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We study the efficiency of premarital investments when parents care
about their child’s marriage prospects, in a large frictionless marriage
market with nontransferable utility. Stochastic returns to investment
ensure that equilibrium is unique. We find that, generically, invest-
ments exceed the Pareto-efficient level, unless the sexes are symmetric
in all respects. Girls will investmore than boys if their quality shocks are
less variable than shocks for boys or if they are the abundant sex. The
unique equilibrium in our continuum agent model is the limit of the
equilibria of finite models, as the number of agents tends to infinity.

I. Introduction

We study the incentives of parents to invest in their children when these
investments also improve their marriage prospects. We assume a friction-
less marriage market with nontransferable utility. It has usually been
thought that ex ante investments suffer from the holdup problem, since
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a parent will not internalize the effects of such investments in her own
child on the welfare of the child’s future spouse. However, Peters and
Siow (2002) argue that in large marriage markets in which the quality
of one’s match depends on the level of investment, a parent has an incen-
tive to invest more in order to improve the match of her offspring. They
argue that the resulting outcome will be Pareto efficient. This is a remark-
able result, since they assume amarriagemarket without transferable util-
ity. With transferable utility, Cole, Mailath, and Postlewaite (2001) show
that in large markets, prices can provide incentives for efficient invest-
ment decisions.1

In this paper, we argue that the optimism of Peters and Siow (2002)
must be somewhat tempered. When the return to investment is deter-
ministic, we show that there is a very large set of equilibria. These include
efficient outcomes but also a continuum of inefficient ones. In order to
overcome this embarrassment of riches, we propose a model in which
the returns to investment are stochastic. This is also realistic: talent risk
is an important fact of life.2 Equilibrium in this model is unique, and we
are therefore able to make determinate predictions. The model also al-
lows us to address several questions of normative importance and social
relevance. Are investments efficient in the absence of prices? What are
the implications of biological or social differences between the sexes for
investment decision? What are the implications of sex ratio imbalances
in countries such as China? Wei and Zhang (2011) argue that marriage
market competition for scarce women underlies the high savings rate in
China.
Our paper is related to the literature onmatching tournaments or con-

tests. This literature typically models a situation in which there is a fixed
set of prizes, and agents on the one side of the market compete by mak-
ing investments, with prizes being allocated to agents according to the
rank order of their investments (see e.g., Cole, Mailath, and Postlewaite
1992; Hopkins and Kornienko 2004, 2010). If the “prizes” derive no util-
ity from these investments, for example, when the prize is social status,
then an agent’s investment exerts a negative positional externality on
the other side of themarket, so that there is overinvestment. On the other

1 To appreciate the degree of transferability required, note that Mailath, Postlewaite,
and Samuelson (2013) show that one needs “personalized prices,” which depend on buyer
characteristics as well as seller characteristics, in order to ensure efficiency of investments.
Felli and Roberts (2016) show that even in large finite markets, the holdup problem may
not disappear if the specificity of investments does not vanish.

2 Recent studies of the intergenerational transmission of wealth, in the tradition of
Becker and Tomes (1979), find an intergenerational wealth correlation of .4 in the United
States, which is far from one.
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hand, if the prizes derive utility from these investments—for example, if
men compete for a set of women with fixed qualities, or students compete
for university places—then either overinvestment or underinvestment is
possible, depending on how much these investments are valued (Cole
et al. 2001; Hopkins 2012).
In our context, investments are two-sided: the investments of men are

valued by women and, symmetrically, the investments of women are val-
ued by men. Men do not care directly about how their investments are
valued by women; they care only about the consequent improvement
inmatch quality that they get.Women are in a similar situation, since they
care only about the improvement in the quality of men that they might
get. Onemight expect, therefore, that this could give rise to underinvest-
ment or overinvestment, depending on parameter values.
Surprisingly, our model yields clear conclusions. Under very special

circumstances, when the sexes are completely symmetric, with identical
distributions of shocks and a balanced sex ratio, investments will be effi-
cient—not merely in the Pareto sense but also from a utilitarian stand-
point. However, if there are any differences between the sexes, whether
it be differing returns to investments, different stochastic shocks, or an
unequal sex ratio, investments are generically excessive as compared to
Pareto-efficient investments. Since the intuition for the overinvestment
result is somewhat subtle and quite distinct from that in one-sided tour-
naments with positional externalities, we defer explaining this until the
model is introduced.
The rest of the paper is set out as follows. Section II discusses the prob-

