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ABSTRACT 

 
 

 

This paper is a contribution to the growing literature on constrained inefficiencies in 

economies with financial frictions.  The purpose is to present two simple examples, inspired 

by the stochastic models in Gersbach-Rochet (2012) and Lorenzoni (2008), of deterministic 

environments in which such inefficiencies arise through credit constraints.  Common to both 

examples is a pecuniary externality, which operates through an asset price.  In the second 

example, a simple transfer between two groups of agents can bring about a Pareto 

improvement.   

In a first best economy, there are no pecuniary externalities because marginal 

productivities are equalised.  But when agents face credit constraints, there is a wedge 

between their marginal productivities and those of the non-credit-constrained agents.  The 

wedge is the source of the pecuniary externality:  economies with these kinds of 

imperfections in credit markets are not second-best efficient.   This is akin to the constrained 

inefficiency of an economy with incomplete markets, as in Geanakoplos and Polemarchakis 

(1986). 

 

 

  



INTRODUCTION 

 

 This paper is a contribution to the growing literature on second-best inefficiencies in 

economies with financial frictions.1  My purpose is to present two examples of deterministic 

environments in which pecuniary externalities arise through credit constraints. 

 The first example is inspired by Gersbach-Rochet (2012).  I simplify and modify their 

stochastic model to show that the second-best inefficiency they identify is present in a two-

period environment without uncertainty.  The welfare measure I use to demonstrate 

constrained inefficiency is aggregate surplus – for which, of course, it is easier to exhibit a 

welfare improvement than if, say, the Pareto criterion were used. 

 The second example is inspired by Lorenzoni (2008).  I simplify and modify his 

stochastic model to show that uncertainty is not necessary to his analysis.  But here the 

welfare criterion I use is more demanding: I demonstrate that a simple transfer between two 

groups of agents can bring about a Pareto improvement.   

Common to both examples is a pecuniary externality, which operates through an asset 

price.  In a first best economy, we know that there are no pecuniary externalities because 

marginal productivities are equalised.  But in both my examples, certain agents face credit 

constraints.  On account of these credit constraints, there is a wedge between their marginal 

productivities and those of the non-credit-constrained agents.  The wedge is the source of the 

pecuniary externality:  economies with these kinds of imperfections in credit markets are not 

even second-best efficient.  This is akin to the constrained inefficiency of an economy with 

incomplete markets.  See, for example, Geanakoplos and Polemarchakis (1986). 

 

                                                       
1 See, for example, Lorenzoni (2008), Jeanne and Korinek (2010), Korinek (2011), Davila 
(2012), Gersbach and Rochet (2012), He and Kondor (2012), Hart and Zingales (2013), 
Jeanne and Korinek (2013).  For papers that are of a more dynamic stochastic general 
equilibrium (DSGE) nature, see, for example, Bianchi and Mendoza (2010), Jeanne and 
Korinek (2010).  There are also papers on exchange rate externalities as opposed to asset 
price externalities; see, for example, Caballero and Krishnamurthy (2003), Korinek (2011).  
At the intersection of DSGE and exchange rate externalities, see, for example, Bianchi 
(2011). 

 



EXAMPLE 1 

 There are two days, 0 and 1, and two groups of agents, sheep farmers and wine 

makers.  Production occurs overnight, between days 0 and 1.  Consumption is on day 1.  The 

agents’ respective outputs, wool and wine, are perfect substitutes as consumption goods.   

Measuring them so as to be one-for-one in consumption, we can take wool and wine to be a 

common unit of account, “output”, the numeraire. 

 Besides their own non-tradable labour, sheep farmers and wine makers both use land 

as an input to production.  Land can be traded on day 0, in exchange for a promise to deliver 

day 1 output, wool or wine.  But – and this is the key to the model – the promise has to be 

credible.  The only trade in this economy is the exchange of land on day 0 for a credible 

promise to deliver day 1 output. 

