2,1), both (14) and (15) hold. Therefore Proposition 1 implies that the partition

constitutes an equilibrium for any n, and it is the only informative partitional equilibrium

for large enough n.

7 Appendix II (neologism proofness)

In this appendix we provide details of the example in Section 4, where θ1 = 0, θ2 = 1/2,

θ3 = 1 and the expected prior for each type is given by p1 = 2/8, p2 = 5/8, p3 = 1/8. The

prior mean µ = 7/16 and hence from the viewpoint of the middle type θ2, fully revealing

communication biases the policy lower than the ideal.

First let us consider the condition under which the binary communication equilibrium

exists for any n. Note that, given θ2’s incentive to exaggerate, the partition in binary

communication must be that {θ1}, {θ2, θ3}. Using (10), for any n, θ2 will not deviate from

this partitional strategy if

µ̄bin2 (2) =
α0

α0 + 1
µ+

1

α0 + 1
θ̄(2) =

α0

α0 + 1

7

16︸︷︷︸
µ

+
1

α0 + 1

 5

8︸︷︷︸
p2

1

2︸︷︷︸
θ2

+
1

8︸︷︷︸
p3

1︸︷︷︸
θ3

 8

6

=
α0

α0 + 1

7

16
+

1

α0 + 1

7

12
≤ 1

2
, (16)

which holds for α0 ≥ 4/3. In other words, as long as (16) holds, there exists a binary

equilibrium for any n. For Table 1 both α0 = 7/5 and α0 = 4 satisfy this condition.
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α0 = 1

n perfect binary

0 −0.0898

7 *−0.0539 −0.0643

8 N/A −0.0633

...

27 N/A −0.0591

28 N/A N/A

→∞ N/A N/A

α0 = 2.5

n perfect binary

0 −0.0898

1 *−0.0825 −0.0846

2 *−0.0784 −0.0817

3 *−0.0758 −0.0799

4 N/A −0.0786

5 N/A −0.0777

→∞ N/A *−0.0716

Table 2: Decision maker’s expected payoff (= "social welfare") when θ1 = 0, θ2 = 1/2, θ3 =

1, p1 = 1/8, p2 = 5/8, p3 = 2/8. An asterisk(*) denotes social welfare in neologism proof

equilibrium.

Next, let us consider the condition under which the fully revealing equilibrium exists.

Since µ < θ2 we can focus on when the middle type mimics the high type θ3 in a candidate

equilibrium with full revelation. Again using (10) we can see that, since θ̄(1) = θ1, θ̄(2) =

θ2, θ̄(3) = θ3 under full revelation, if the middle type reveals truthfully he induces

µ̄perf2 (2) =
α0

α0 + 1

7

16
+

1

α0 + 1

1

2
.

If the middle type mimics θ3 then he induces

µ̄perf2 (3) =
α0

α0 + 1

7

16
+

1

α0 + 1

1

2︸ ︷︷ ︸
µ̄2(2)

− 1

α0 + n

(
1

2
− 1

)
.

The middle type does not deviate if revealing his type induces the expected policy closer

to his ideal i.e.,
∣∣∣1/2− µ̄perf2 (2)

∣∣∣ ≤ ∣∣∣1/2− µ̄perf2 (3)
∣∣∣, which (for positive α0 and n) yields

α0 ≤ 1

2

(
4− n+

√
n2 − 8n+ 32

)
≡ ᾱ(n). (17)

It is easy to check that, for Table 1, α0 = 1.4 and n ≤ 5 satisfies both (16) and (17), and

hence support the fully revealing equilibrium up to n = 5. Meanwhile if α0 > 4 (17) does

not hold for any n ≥ 1. Thus, for example, when α0 = 4.5 a fully revealing equilibrium

does not exist.

The "social welfare" on Table 1 was calculated as follows. For the fully revealing

equilibrium, the decision maker’s policy conditional on the messages and the prior can be

simplified to the first order condition with respect to

−α
0p1 + x1

α0 + n
(y − 0)2 − α0p2 + x2

α0 + n
(y − 1/2)2 − α0p3 + x3

α0 + n
(y − 1)2, (18)
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where xi denotes the number of respondents whose type is θi. Note that thanks to the

quadratic payoffs (18) also represents the expected payoff of the decision maker conditional

on the binary messages. Therefore, by substituting the optimal policy y∗ into (18) we

obtain the expected payoff conditional on the binary messages. The distribution of types

is described by the multivariate Pólya distribution. Note that x3 = n− x1− x2. To obtain

the numbers on the Tables 1 and 2 we calculated

n∑
x1=0

n−x1∑
x2=0

Γ(α0)

Γ(α0 + n)

n!

x1!x2!(n− x1 − x2)!