lems that arise in a model with deterministic returns and other related lit-
erature. Section III sets out the model with noisy investments and shows
that a pure strategy equilibrium exists and is unique for general quality
functions. We then consider, in turn, additive and multiplicative shocks.
Our main finding is that investments are generically excessive, relative to
Pareto efficiency.Weuse ourmodel to examine the observational implica-
tions of gender differences and show that if talent shocks are more dis-
persed for boys than for girls, then girls will investmore than boys.We also
examine the effects of sex ratio imbalances on investments and show that
the more abundant sex invests more (otherwise, in most of the paper, we
focuson thecaseof abalanced sex ratio). Section IV shows thatwhen there
are no gender differences, then investments are efficient, even if there is
heterogeneity within each sex. Section V provides a finite agent justifica-
tion for the continuummodel that forms the bulk of the paper. We exam-
ine a model with finitely many agents, where there is uncertainty as to
whether men will be in excess or women will be in excess. If the number
of agents is large enough, there is a unique equilibrium that converges
to the equilibrium of the continuum model. Section VI presents conclu-
sions. The Appendix contains proofs that are omitted in the text.
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II. Motivation and Related Literature

The fundamental problem is the following: investment in a child benefits
the child’s future spouse, but the benefit to the spouse is not considered
by the child’s parents. There is therefore a gap between the privately opti-
mal investment in a child, which we denote �x, and the socially optimal level,
which is naturally greater. In the absence of prices, it is not clear that
there are incentives for efficient investment. Peters and Siow (2002) ar-
gue that, nonetheless, equilibrium investments are socially efficient.
Let us consider the Peters-Siowmodel of investment with deterministic

returns but simplify by assuming that families are identical rather than
differing inwealth. Assume a unitmeasure of boys, all of whomare ex ante
identical, and an equal measure of girls, who are similarly ex ante identi-
cal. Assume that the quality of the child, as assessed by a partner in the
marriage market, equals the level of parental investment, x. Suppose that
a boy is matched with a girl. The utility of the boy’s parents is increasing in
the investment level of the girl xG, but they have to bear the cost of invest-
ment xB in their son. Thus, if they choose xB purely to maximize their util-
ity, they would choose only the privately optimal investment �xB . But the
resulting investment levels ð�xB; �xGÞ are inefficient. Both families would
be better off if they each raised their investments.
Suppose that the family of the boy believes that if they choose invest-

ment level xB, the quality of their son’s partner is given by a smooth, strictly
increasing function, f(xB). They would choose investments to maximize
their overall payoff, given the return function f. Suppose also that the
family of a girl believe that thematch quality of their girl is also an increas-
ing function of their own investment level xG. Assume further that this re-
turn function equals f21(xG), the inverse of that for the boys.3 Consider a
profile of investments ðx**

B ; x
**
G Þ such that x**

B maximizes the payoffs of the
boy’s family given returns f(xB), x**

G maximizes the payoffs of the girl’s
family given returns f21(xG), and x**

B 5 f21ðx**
G Þ; that is, these expecta-

tions are actually realized. As Peters and Siow argue, the profile ðx**
B ; x

**
G Þ

must be such that the indifference curves on the two sides of the mar-
ket are mutually tangent, so that the investment profile must be Pareto
efficient.
A problem with this approach is that, while the expectations f(xB) are

realized in equilibrium, they cannot be realized if the family of a boy
chooses xB ≠ x**

B . In particular, if a boy deviates and chooses xB < x**
B ,

the match fðxBÞ < x**
G is not feasible since every girl in the market has

quality x**
G . In other words, while expectations are “rational” at the equi-

3 If the return function for the girls is the inverse of that for the boys, thenwhenever a boy
raises his investment from xB to x 0