 Land is variably productive.  Think of land in thin contours, or strips, in a valley 

whose cross-section has the shape of an inverted Gothic arch; see Figure 1.  Along each 

contour, parallel to the valley floor, the land is at a constant altitude and is homogeneous.  

Take the overall width of the valley, perpendicular to the valley floor, to be 2, and suppose 

the altitude (above sea-level, not the valley floor) of a contour horizontal distance K from the 

valley floor is given by the constant elasticity function 

 

    η(a + 1 – K)η-1  where a > 0 and 0 < η < 1. 

 

Productivity – both for sheep rearing and vine growing measured per (tiny) unit-width strip – 

varies across strips.  It can depend on the altitude of the strip as well as on which side of the 

valley the strip is on.  

 

 On the dark side of the valley, the left side of Figure 1, the sun seldom shines and so 

the productivity of growing vines is less than on the right, the sunny side.  But the 

productivity of growing vines is not affected by altitude: it is a constant, Rℓ > 0, on the left; 

and a constant, Rh  > Rℓ, on the right. 

 

 Rearing sheep is affected by altitude – sheep thrive in higher altitudes – but is 

unaffected by light.  Supposing that productivity is a linear function of altitude, we can 

measure altitude so as to make them equal.  Thus, for example, if all the land on one side of 
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the valley, above a contour horizontal distance K from the valley floor, were devoted to sheep 

rearing, then output from this land would be 

 

    (a + 1 – K)η  –  aη       ≡     F(1 – K),  say. 

 

The derivative, F′(1 – K), of this function is the altitude η(a + 1 – K)η-1 – equal to the 

productivity of rearing sheep – of a strip horizontal distance K from the valley floor. 

 

 Crucially, on day 0 wine makers can credibly pledge at most a fraction θ < 1 of their 

day 1 output.  We will see that, because of this, they face a “credit constraint”.  (Note that we 

could also assume, for symmetry, that on day 0 sheep farmers too are unable to credibly 

pledge more than a fraction θ of their day 1 output, but that would not substantively affect our 

analysis.  So let us not make this assumption.)  

 

 Wine makers are endowed with all the lowest strips of land, horizontal distance up to 

Wℓ from the valley floor on the dark side, and up to Wh on the sunny side.  Sheep farmers are 

endowed with all the remaining land.  The values of Wℓ and Wh are small enough that at the 

boundaries, the productivity of sheep rearing is strictly less than θ times that of wine making: 

 

    F′(1 – Wℓ)  <  θRℓ 

and 

    F′(1 – Wh)  <  θRh. 

 

 

1.1. Implementation of the First-Best 

 

The initial endowment of land is not too inefficient:  the higher land (land more 

productive for sheep rearing) belongs to the sheep farmers; and the lower land (land more 

productive for vine growing) belongs to the wine makers.  But to reach first-best requires 

equating productivities at the boundaries on each side of the valley: 

 

 

F′(1 – Kℓ
FB)   =   Rℓ 



and 

F′(1 – Kh
FB)   =   Rh 

 

where Kℓ
FB is the horizontal distance from the valley floor, in the first-best allocation, of the 

boundary between sheep rearing and vine growing on the dark side of the valley, and Kh
FB is 

similarly defined for the sunny side.  

 

As a preliminary observation:  implementation of this first-best allocation can be 

decentralised as a market equilibrium outcome if θ is equal to 1, so that wine makers face no 

credit constraint.   

 

Market equilibrium pricing, in the first-best when θ equals 1, is as follows.  On the 

dark side of the valley, all strips of land up to horizontal distance Kℓ
FB from the valley floor 

are uniformly priced at Rℓ;  each higher strip, horizontal distance K > Kℓ
FB from the valley 

floor, is priced at F′(1 – K).  And on the sunny side, all strips of land up to horizontal distance 

Kh
FB from the valley floor are uniformly priced at Rh;  each higher strip, horizontal distance 

K > Kh
FB from the valley floor, is priced at F′(1 – K) – as on the dark side. 

 

 The point is that, when θ equals 1, competition drives the land price up to the zero-

profit level across the valley. 

 

  

1.2. Laissez faire equilibrium with credit constraints 

 

When the wine makers’ credit constraint binds (requiring that θ < 1), the nature of the 

land pricing is similar.  On the dark side of the valley, for some Pℓ, land horizontal distance 

up to Kℓ from the value floor is priced at Pℓ, where Kℓ solves  

 

F′(1 – Kℓ)   =   Pℓ; 

 

and each higher strip, horizontal distance K > Kℓ from the valley floor, is priced at F′(1 – K).  

And on the sunny side, for some Ph, land horizontal distance up to Kh from the value floor is 

priced at Pℓ, where Kh solves 



 

F′(1 – Kh)   =   Ph; 

 

and each higher strip, horizontal distance K > Kh from the valley floor, is priced at F′(1 – K). 

 

Sheep farmers compete to buy all the higher land, the land priced above Pℓ and Ph on 

the dark and sunny sides respectively.  They make zero profit. 

 

The equilibrium values of Pℓ and Ph are determined by the behaviour of the wine 

makers.  We will see that, in equilibrium, wine makers use more land than their aggregate 

endowment; i.e. Kℓ > Wℓ and Kh > Wh. 

 

Consider a typical wine maker, endowed with land worth y.  (The argument is the 

same whichever side of the valley his endowment lies: it may be y/Pℓ units on the dark side, 

or y/Ph units on the sunny, or a convex combination.  He can realise y by selling his 

endowment and then investing in land either on the dark or sunny side of the valley.)  If he 

invests on the dark side, the scale of his investment k will be governed by a flow-of-funds 

constraint 

 

     Pℓk   ≤   y  +  θRℓk, 

 

given that he cannot credibly pledge more than a fraction θ of his day 1 return Rℓk.  His day 1 

net payoff is maximised when the constraint binds.  That is, his maximum payoff from 

levered investment on the dark side of the valley is   

 

1 ℓ

ℓ 	 ℓ	
 

 

By a similar argument, his maximum payoff from levered investment on the sunny 

side of the valley is 

 

1
 

 



In equilibrium, these rates of return on levered investment must be equalized (so as to 

have vine growing on both sides of the valley): 

 

1 ℓ

ℓ 	 ℓ	
	

1
 

 

Here the denominators are the downpayments required per unit of land purchased; the 

numerators are the output that cannot be pledged. 

 

It follows from this equation that there must exist some ∝ such that 

 

Pℓ   =   ∝Rℓ 

and 

 

Ph   =   ∝Rh 

 
Note that ∝ is strictly greater than θ (the required downpayments are positive).  And ∝	is 

strictly less than 1 (the rates of return on levered investment exceed 1).  

 

 

1.3   Planner’s constrained optimum 

 

Think now of a planner choosing Kℓ and Kh to maximise aggregate output 

 
Rℓ Kℓ    +   F(1 – Kℓ)   +    RhKh    +   F(1 – Kh) 

 
 
subject to the constraint 
 
 

[Kℓ – Wℓ]F′(1 – Kℓ)    +   [Kh – Wh] F′(1 – Kh)     ≤      θRℓ Kℓ   +   θRh Kh 

 

 

The logic here is that, in choosing Kℓ and Kh, the planner is in effect choosing prices  

Pℓ = F′(1 – Kℓ) and Ph = F′(1 – Kh).  The planner’s problem is constrained by the need to 



respect the (aggregate of the) wine makers’ credit constraints, assuming that they and the 

sheep farmers take Pℓ and Ph as parametric prices. 

 

Form the Lagrangian L, with multiplier λ.  The first-order conditions (FOCs) are: 

 

  
ℓ
      =    Rℓ   –   F′(1 – Kℓ)   –   λ {F′(1 – Kℓ)  –  [Kℓ – Wℓ]F′′(1 – Kℓ)  –  θRℓ} 

 

=    0 

 

       =    Rh   –    F′(1 – Kh)   –   λ {F′(1 – Kh)  –  [Kh – Wh]F′′(1 – Kh)  –  θRh}  

 

=    0 

 

The solution, (Kℓ
SB, Kh

SB) say, to these FOCs are the second-best values of Kℓ and Kh 

 – the constrained efficient allocation of land across sheep rearing and vine growing. 

 

 

1.4   Constrained inefficiency of laissez-faire 

 

To compare these values Kℓ
SB and Kh

SB with the laissez-faire equilibrium 

 

F′(1 – Kℓ)  =   ∝Rℓ 

F′(1 – Kh)  =   ∝Rh 

 
we substitute these values of Kℓ and Kh into the left-hand sides of the above first-order 

conditions: 

 

ℓ
  

ℓ
    =    1   –    ∝	   –    ∝			 			 		 			 ℓ ℓ

ℓ
∝ 1  

 

and 
 

      =    1   –    ∝	   –    ∝			 			 		 			 ∝ 1  

 

{



The crucial point is that, typically, these expressions for 	
ℓ
  and    cannot both be 

equal to zero, because typically 

 

		 ℓ ℓ

1 ℓ
			 			

1
 

 

Thus, typically, the laissez-faire equilibrium does not maximise aggregate output subject to 

the wine makers’ credit constraints.  The laissez-faire equilibrium is typically not constrained 

efficient. 

For example, in the special case where ℓ , since Kℓ  <   Kh, 

 

		 		0			 			
ℓ
	 

 
 
– evaluated at the allocation of the laissez-faire equilibrium with credit constraints.  In this 

special case, relative to this laissez-faire allocation, the planner wants to raise Kℓ (raise Pℓ) 

and lower Kh (lower Ph).  With	 ℓ , a small increase in the price Pℓ, offset by an equal 

reduction in the price Ph, makes no difference to the wine makers’ (credit-constrained) 

aggregate output, but shifts a little sheep rearing from the less productive boundary on the 

dark side of the valley, productivity F′(1 –  Kℓ), to the more productive boundary on the 

sunny side of the valley, productivity F′(1 –  Kh). 

 The disparity between the planner’s second-best allocation and the laissez-faire 

allocation arises because the planner internalises the effect his choice of Kℓ
SB and Kh

SB has on 

the prices Pℓ and Ph, whereas the market does not.  Absent the wine makers’ credit constraint, 

and the resultant wedge between their productivity and the marginal productivity of the sheep 

rearers – i.e., in the first-best – this would not matter.  But it does matter in the second-best. 

 

 

  



EXAMPLE 2 

 

The example follows the model in Lorenzoni (2008), but with important differences, 

which will be pointed out. 

There are three dates, t = 0,1,2, and two types of agent, entrepreneurs and consumers.  

There is a consumption good, fruit, that is perishable, and a capital good that perishes at t = 2.  

Unlike in Lorenzoni (2008), there is no uncertainty.  And, critically, there is no financial 

contracting, because there is no collateral available to secure borrowing. 

Start with a representative entrepreneur.  At t = 0, he is endowed with n units of fruit, 

but thereafter he has no endowment.  He can convert fruit into capital, one-for-one:  k0 capital 

held overnight between t = 0 and t = 1 yields him ak0 fruit at t = 2 (not at t = 1 as in 

Lorenzoni (2008)), where a > 1.  Neither capital nor fruit have collateral value, hence no 

borrowing is possible.  The entrepreneur will choose to invest all his endowment in capital:  

k0 = n. 