Γ(α0p1 + x1)Γ(α0p2 + x2)Γ(α0p3 + n− x1 − x2)

Γ(α0p1)Γ(α0p2)Γ(α0p3)

×uF (n, x1, x2; p, α), (19)

where uF (n, x1, x2, p, α) is the maximized expression of (18).

For the binary communication equilibrium the decision maker’s payoff is given by

−α
0p1 + x1

α0 + n
(y − 0)2 − α0p2 + α0p3 + x2 + x3

α0 + n

p2

p2 + p3
(y − 1/2)2

−α
0p2 + α0p3 + x2 + x3

α0 + n

p3

p2 + p3
(y − 1)2. (20)

Note that in this case the decision maker cannot distinguish between x2 and x3 when decid-

ing the policy. The social welfare is obtained by calculating (19) by replacing uF (n, x1, x2, p, α)

with the maximized expression for (20). For the binary equilibrium with an arbitrarily

large sample, we compute the expected payoff when the decision maker has full informa-

tion about the relative sizes of the first and the second group for any realization of the

type distribution.

7.1 Neologism Proofness

Here we describe how neologism proofness of an equilibrium in the example can be checked,

and also show that if binary equilibrium exists for any n then it is neologism proof for

suffi ciently large n.

It is clear that the fully revealing equilibrium is neologism proof, because θ1 and θ3

never prefer to mimic (or to be in a group with) any other type and thus have no incentive

to use a neologism, which in turn means that θ2 does not have a credible neologism as it

has to involve pooling with either θ1 or θ3, or both.

Let us assume (16) holds and consider when the binary communication equilibrium

{θ1}, {θ2, θ3}, which exists for any n, is neologism proof. Clearly θ1 does not have any

incentive to use a neologism. We can also see that θ2 does not use a neologism to separate
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himself from θ3 since

∣∣∣∣∣∣∣∣∣
1

2
−
(

α0

α0 + 1

7

16
+

1

α0 + 1

7

12

)
︸ ︷︷ ︸

µ̄bin2 (2)

∣∣∣∣∣∣∣∣∣ <
∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

2
−

 α0

α0 + 1

7

16
+

1

α0 + 1

7

12︸ ︷︷ ︸
µ̄bin2 (2)

− 1

α0 + n

(
7

12
− 1

2

)
︸ ︷︷ ︸

expected action when using the neologism, from (11)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which holds for any n if α0 ≥ 4/3 (recall that µ̄bin2 (2) = 1/2 when α0 = 4/3). In other

words, θ2 is better off pooling with θ3 than to reveal his type by a neologism.

Meanwhile, θ3 clearly wishes to separate him from θ2 by a neologism. However, it is

not credible if θ2 also wishes to convince the decision maker that he is θ3, which can be

written∣∣∣∣∣∣∣∣∣
1

2
−
(

α0

α0 + 1

7

16
+

1

α0 + 1

7

12

)
︸ ︷︷ ︸

µ̄bin2 (2)

∣∣∣∣∣∣∣∣∣ >
∣∣∣∣∣∣∣∣∣
1

2
−

 α0

α0 + 1

7

16
+

1

α0 + 1

7

12︸ ︷︷ ︸
µ̄bin2 (2)

− 1

α0 + n

(
7

12
− 1

)
∣∣∣∣∣∣∣∣∣ .
(21)

For α0 > 4/3, (21) simplifies to

n >
−3(α0)2 + 14α0 + 10

3α0 − 4
. (22)

Therefore, the neologism proofness of the binary equilibrium for a particular pair of α0

and n can be checked by looking at (21) or alternatively (22), which also implies that if

α0 > 4/3 then the binary equilibrium is neologism proof for large enough n. If α0 = 4/3

then (21) is never satisfied, which implies there is no neologism-proof binary equilibrium

for any n. This is because θ2 = 1/2 induces the deal expected action 1/2 for any n in

the equilibrium and hence has no incentive to deviate, which enables θ3 to send a credible

neologism.

Finally it is straightforward to see that the "babbling" equilibrium is not neologism

proof. With respect to the uninformative equilibrium, a respondent with θ1 has the incen-

tive to separate himself because, if his message is believed, it lowers the policy towards his

ideal. Meanwhile, θ2 and θ3 prefer the policy induced in the uninformative equilibrium,

namely y = 7/16, to the policy induced by mimicking θ1 because the policy in the unin-

formative equilibrium is lower than their ideal policy (1/2 and 1) and mimicking θ1 makes

the policy even lower. Therefore, θ1 has a credible neologism and hence the "babbling"

equilibrium is not neologism proof.
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