B and finds that his partner’s quality rises from xG to x 0
G ,

it must also be the case that when a girl raises her investment from xG to x 0
G , her partner’s

quality increases from xB to x 0
B . This property ensures efficiency of investments.
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librium, they are not so for any investment level that is not chosen in
equilibrium.
We shall be explicit in this paper about the matching process that fol-

lows a profile of investments. Specifically, we will require the matching
to be feasible, to be stable (in the sense of Gale and Shapley [1962]),
and to be measure preserving. Despite these restrictions on matching
off the equilibrium path, in terms of equilibria there is an embarrass-
ment of riches and a large set of equilibria. Let (xB, xG) be a pair of invest-
ments that are weakly greater than the individually optimal investments
ð�xB; �xGÞ and in which the payoff of gender i from being matched with a
partner with investment level xj is weakly greater than the payoff from
choosing the individually optimal investment level �xi and being un-
matched. Any such pair can be supported as an equilibrium by specifying
that any agent who deviates to a lower investment level will be left un-
matched. In the Peters-Siow equilibrium, an individual making an effi-
cient investment can expect to be matched with someone who invests
similarly; there is in effect symmetry. However, here, if the parent of a
boy deviates upward and chooses a higher level of investment, his son
cannot realize a higher match quality, since all the girls are choosing
xG. We therefore have a “folk theorem”: any pair of investments satisfying
the above conditions is an equilibrium. Efficient investments are an equi-
librium, but so are inefficient ones.4

Turning now to the original Peters-Siow environment in which fami-
lies differ in wealth, and thereby in their marginal costs of investment,
we still find a continuum of inefficient equilibria. The equilibria we have
constructed in the homogeneous case are strict equilibria: any individ-
ual who invests differently does strictly worse. If we perturb wealth levels
slightly and wealth affects payoffs continuously, then these equilibria will
continue to be strict. The only thing that is required is that the distribu-
tion of wealth is not too dispersed, so that there is a common level of in-
vestment x̂ that is not so low that it is below the richest family’s privately
optimal investment and not so high that the poorest family would prefer
to deviate downward and be unmatched. None of these equilibria are ef-
ficient. In fact, for all of them, a measure 0 of agents make an efficient
investment. If x̂ is relatively low, then all agents underinvest. If x̂ is higher,
some agents underinvest and some overinvest. One can also construct
inefficient equilibria, with a heterogeneity of investment levels, even
when wealth is more widely dispersed.5

4 Equilibrium multiplicity also holds if the deviator is left unmatched with probability
one-half rather than for sure. This matching rule can be justified in a large finite model
(see Sec. V).

5 For example, we may divide families into two groups, rich and poor, each of which has
a common level of investment. The matching rule matches those families with sons who
choose investment x̂L to those families with daughters with the same investment and
matches those who choose x̂H to daughters with the same investment.
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Our paper shows that these problems can be resolved if we augment
the model by adding an idiosyncratic element of match quality. This en-
sures that there is always a nondegenerate distribution of qualities on
both sides of the market, thereby providing incentives to invest. Further-
more, equilibrium is unique under some regularity conditions. Before
proceeding to the model, we review some of the related literature not al-
ready discussed in the introduction.
Peters (2007) investigates two-sided investments with finitely many

agents. He assumes that individuals on the long side of the market may
drop out of the market with some small probability and solves for an equi-
librium in mixed strategies.6 Peters (2009) assumes that there is ex ante
heterogeneity rather than the noisy returns assumed in this paper. In both
papers, equilibrium investments are bounded away from the efficient level
even as the number of participants goes to infinity.
Hoppe, Moldovanu, and Sela (2009) analyze a signaling model of

matching in which an agent cares about his orhermatch partner’s under-
lying characteristic, which is private information. Again there is ex ante
heterogeneity rather than stochastic returns. Since investments are not
directly valued, they are inherently wasteful, although they may improve
allocative efficiency in thematching process. They also obtain interesting
comparative statics results, on gender differences and on the numbers of
participants, that we relate to our own results. Hopkins (2012) finds that
with one-sided investments, the level of investment can be inefficiently
low.
Our approach differs frommost of the theoretical literature on invest-

