Liquidity, Business Cycles, and Monetary Policy

Nobuhiro Kiyotaki and John Moore

Sveriges Riksbank
Saturday 7 November 2009

Aims:

Develop model of a "monetary economy"

- i.e. where money is essential for the smooth running of the economy

Subject economy to productivity and liquidity shocks

Examine role of (unconventional) monetary
policy

Original lender

Borrower

$\theta<1$ (borrowing constraint)

Original lender

Borrower

New lender

Original lender

Borrower

New lender

Original lender

Borrower

New lender
$\phi<1$ (resaleability constraint)

Original lender

Borrower

$\phi=$ fraction of asset that can be resold at each date
(cf "peeling an onion")

Model
discrete time: $t=0,1,2, \ldots$
at each date t : homogeneous output, Y_{t} capital, K_{t} fiat money, M_{t}
agents, measure 1, utility

$$
E_{t} \sum_{s=t}^{\infty} \beta^{s-t} \log c_{s} \quad \beta<1
$$

of consumption path $\left\{c_{t}, c_{t+1}, c_{t+2}, \ldots\right\}$
all agents use their capital to produce goods:
start of date $t \quad$ end of date t

individually constant returns, but decreasing returns in aggregate:

$$
\begin{aligned}
& r_{t}=a_{\mathrm{t}} K_{t}^{\alpha-1} \quad \alpha<1 \\
& Y_{t}=r_{t} K_{t}=a_{t} K_{t}^{\alpha}
\end{aligned}
$$

only a fraction $\pi<1$ of agents can use goods to produce new capital:
start of date t
i_{t} goods $\longrightarrow \mathrm{i}_{\mathrm{t}}$ new capital
(new capital produces goods only from t+1 on) these investment opportunities are i.i.d., across agents, through time
agents cannot insure against the arrival of an investment opportunity
capital is specific to the agent who produces it, but he can mortgage future returns by issuing equity:
one unit of equity issued at date t promises

$$
r_{t+1}, \lambda r_{t+2}, \lambda^{2} r_{t+3}, \ldots
$$

Borrowing constraint:
an investing agent can mortgage at most θ of future returns from his new capital production
think of unmortgaged capital as "inside equity"
Resaleability constraint:
at each date t , an agent can resell at most ϕ_{t} of his (inside or outside) equity holdings
borrowing and resaleability constraints
三"liquidity constraints"
NB there is a subscript t on both
a_{t} (productivity shock) and ϕ_{t} (liquidity shock)

balance sheet at end of date t

assets	liabilities
capital stock	own equity issued
others' equity purchased	net worth
money $\mathrm{m}_{\mathrm{t}+1}$	

let $\mathrm{n}_{\mathrm{t}+1}=$ capital stock - own equity issued + others' equity purchased
$=$ inside equity + outside equity
let $q_{t}=$ price of equity

$$
p_{t}=\text { price of money } \quad \text { (upside down!) }
$$

flow-of-funds constraint:

$$
\begin{aligned}
c_{t}+i_{t}+q_{t}\left(n_{t+1}-i_{t}\right)+ & p_{t} m_{t+1} \\
& =\left(r_{t}+\lambda q_{t}\right) n_{t}+p_{t} m_{t}
\end{aligned}
$$

liquidity constraint:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{t}+1} & \geq(1-\theta) \mathrm{i}_{\mathrm{t}}+\left(1-\phi_{\mathrm{t}}\right) \lambda \mathrm{n}_{\mathrm{t}} \\
\mathrm{~m}_{\mathrm{t}+1} & \geq 0
\end{aligned}
$$

government

at date t , government chooses its :
$G_{t} \quad$ within-period net spending/transfers
$\mathrm{N}_{\mathrm{t}+1}^{\mathrm{g}}$ end-of-period holding of private equity
$\mathrm{M}_{\mathrm{t}+1}$ end-of-period money supply
subject to flow-of-funds constraint

$$
G_{t}+q_{t}\left(N_{t+1}^{g}-\lambda N_{t}^{g}\right)=r_{t} N_{t}^{g}+p_{t}\left(M_{t+1}-M_{t}\right)
$$

and resaleability constraint

$$
\mathrm{N}_{\mathrm{t}+1}^{\mathrm{g}} \geq\left(1-\phi_{\mathrm{t}}\right) \lambda \mathrm{N}_{\mathrm{t}}^{\mathrm{g}}
$$

private economy tries to funnel funds from agents who do not have an investment opportunity ("savers") into the hands of agents who do ("investors"):

think of this as a "liquidity-in-advance" model

for the moment, ignore government

 (set $G_{t} \equiv N_{t}^{g} \equiv 0$ and $M_{t} \equiv M$)Proposition (steady-state: $\mathrm{a}_{\mathrm{t}} \equiv \mathrm{a}, \phi_{\mathrm{t}} \equiv \phi$)
second-bes
($q>1$)
first-best
($q=1$)

$$
(1-\lambda) \theta+\pi \lambda \phi
$$

monetary
equilibrium
investment $i_{t}=\frac{\text { available funds }- \text { consumption }}{\left(1-\theta q_{t}\right)_{2}} \begin{array}{r}\text { required downpayment } \\ \text { per unit of investment }\end{array}$
available funds $=\left[r_{t}+q_{t} \phi_{t} \lambda\right] n_{t}+p_{t} m_{t}$
consumption $c_{t}=(1-\beta) x$ his net worth

$$
\begin{aligned}
& {\left[r_{t}+q_{t} \phi_{t} \lambda+s_{\uparrow}\left(1-\phi_{t}\right) \lambda\right] n_{t}+p_{t} m_{t}} \\
& \underbrace{}_{\begin{array}{l}
\text { his shadow price } \\
\text { of illiquid equity }
\end{array}}=\frac{1-\theta q_{t}}{1-\theta}<1
\end{aligned}
$$

SAVER (she): consumption $c_{t}=(1-\beta)$ net worth her net worth $=\left[r_{t}+q_{t} \phi_{t} \lambda+q_{t}\left(1-\phi_{t}\right) \lambda\right] n_{t}+p_{t} m_{t}$ her shadow price $=$ market price of illiquid equity of equity her portfolio choice:

$$
\left.\begin{array}{l}
(1-\pi) E_{t}\left\{\frac{\frac{r_{t+1}+q_{t+1} \phi_{t+1} \lambda+q_{t+1}\left(1-\phi_{t+1}\right) \lambda}{q_{t}}-\frac{p_{t+1}}{p_{t}}}{c_{\mathrm{t}+1} \mid \text { she is still a saver at } \mathrm{t}+1}\right\} \\
=\quad \pi E_{\mathrm{t}}\left\{\frac{\frac{p_{\mathrm{t}+1}}{\mathrm{p}_{\mathrm{t}}}-\frac{r_{\mathrm{t}+1}+\mathrm{q}_{\mathrm{t}+1} \phi_{\mathrm{t}+1} \lambda+\mathrm{s}_{\mathrm{t}+1}\left(1-\phi_{\mathrm{t}+1}\right) \lambda}{\mathrm{q}_{\mathrm{t}}}}{\mathrm{c}_{\mathrm{t}+1} \mid \text { she becomes an investor at } \mathrm{t}+1}\right.
\end{array}\right\}
$$

these date t behavioural equations are all linear in n_{t} and m_{t}
\Rightarrow aggregation is easy; we do not need to keep track of the evolution of the distribution of agents' individual asset holdings
\Rightarrow relevant state variables: $\mathrm{K}_{\mathrm{t}} \quad$ (endogenous)

$$
a_{t}, \phi_{t} \text { (exogenous) }
$$

IS equation:

$$
\begin{aligned}
& Y_{t}= C_{t}^{\text {savers }}+C_{t}^{\text {investors }}+\mathrm{G}_{\mathrm{t}} \\
&(1-\beta) \times \text { Net Worths } \\
& \frac{\pi \times \text { Available Funds }-C_{t}^{\text {investors }}}{\left(1-\theta q_{t}\right)}
\end{aligned}
$$

LM equation:

$$
\begin{aligned}
& (1-\pi) E_{t}\left\{\frac{\frac{r_{t+1}+q_{t+1} \phi_{t+1} \lambda+q_{t+1}\left(1-\phi_{t+1}\right) \lambda}{q_{t}}-\frac{p_{t+1}}{p_{t}}}{C_{t+1}^{\text {savers }}}\right\} \\
& =\pi E_{t}\left\{\frac{\frac{p_{t+1}}{p_{t}}-\frac{r_{t+1}+q_{t+1} \phi_{t+1} \lambda+s_{t+1}\left(1-\phi_{t+1}\right) \lambda}{q_{t}}}{c_{t+1}^{\text {investors }}}\right\}
\end{aligned}
$$

$E_{t} r_{t+1}+\lambda>1 / \beta \quad$ (K_{t} less than first-best)

 return on capital time preference$$
>\quad E_{t} \frac{r_{t+1}+q_{t+1} \phi_{t+1} \lambda+q_{t+1}\left(1-\phi_{t+1}\right) \lambda}{q_{t}}
$$

return on equity if still a saver at $\mathrm{t}+1$
$>\quad E_{t} \frac{p_{t+1}}{p_{t}}$
return on money
$>E_{t} \frac{r_{t+1}+q_{t+1} \phi_{t+1} \lambda+s_{t+1}\left(1-\phi_{t+1}\right) \lambda}{q_{t}}$
return on equity if become an investor at $\mathrm{t}+1$
rate of return

high liquidity
low liquidity