At t = 1, the capital stock requires maintenance (otherwise it perishes), using up k0 

fruit, where   < 1.  Hence the entrepreneur needs to raise funds, by selling k0 – k1 newly-

maintained capital, at price q (in terms of fruit), where   < q < 1.  k1 units of capital held 

overnight between t = 1 and t = 2 yields him again Ak1 fruit at t = 2, where A > 1.  Given that 

there is no borrowing, the maintenance costs have to be wholly met from asset sales: 

 

k0   =   q(k0 – k1) 

or   

k1  =  (q – )k0/q 

 

At t = 2, the entrepreneur eats fruit ak0 + Ak1, his utility. 

Now turn to a representative consumer.  She has a large endowment of fruit at each 

date t = 0, 1 and 2.  She eats fruit ct each date:  her utility is c0 + c1 + c2.  She can also 

produce fruit by holding capital overnight between t = 1 and t = 2: in aggregate, k0 – k1 



capital acquired by consumers at t = 1 yields F(k0 – k1) fruit at t = 2.  Specifically, we 

suppose 

    F(k0 – k1)    ≡    2(k0 – k1)
½ 

 

The first-order conditions for (non-discounted) profit maximisation: 

 

    F′(k0 – k1)    =    q 

 

imply that at t = 1 the consumers’ demand for capital, k0 – k1, equals  1⁄  and that their 

maximised profit (utility), π, from fruit production equals 1⁄ . 

 

2.1.  Equilibrium 

 

In the market for capital at t = 1: 

 

supply  = k0 / q 

 

  demand =  1 / q2 

 

Notice that the supply schedule is a downward-sloping function of the price.  However the 

demand schedule is less steeply downward-sloping, which ensures that the equilibrium is 

unique and stable.  See Figure 2. 

The competitive equilibrium price q is  

 

   qCE  = 1 / k0  

 

which equals 1 / n given that the entrepreneurs choose k0 = n at t = 0. 



  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The price qCE lies strictly between  and 1 if we assume: 
 
 

   1 ⁄    <     n <    1 ⁄ 2   (Assumption 1) 

 

In equilibrium, the consumer profit π is  

 

   πCE = 1 ⁄ q  = k0, 

 

which equals γn given k0 = n.  And the entrepreneurs’ capital holding k1 between t = 1 and  

t = 2 is  

 

k1
CE  = (q – )k0 /q  = (1 – 2k0)k0, 

k0 – k1  

q 

qCE  

k0 – k1
CE  

supply (γk0/q) 

demand (1/q2) 

Figure 2  



 

which, given k0  =  n, equals (1 – 2n)n.     This is positive by Assumption 1. 

We suppose that maintenance costs γk0 are large enough that, in the neighbourhood of 

n, a fall in k0 would lead to a rise in kCE.  Specifically, we assume  

 

    >   1 ⁄ √(2n)    or 1 ⁄ 2γ2	   <    n  (Assumption 2) 

 

Assumption 2 ensures that 

 

k1
CE    =    (1 – 2k0)k0 

 

would go up if k0 went down.  Note that Assumptions 1 and 2 are compatible.  They can be 

amalgamated: 

 

   max{ 1 / ,  1 / 22 }    <    n    <    1 / 2 

 

2.2.  Welfare 

 

Consider the following experiment.  At t = 0, suppose the entrepreneurs are obliged to 

transfer a small amount of fruit, 0 = , to the consumers.   

As a result, the entrepreneurs’ capital investment k0 is reduced by  – down from n to 

n – : 

 

    k0  =  –   <  0. 

 



This reduction in k0 lowers the entrepreneurs’ maintenance costs k0 at t = 1, shifts down 

their capital supply schedule in the market, and hence raises the equilibrium price qCE from 

1/n to 1/(n – ): 

    q    /n2  >  0. 

 

The price rise reduces the consumers’ profit πCE from n to (n – ): 

 

    π  =  –   <  0, 

 

but, since  < 1, the consumers are more than compensated by the initial payment 0 = .  And 

the entrepreneurs’ capital holding k1
CE between t = 1 and t = 2 rises from   (1 – 2n)n   to    

(1 – 2n + 2)(n – ): 
 

    k1    (22n – 1), 

 

which is strictly positive by Assumption 2.  The effect on the entrepreneurs’ consumption 

(utility) at t = 2 is 

 

   ak0  +  Ak1        – a  +  A(22n – 1), 

 

which is strictly positive if A is enough larger than a.  Specifically, we assume 

 

   A / a    >    1 / (22n – 1)   (Assumption 3) 

 

Here, the right hand side is strictly greater than 1 given Assumptions 1 and 2.  Hence 

Assumption 3 implies A > a. 



Under Assumptions 1-3, then, the consumers and the entrepreneurs are strictly better 

off as a result of the experiment.  We have a strict Pareto improvement! 

 

2.3.  Intuition for the Pareto improvement 

 

Between t =1 and t = 2, the entrepreneurs’ return on fruit equals   

 

A / q  >  1 

 

whereas consumers’ (marginal) return on fruit only equals 

 

F′(k0 – k1) / q  =  1 

 

This differential in returns reflects the entrepreneurs’ borrowing constraint at t = 1.  Ceteris 

paribus, it would therefore be efficient to inject funds (fruit) into the hands of the 

entrepreneurs at t = 1. 

Unfortunately, consumers cannot commit at t = 0 to pay anything to the entrepreneurs 

at t = 1: in effect the consumers, too, cannot “borrow” at t = 0 because they have no 

collateral.  Also, the entrepreneurs cannot store (perishable) fruit between t = 0 and t = 1. 

However, there is an indirect method of injecting funds.  Namely, raise the price q of 

capital sold by the entrepreneurs at t = 1 – by reducing k0, so as to lower their maintenance 

costs k0 and thus shift down their capital supply schedule. 

Individually, an entrepreneur cannot raise the price q, and so will not choose to reduce 

his private choice of capital investment at t = 0.  But, collectively, the rise in q helps all 

entrepreneurs. 

The price rise directly hurts the consumers, but the transfer of fruit at t = 0 more than 

compensates. 



Via ak0, the reduction in k0 directly hurts the entrepreneurs’ consumption at t = 2; but 

this is more than made up for via Ak1 and the increase in k1, provided A is enough larger than 

a. 

Everyone is strictly better off.  This strict Pareto improvement is implemented 

through a simple transfer 0 from the entrepreneurs to the consumers at t = 0.  

 

2.4.  Summary 

  

It may be worthwhile summing up example 2.  Consider the effect on the group of 

entrepreneurs, E, of an upfront transfer from them to the group of consumers, C.  The scale of 

group E’s ex ante investment is reduced, which reduces their maintenance costs, thus 

reducing their need to sell assets at the interim date.  The market-clearing asset price rises, 

which indirectly helps all group E: in effect, funds are injected at the interim date from group 

C to group E.  The gain, to group E, from this injection of funds through the raised asset 

price, can outweigh their direct loss from the transfer.  Meantime, group C indirectly lose 

from the rise in asset price, but this can be more than offset by their direct gain from the 

transfer.  Overall, everyone can be a net gainer: the ex ante transfer can lead to a Pareto 

improvement. 

Notice the somewhat paradoxical nature of the transfer: from the credit-constrained 

group E to the unconstrained group C.  One might have expected the direction to be the other 

way: from the deep pockets (group C) to the shallow pockets (group E).  The reason why the 

upfront transfer from group E to group C works well is that it facilitates an indirect subsidy 

back from group C to group E at the crucial interim date when, at the margin, disinvestment 

by group E is socially inefficient: group E’s return on retaining a marginal unit of asset can 

greatly exceed the return to group C. 

At the heart of this there lies a tension between the individual and the group.  No 

individual entrepreneur would choose to curtail his ex ante investment, because he is too 

small to affect the asset price at the interim date.  As a group, however, the entrepreneurs are 

better off if they reduce their ex ante investment – thereby, at the interim date, reducing their 

maintenance costs and raising the asset price. 
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