ments, which usually assumes ex ante heterogeneity or incomplete in-
formation (Hoppe et al. 2009; Peters 2009; Hopkins 2012). Agents are
assumed to differ ex ante in terms of quality or wealth, giving rise to het-
erogeneity in investments. Instead, we build on the classic work of Lazear
and Rosen (1981), who analyze a tournament in which a finite number
of identical workers compete for exogenously given prizes. By assuming
that a worker’s output is noisy, they ensure that the optimization prob-
lem faced by the worker is smooth. Models with noisy returns face the
difficulty that the optimization problem faced by the agent is not neces-
sarily concave. By assuming that the noise is large enough, Lazear and
Rosen ensure that the effort level that satisfies the first-order condition
is also globally optimal.With two-sided investments, our problem is some-
what more delicate, since it is the relative dispersion that matters. Increas-
ing dispersion on one side, say men, increases the payoff to large devia-
tions on the women’s side. One of our contributions is to show how this

6 This works in a similar way to the uncertainty over participant numbers assumed in
Sec. V of the current paper.
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analysis may be extended to two-sidedmatching and investments and to a
situation in which the number of agents is large.
Gall, Legros, and Newman (2009) also employ a model with noisy re-

turns to investments and examine investments, matching, and affirmative
action in a nontransferable utility setting. They consider a situation in
which efficiency requires negative assortative matching but in which sta-
blematchings are positively assortative, providing a possible rationale for af-
firmative action. They allow for investments with stochastic returns and fo-
cus on the trade-off between the positive role of affirmative action onmatch
efficiency versus its possible negative effect on investment incentives.
In empirical work on matching, typically the value of any match is as-

sumed to have an idiosyncratic random element (Dagsvik 2000; Choo
and Siow 2006). Our key finding here is that the structure of shocks
not only affects thematching process but is also critical for investment in-
centives.
The transferable utility model is an alternative paradigm, pioneered by

Becker (1973), that can be used to explain several empirical phenomena.
Chiappori, Iyigun, andWeiss (2009) use thismodel to explain the increas-
ing education of women, while Iyigun and Walsh (2007) study the distri-
butional consequences of institutional and gender differences for invest-
ments. While transferable utility models are very useful, there are many
reasons for the limited transferability of utility in themarriage context, in-
cluding the inability to commit to future transfers at the time of marriage.7

Finally, there is also work that considers investment incentives in the pres-
ence of search frictions: Acemoglu and Shimer (1999) study one-sided in-
vestments under transferable utility, while Burdett and Coles (2001) ana-
lyze a nontransferable utility model with two-sided investments.

III. A Matching Tournament with Noisy Investments

We now set out a model in which the returns to investments are stochas-
tic. To simplify the analysis, we assume that there is no ex ante heteroge-
neity but there are stochastic returns so that there is heterogeneity ex
post. Thus, all families are ex ante identical, save for the fact that some
have boys and others have girls.We assume a balanced sex ratio and a con-
tinuum population, so that there are equal measures of boys and girls.
Under these assumptions and under certain technical conditions, a pure
strategy equilibrium exists and is unique.
Assume that a parent of a boy chooses an investment x in a bounded

interval ½0; ~xBÞ and derives a direct private benefit bB(x) and incurs a cost

7 Gall et al. (2009) provide reasons why in many matching situations, including business
partnerships, transfers between potential partners may not be fully flexible.
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~cBðxÞ. Similarly, a parent of a girl chooses x in a bounded interval ½0; ~xGÞ
and derives a direct private benefit bG(x) and a cost ~cGðxÞ, respectively.
Define the net cost of investment in a child of gender i, i ∈ {G, B }, as
ciðxÞ≔ ~c iðxÞ2 biðxÞ. The quality of a child is an increasing function of the
level of parental investment, x, and the realization of a random shock.
These functions are written as qB(x, ε) for boys and qG(x, h) for girls. The
first argument in each quality function denotes parental investment, and
the second argument denotes the random shock.
A parent of any boy believes that her son’s shock, denoted ε, is distrib-

uted with a density function f(ε) and a cumulative distribution function
(cdf) F(ε). Similarly, theparentof agirl believes that thedaughter’s shock,
h, is distributed with a density function g(h) and cdf G(h). The aggregate
realized distribution of shocks in the population of boys (respectively,
girls) is deterministic and equals F (respectively,G). Since ourmodel does
not require a continuum of independent and identically distributed
(i.i.d.) random variables, there exists a simple probabilistic model consis-
tent with these assumptions.8

Our technical assumptions are as follows.
Assumption 1.

1. Assumptions on shocks: let f(ε) and g(h) be twice continuously dif-
ferentiable on their bounded supports ½ε;�ε� and ½h; �h�, respectively.
Further, assume that f ðεÞ 5 0, g ðhÞ 5 0, but f(ε) and g(h) are oth-
erwise strictly positive on their supports. Assume that the right-
hand derivatives at the lower bound of their supports, denoted as
f 0ðεÞ and g 0ðhÞ, are strictly positive.

2. Assumptions on net costs: for i ∈ {G, B }, ci(x) is twice continuously
differentiable on the open interval that contains the set of feasible
investments, ½0; ~xiÞ, and satisfies the following: (a) convexity: c 00i ð⋅Þ
is bounded below on ½0; ~xiÞ by g > 0; (b) c 0ið0Þ is strictly negative,
and limx→ ~x i

c 0iðxÞ 5 ∞.
3. Assumptions on quality: let Iε and Ih be open intervals that con-

tain ½ε;�ε� and ½h; �h�, respectively, and qB : ℝ1 � Iε →ℝ and qG : ℝ1 �
Ih → ℝ be increasing and twice differentiable, with qB

x
ðxB; εÞ > 0;

qG
x
ðxG ; hÞ > 0; qB

ε ðxB; εÞ > 0 if xB > 0; qG
h
ðxG ; hÞ > 0 if xG > 0; qB

xx
ðxB; εÞ ≤

0; qB
εεðxB; εÞ 5 0; qG

xx
ðxG ; hÞ ≤ 0; qG

hh
ðxG ; hÞ 5 0; qB

xεðxB; εÞ ≥ 0; and
qG
xh
ðxG ; hÞ ≥ 0.9

8 Normalize the Lebesgue measure of boys to 1, and let their index be uniformly distrib-
uted on [0, 1]. Fix an arbitrary individual, say 0, and draw his shock value according to F.
Let z(0) denote the realization of this draw. For a boy of arbitrary index t ∈ (0, 1], his shock
value z(t) equals F

21
[F(z(0))1 t] if F(z(0))1 t ≤ 1 and equals F

21
[F(z(0))1 t2 1] otherwise.

Thus for every t, z(t) is distributed according to F, and the aggregate distribution also equals F.
9 That is, quality is assumed to be concave in investment x but linear in shocks ε, h. These

assumptions allow for the additive and multiplicative specifications as special cases.
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4. The value of not being matched is �u, which satisfies �u < qBð0; εÞ
and �u < qGð0; hÞ. That is, a girl who invests x and who is not
matched has total payoff �u 2 cGðxÞ.

The final point in assumption 1 implies that the value from being un-
matched, �u, is strictly less than the payoff from the lowest possible quality
match. Also, note that, matched or unmatched, the individual still pays
the investment cost.
Parents are altruistic and internalize the effects of their decisions on

the utility of their own child, but not on the utility of their child’s part-
ner. Thus if a girl with parental investment xG and shock h is matched
with a boy whose parent has invested xB and who has shock realization
ε, her payoff and that of her parents equal10

UGðxG ; xBÞ 5 qBðxB; εÞ1 bGðxGÞ2 ~cGðxGÞ 5 qBðxB; εÞ2 cGðxGÞ: ð1Þ

Similarly for a boy of type (xB, ε) who is matched with a girl of type (xG, h),
his utility would be

UBðxB; xGÞ 5 qGðxG ; hÞ1 bBðxBÞ2 ~cBðxBÞ 5 qGðxG ; hÞ2 cBðxBÞ: ð2Þ

Let �xB denote the individually optimal investment for boys; it is the in-
vestment that minimizes cBðxÞ 5 ~cBðxÞ2 bBðxÞ. Since c 0Bð0Þ < 0, the indi-
vidually optimal investment satisfies c 0Bð�xBÞ 5 0 and �xB > 0. The individ-
ually optimal investment for girls, �xG , is defined similarly, and �xG > 0.
Individually optimal investments are not Pareto efficient. Consider a so-
cial planner who chooses (xB, xG) to maximize

W ðxB; xGÞ 5 l EqBðxB; εÞf ðεÞ dε2 cGðxGÞ
" #

1ð12 lÞ EqGðxG ; hÞg ðhÞ dh2 cBðxBÞ
" #

;

ð3Þ

for some l ∈ (0, 1), where l is the relative weight placed on the welfare of
girls. Differentiating with respect to xB and xG, setting to zero, and rear-
ranging, we obtain the first-order conditions for Pareto efficiency,

c 0BðxBÞ
∫qB

x
ðxB; εÞf ðεÞ dε 5

l

12 l
; ð4Þ

10 Our analysis also applies when the partner’s valuation of quality is an increasing con-
cave function of qi.
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c 0GðxGÞ
∫qG

x
ðxG ; hÞg ðhÞ dh 5

12 l

l
: ð5Þ

Rearranging the first-order condition for welfare maximization, we
obtain

cB
0ðxBÞ � cG

0 ðxGÞ 5 EqBx ðxB; εÞf ðεÞ dε�EqG
x
ðxG ; hÞg ðhÞ dh: ð6Þ

In other words, any profile of Pareto-efficient investments satisfies this
condition, irrespective of the value of l. Pareto-efficient investments al-
ways exceed the privately optimal level because under the privately opti-
mal investments, we have cB

0 ð�xBÞ 5 cG
0 ð�xGÞ 5 0, whereas the right-hand

side of equation (6) is strictly positive, since qx is strictly positive. Of par-
ticular interest is the case in which l, the weight placed on girls’ welfare,
is equal to their proportion in the population, one-half. Let x**

B ; x
**
G de-

note the efficient investments in this case. We shall call these the utilitar-
ian efficient investments. These are the investments that parents would
like the social planner to choose in the “original position” before the gen-
der of their child is realized.
The Pareto efficiency condition (6) does not determine a unique in-

vestment level, but a continuous curve in (xB, xG) space. If a profile of in-
vestments (xB, xG) is such that the product of the marginal costs is strictly
greater than the right-hand side of equation (6) and the marginal costs
are positive, then such a point lies above the Pareto efficiency curve.11 We
say that we then have overinvestment relative to Pareto efficiency, since it is
possible to achieve Pareto efficiency by reducing either investment level.12

Similarly, if the product of marginal costs is strictly less than the right-
hand sideof theequation,wehaveunderinvestment relative to Pareto efficiency.
On the other hand, utilitarian efficiency determines a unique point in

(xB, xG) space. Thus we may consider the investments of one side alone,
say boys, and speak of underinvestment relative to the utilitarian level,
without reference to the investments by girls. Thus, by the utilitarian cri-
terion, one may have underinvestment by boys and overinvestment by
girls. By the Pareto criterion, one can have only overinvestment or under-
investment, where this statement applies to the profile of investments,
(xB, xG).
We shall focus on pure strategy Nash equilibria in which every parent

on a given side of the marriage market chooses the same level of invest-

11 No individual will choose investment below the individually optimal level since higher
investments can never reduce match quality. Thus we may restrict attention to investment
levels such that marginal costs are nonnegative.

12 This follows from the concavity of q i(�) in x and the strict convexity of cB(�) and cG(�). If
we reduce xB, then the left-hand side of (6) decreases as a result of the strict convexity of the
cost function, while the first term on the right-hand side increases, since qB

xx
ðxB ; εÞ ≤ 0 by

assumption 1. Since c 0Bð�xBÞ 5 0, there exists a reduction in xB such that (6) holds.
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ment. Such an equilibrium will be called quasi-symmetric and consists of a
pair ðx*

B; x
*
GÞ. We require the matching to be stable and measure preserv-

ing. Given our specification of preferences, whereby all boys uniformly
prefer girls of higher quality, and vice versa, a stable measure preserving
matching is essentially unique and must be assortative. Since q is strictly
increasing in the idiosyncratic shock (as long as investments are nonzero)
and since all agents on the same side of themarket choose the same invest-
ment level, in equilibrium, there must be matching according to the idi-
osyncratic shocks alone. Recall that the realized distribution of shocks in
the population is deterministic. For a boy who has shock realization ε, let
f(ε) denote the value of h of his match. This satisfies

F ðεÞ 5 GðfðεÞÞ; ð7Þ

or f(ε)5 G21(F(ε)). That is, if a boy is of rank z in the boys’ distribution,
he is matched with a girl of the same rank z in the girls’ distribution. The
nondegenerate distribution of qualities on both sides of the marriage
marketprovides incentivesof investmentabove theprivatelyoptimal level.
If the parent of a boy invests a little more than x*

B , he increases the boy’s
rank for any realization of ε. By doing so, he obtains a girl of higher rank.
However, he is concerned not with the girl’s rank but with her quality.
One delicate issue concerns large deviations from the equilibrium,

where the quality realization is outside the support of the equilibrium
distribution of qualities. For example, if a boy deviates upward and his
quality exceeds qBðxB ;�εÞ, stability implies that he will be matched with
the best-quality girl, of quality qGðxG ; �hÞ. If he deviates downward and his
quality is below qBðxB; εÞ, then stability implies that he could be left un-
matched (with payoff �u) or matched with the lowest-quality girl. We shall
assume that both these outcomes have equal probability. Since we assume
that being single has a low payoff, this deters large downward deviations.
These assumptions are consistent with the requirement that the match-
ing be stable and measure preserving. Moreover, the matching assump-
tion can be justified as the limit of a model with a finite number of agents
as the number of agents tends to infinity, as we show in Section V, where
we consider a model in which the exact numbers of men and women are
random: with probability one-half there are slightlymoremen thanwomen,
and with probability one-half the reverse is the case. Then a boy with the
lowest quality is unmatched with probability one-half.
In the Appendix we show that the first-order condition for the equilib-

rium investment in boys can be written as

E�ε

ε
qG
h
ðxG ;fðεÞÞ f ðεÞ

g ðfðεÞÞ
qB
x
ðx*

B; εÞ
qB
ε ðx*

B; εÞ
f ðεÞ dε 5 c 0Bðx̂ BÞ; ð8Þ
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where x̂B denotes the “best response” by boys to xG. The intuition for the
first-order condition is that it balances the marginal cost c 0

Bð⋅Þ of extra in-
vestment on the right-hand side with its marginal benefit on the left-
hand side. The latter principally is determined by the possibility of an
improved match from increased investment. Specifically, an increase in
ε, a boy’s shock, would improve his match, given the matching relation
(7) at rate f0 5 f/g. Similarly, the first-order condition for investment
in girls is given by

E�h

h

qB
ε ðxB;f

21ðhÞÞ g ðhÞ
f ðf21ðhÞÞ

qG
x
ðx*

G ; hÞ
qG
h
ðx*

G ; hÞ
g ðhÞ dh 5 c 0Gðx̂ GÞ; ð9Þ

where x̂G is the best response by girls to xB. If a profile ðx*
B; x

*
GÞ is a quasi-

symmetric equilibrium, then it must satisfy x*
B 5 x̂Bðx*

GÞ and x*
G 5 x̂Gðx*

BÞ.
Note that the match value of remaining single, �u, does not affect the

first-order condition for equilibrium investments and thus does not af-
fect the equilibrium level. This is so since in equilibrium, an individual
is always matched with probability one when the sex ratio is balanced.
Furthermore, we assume that the density function of shocks is zero at
its lower bound, ensuring that �u does not affect the derivative of the pay-
off function at equilibrium. However, the value of �u does affect the payoff
from large downward deviations, and we assume a “misery effect,” that is,
that �u is sufficiently small relative to the payoff from being matched.13

This ensures that large downward deviations are not profitable.
We also have to ensure that large upward deviations are not profitable;

this is not immediate, since the optimization problem faced by agents is
not necessarily quasi-concave, just as in Lazear and Rosen (1981).14 We
therefore invoke the following assumption.
Assumption 2. One of the following two conditions is satisfied:

a. F and G are distributions of the same type, that is,G(x)5 F(ax1 b);
b. f(ε) and g(h) are weakly increasing.

Assumption 2 ensures that the benefit function is concave for upward
deviations and, together with assumption 1, ensures existence of a quasi-
symmetric equilibrium in pure strategies. For uniqueness of quasi-
symmetric equilibrium, we invoke the following additional assumption.

13 The total payoff to a boy from being single equals �u 2 cBðxBÞ. This incorporates the
private benefit from investment, since cBðxBÞ 5 ~cBðxBÞ2 bBðxBÞ measures the cost net of
the private benefit.

14 In a one-sided tournament it suffices to assume that shocks affecting that side are suf-
ficiently dispersed and that the cost function is convex. In a two-sided tournament, it is the
relative dispersion on the two sides that matters, and one cannot make shocks relatively
dispersed for both sides. See the discussion of the lognormal example in Sec. III.A.3.
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Assumption 3. Quality is generalized additive/multiplicative :

qBðxB; εÞ 5 vBðxB 1 εÞ1 ð12 vBÞgðxBÞε;

qGðxG ; hÞ 5 vGðxG 1 hÞ1 ð12 vGÞgðxGÞh;

where vi ∈ [0, 1], for i ∈ {G, B }, and g(⋅) is strictly increasing, twice differ-
entiable, and strictly concave, with g(0) 5 0.
Theorem 1. Under assumptions 1 and 2 and if the value to not be-

ing matched ð�uÞ is sufficiently low, there exists a quasi-symmetric Nash
equilibrium of the matching tournament. Under assumption 3, the quasi-
symmetric equilibrium is unique.
Now that existence has been established, we can turn to some impor-

tant questions about the qualitative nature of equilibrium behavior. Are
investments Pareto efficient? What are the factors that lead one sex to
invest more than the other? In order to shed more light on these ques-
tions, we consider, in turn, different specifications of the quality func-
tions q i(⋅).

A. Additive Shocks

We first analyze the case in which qB(x, ε) 5 x 1 ε and qG(x, ε) 5 x 1 h.
One interpretation is that investments or bequests are in the form of fi-
nancial assets or real estate, while the shocks are to (permanent) labor
income of the child. The interpretation is that total household income
is like a public good (as in Peters and Siow [2002]), which both partners
share.
Consider a quasi-symmetric equilibrium in which all boys invest x*

B and
all girls invest x*

G . A boy with shock realization ε and of rank z in the dis-
tribution F(⋅) will be matched with a girl of shock f(ε) with the same rank
z in G(⋅). Suppose that the parent of a boy invests a little more, x*

B 1 D, as
in figure 1. If his realized shock is ε, the improvement in the ranking of
boys is approximately equal to f(ε)D. The improvement in the quality of
the matched girl, ~D, must be such that g ðhÞ~D ≈ f ðεÞD; that is, the im-
provement in the rank of his match must equal the improvement in his
own rank. Thus themarginal return to investment in terms ofmatch qual-
ity equals f ðεÞ=g ðfðεÞÞ at any value of ε.
Integrating over all possible values of ε gives the first-order condition

for optimal investments in boys,

E�ε

ε

f ðεÞ
g ðfðεÞÞ f ðεÞ dε 5 c 0

Bðx*
BÞ: ð10Þ
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Similarly, the first-order condition for investment in girls is

E�h

h

g ðhÞ
f ðf21ðhÞÞg ðhÞ dh 5 c 0Gðx*

GÞ: ð11Þ

The left-hand side of the above equations (the marginal benefit) is con-
stant, while the right-hand side is strictly increasing in xi because of the
convexity of the cost function. Thus, there is a unique solution to the
first-order conditions.

1. Efficiency

We now use the first-order conditions (10) and (11) to examine the effi-
ciency of investments. Under additive shocks, the marginal benefit to a girl
from a boy’s investment is one, regardless of the realization of the shock.
Thus the Pareto efficiency conditions (4) and (5) reduce to c 0

BðxBÞ 5
l=ð12 lÞand c 0

GðxGÞ 5 ð12 lÞ=l.This implies that inanyPareto-efficient
allocation, cB0ðxBÞ � cG

0 ðxGÞ 5 1. The condition for utilitarian efficiency
(where equal weight is placed on the welfare of boys and girls) is c 0BðxBÞ 5
c 0GðxGÞ 5 1.
Suppose F 5G, that is, the distribution of shocks is the same. Thus,

f ðεÞ=g ðfðεÞÞ 5 1 for all values of ε, so that c 0Bðx*
BÞ 5 c 0Gðx*

GