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Abstract 
 
 
 

This paper is an investigation into the dynamics of asset markets with adverse 

selection à la Akerlof (1970).  The particular question asked is: can market failure at some 

later date precipitate market failure at an earlier date?  The answer is yes: there can be 

“contagious illiquidity” from the future back to the present. 

The mechanism works as follows.  If the market is expected to break down in the 

future, then agents holding assets they know to be lemons (assets with low returns) will 

be forced to hold them for longer – they cannot quickly resell them.  As a result, the 

effective difference in payoff between a lemon and a good asset is greater.  But it is 

known from the static Akerlof model that the greater the payoff differential between 

lemons and non-lemons, the more likely is the market to break down.  Hence market 

failure in the future is more likely to lead to market failure today. 

Conversely, if the market is not anticipated to break down in the future, assets can be 

readily sold and hence an agent discovering that his or her asset is a lemon can quickly 

jettison it.  In effect, there is little difference in payoff between a lemon and a good asset.  

The logic of the static Akerlof model then runs the other way: the small payoff differential 

is unlikely to lead to market breakdown today. 

The conclusion of the paper is that the nature of today’s market – liquid or illiquid –

hinges critically on the nature of tomorrow’s market, which in turn depends on the next 

day’s, and so on.  The tail wags the dog.  

   



1. Introduction 
 

This paper is an investigation into the dynamics of asset markets with adverse 

selection à la Akerlof (1970).1  In particular, I ask whether market failure at some later 

date might precipitate market failure at an earlier date.  The answer I find is there can 

indeed be “contagious illiquidity” from the future back to the present. 

The mechanism works as follows.  If the market is expected to break down in the 

future, then agents holding assets they know to be lemons (assets with low returns) will 

be forced to hold them for longer – they cannot quickly resell them.  As a result, the 

effective difference in payoff between a lemon and a good asset is greater.  But we know 

from the static Akerlof model that the greater the payoff differential between lemons and 

non-lemons, the more likely is the market to break down.  Hence market failure in the 

future is more likely to lead to market failure today. 

Conversely, if the market is not anticipated to break down in the future, assets can be 

readily sold and hence an agent discovering that his or her asset is a lemon can quickly 

jettison it.  In effect, there is little difference in payoff between a lemon and a good asset.  

The logic of the static Akerlof model then runs the other way: the small payoff differential 

is unlikely to lead to market breakdown today. 

Notice that, although this may a first glance appear like a story of multiple equilibria, 

at heart it isn’t.  The conclusion is simply that the nature of today’s market – liquid or 

illiquid – hinges critically on the nature of tomorrow’s market, which in turn depends on 

the next day’s, and so on.  The tail wags the dog.  The core of the paper, in section 3, is a 

dynamic, finite horizon model of an asset market with a unique equilibrium, which is 

discontinuously sensitive to the underlying parameters.  The market is either trading 

normally for the length of the horizon, or is completely broken down. 

                                                       
1 Other recent papers on this topic include: Bolton, Santos and Scheinkman (2011); Chari, 
Shourideh and Zetlin-Jones (2010); Daley and Green (2012); Eisfeldt (2004); Eisfeldt and 
Rampini (2006); Guerrieri and Shimer (2013); Ivashina and Scharfstein (2010); Kurlat 
(2013); Malherbe (2010); Tirole (2012).  For models of dynamic adverse selection in the 
context of durable goods, see, for example: Hendel and Lizzeri (1999); Hendel, Lizzeri, and 
Siniscalchi (2005). 



That said, in the Appendix of the paper I present an infinite horizon model with two 

equilibria, one with trade at all dates, the other with no trade ever. 

Before presenting the model, perhaps it will help if I present, in Section 2, a brief 

recapitulation of a rudimentary example of the static Akerlof model. 

 
 

2. A rudimentary static Akerlof example 
 

A single item is owned by a seller.  There are many buyers.  There is a second, divisible, 

good – which we call “income” and take as the numeraire.  Let  

 
      µs  =  seller’s marginal utility of income  

                µb  =  buyer’s marginal utility of income  

 

where µs > µb.  (For example, the seller may have an income shortfall.)  

The item has 2 possible qualities:  utility H or L, where H > L ≥ 0.  Only the seller 

knows the quality.  Buyers know item has quality L with probability λ. 

There are two possible equilibria: a high-price equilibrium or a low price equilibrium. 

In the high-price equilibrium, both qualities are traded.  The price ̅ satisfies a buyer’s 

indifference condition: 

    ̅ 	 		 1  

The seller with H-quality must want to trade: 

        ̅ 		 		    

That is, the high-price equilibrium exists iff  

   1 	 	 		     

If reverse inequality holds: 

   	 1 	 	 		      



then only L-quality is traded.  In this low-price equilibrium, the price,  say, satisfies   

    	 		    

 

In limit case 0, 0: effectively, there is complete market failure, without any trade.  

Hence the market “fails” iff          

 1 	 		  

We see that market failure is more likely if there is  

• a greater fraction  of “lemons” 

• more percentage difference between H and L 

•  less percentage difference between the seller’s and the buyers’ marginal utilities 

of income 

 

When L = 0: we can represent our conclusions in this diagram 

 

               

 

Note that it is tempting to think that in the red region, complete market failure must 

also be an equilibrium:  zero price  ⇔   zero quality.  Might this be a theory of illiquidity?  

No.  Although in the red region there exists two “Walrasian” equilibria – the parametric price 

is either high ( ) or zero – in fact only the high-price equilibrium is “Nash”, in the sense that 



if agents actively make bids/offers, a buyer could profitably deviate from zero by bidding ϵ > 

0 below . 

 
 

3. Contagion Through Time 

 

The economy has discrete time with finite horizon: “days”  t  =  1, 2, …, T, T+1.  There 

is a single consumption good, which is divisible and storable.  In addition, there are assets, 

which pay off on day T+1. 

Agents have a common overnight discount factor β < 1.  Normalise everyone’s marginal 

utility of day T+1 consumption to equal 1.  On previous days, agents alternate their marginal 

utilities (µs > µb): 

 

today’s seller:      µs        µb        µs  … 

 

   today          tomorrow next day … day T 

 

today’s buyer:     µb        µs       µb  … 

 

We assume µb > βµs, implying that in equilibrium there is no storage. 

We also assume, crucially, that intertemporal contracts cannot be written.  This 

extreme form of contractual incompleteness implies that the only means agents have for 

intertemporal redistribution is by trading assets on days 1, 2, …, T. 

There are two types of asset, H and L, with a fraction λ of type L.  Type H pays an 

amount V > 0 on day T+1, but nothing before then.  Type L pays zero: a lemon. 

At the end of each day t (after the market closes) current holder of an asset privately 

learns its type.  To greatly simplify the analysis, we assume “anonymity of assets”: namely 

the trading history of an asset isn’t observed, and no-one can identify an asset he previously 

sold.  



If an asset is a lemon then, again at the end of each day t (after the market closes), 

with probability αt there is a public announcement: “This asset is a lemon”.  Naturally, on the 

days after such an announcement, the market price of the asset is zero.  If the asset is not a 

lemon, then there are no such announcements.  Note that αT in effect equals 1, since the type 

is revealed on day T+1. 

By way of a running example, we might suppose that all lemons have the 

announcement made on one of the days 1, …, T, but the timing is spread uniformly across 

these days.  That is, there is an ex ante probability (1/T) of the announcement occurring on 

any given day.  In this example with “uniformity”, 

 

	 		       for  t  =  1, 2, …, T 

 

where 	is the probability of an announcement after the market closes on day t, conditional 

on the asset being a lemon and there not having been any previous announcement. 

 

       

 

From these exogenous parameters {αt}, Bayes’ Rule can be used to derive the 

posterior probabilities, {πt}say, that an asset is a lemon.  In our running example with 

“uniformity”, 

 

		 			
1 /

1 			 			 1 /
 

 



where πt is the posterior probability that an asset is a lemon, conditional on there not having 

been an announcement yet (i.e. no announcement on any of days 1, …, t – 1) 

 

        πt   

 

 

 

 

 

 

 

Now the product αtπt equals the probability that there is an announcement after the 

market closes on day t, conditional on no announcement yet.  We make the assumption about 

parameters {αt}: 

 

Assumption A1:   αtπt is greatest on day t = T         

   i.e.   αtπt   ≤   αT for all t   (since αT  = 1) 

In our running example with “uniformity”,  

α 		 			
/

1 			 			 1 /
 

is actually increasing in t, and so clearly satisfies Assumption A1. 

To find the overall equilibrium, start at T (assuming no announcement yet).  

There is a high-price ̅T equilibrium iff 

 

 
̅T 		 			 1   (buyers indifferent) 

 
and  

 

     ̅T       			            (holders of H-type wants to sell) 



 

That is, there is trade iff 

 

	 			
	

 

 

 

Summarising day T in a diagram: 

 

  

 

 

 

 

 

 

 

 

 

 

 

Now to the two central results: 

 

Proposition 1: 

If the market fails on day T (blue region), it also fails on the earlier days t ≤ T – 1. 

 

Proposition 2: 

If trade occurs on day T (red region), it also occurs on the earlier days t ≤ T – 1. 

Moreover the price path is increasing, but at a rate no faster than 1/β  

 

 



 To sum up the propositions, the tail wags the dog: the liquidity of the market on day T 

determines market liquidity on all previous days. See figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof of Proposition 1 (blue region) 

 

If market fails on days t+1, …, T, then in effect day t looks like day T except that   

πt  >  πT: 

 

                          πt    

 

 

 

 

 

 

For all  		 		 1,			 	 		 	 	
    and hence there is market failure on day t too. 

                   Q.E.D. 

 

 

 

 



Proof of Proposition 2 (red region): 

We use backward induction:  t  =  T–1, T–2, …, 1.  Suppose, absent an 

announcement, there is trade on days t+1, …, T at a price path ̅t+1, …, ̅T which is increasing 

at a rate less than 1/β.  

On day t, a high price ( ̅t) equilibrium must satisfy: 

 

    ̅t    			 1 	 ̅t+1 

 

 

 

 

 

The price ratio ̅t+1/ ̅t  equals  

 

/
1

 

 

which lies strictly between 1 and 1/β, because for t ≤ T–1, 

 

																											 		 		 		 			1	 		 			 			1 	 		 			1   

 

 

 

Thus the price path is increasing at rate less than 1/β from day t onwards. 

But will seller with asset H want to trade at ̅t? Yes, if: 

 

        ̅T-1   			      (for t = T–1) 

and 

        ̅t     			 ̅t+2        (for t ≤ T–2) 

a buyer sells on day t+1, 
no matter which type of asset 

he learnt that he purchased on day t 

probability of no  
announcement after 

market closes on day t 

in red region by Assumption (A1) 



The final term on the lower right-hand-side is explained by the fact that if the seller didn’t 

sell on day t, she would sell on day t+2. 

But these two inequalities do hold, given that 

 

			 	… 		 		 			 			 		 			
1

		 			  

 

– where the final inequality holds because we are in the red region.              

Q.E.D. 

 

Proposition 2 may at first appear surprising.  Consider the “backwards” evolution of  

{πt}.  On day T, πT is below the critical value 	 / ; hence the market doesn’t break 

down (we are in the red region). Working back, there is a critical time ̂ at which  is above 

	 /  for the first time: 

 

 

 

Why doesn’t market break down on day ̂? The answer is because agents have the option to 

sell on day ̂ 1. 

 

Recall the intuition from the Introduction.  If tomorrow’s market is not expected to 

fail, then today’s buyer of an unknown asset will sell tomorrow, whether or not he buys a 

lemon.  Thus, the only downside to buying a lemon is the (small) risk of a public 

announcement after the close of today’s market.  In other words, the percentage difference in 

future utility between the good asset and a lemon is small.  But, as we saw in Section 2, a 

small percentage difference means	that	the market doesn’t fail today either.  



Conversely, if markets in the future are expected to fail (as in the blue region), then 

today’s buyer of an unknown asset will be stuck with it for a long time.  Thus, the percentage 

difference in future utility between the good asset and a lemon is big.  But a big percentage 

difference means	that	the	market fails today too. 

It must be emphasised that in this finite horizon model the equilibrium is unique – 

albeit that there is a discontinuity (from, say, always liquid to permanently illiquid).  Which 

regime the economy is in, red or blue, is dictated by what happens on the last day of potential 

trading: the tail wags the dog. 

In an infinite horizon setting, there is scope for multiple equilibria: liquidity begets 

liquidity; illiquidity begets illiquidity.  In the Appendix, an example of an economy, quite 

similar to the one discussed here, is presented which can exhibit these two equilibria. 

To sum up what we have learnt from the model: the market fails completely iff  

	 		  

Otherwise, there is trade on days 1, 2, …, T – unless there is a public announcement. 

Given “uniformity”, the market fails iff 

1

1	 	 1
		 			  

                                                      
That is, market failure is more likely as  rises, μs/μb falls, or the horizon T is shorter.  Use is 

made of these comparative statics results in the second part of Moore (2010). 

  



Appendix 

 

This Appendix presents an example of multiple (two) Nash equilibria in a stationary 

infinite horizon environment. 

There are a countably infinite number of days, and a single consumption good. Agents 

alternate their marginal utilities: 

 

 

 

The daily discount factor  		 			 		 			1. 

There are two types of asset, with a fraction λ of type L.  Asset of type H pays 1 at the 

start of each day.  Asset of type L pays zero.  The current owner privately receives payment 

(if any), thus privately learns the type of asset he holds.  To greatly simplify, we assume that 

no-one can identify an asset he previously sold. 

 

First, let us consider the possibility of a stationary high-price equilibrium, a perpetual 

trading equilibrium.  Each day, the price  is dictated by a typical buyer’s indifference 

condition: 

 

 				 			 1 	  

 

The term in the square brackets reflects the fact that he sells tomorrow, no matter which type 

of asset he learns that he has bought today. 

The seller with the H-type asset must want to trade: 



				 			 		 			 1 	 	 

			 		 			 		 			 		 			 		 			… 

 

That is, a perpetual trading equilibrium exists iff 

		 			1		 			 1  

Diagramatically: 

 

 

 

 

 

 

 

 

 

Next, let us consider the possibility of a perpetual no-trading equilibrium.  Suppose 

the market is expected to fail from tomorrow onwards.  Will it fail today too?  

A buyer looking to deviate from a zero-price today, wanting to attract “H-type 

sellers”, would have to bid a price p satisfying: 

 

			 				 		 			 		 			 		 			 		 			… 

 

Deviating to this bid p would be profitable for him only if 

 

			 			 1 	 	 1 	 	 1 	 	 1 	 		… 



 

That is, a perpetual no-trading equilibrium exists iff 

1 				 			 		 		 		 		  

 

Diagramatically: 

 

 

 

 

 

 

 

 

 

This is interesting, because the two shaded regions overlap: 

 

 

 

 

 

 

 

 

 

 

 

 
 

In the overlap region, there exist two stationary equilibria: one equilibrium where both 

types of asset are always traded and prices are positive; another equilibrium with perpetual 

market failure (zero prices and no trading).  Importantly, both equilibria are “Nash” – that is, 

robust to agents actively making bids/offers. 
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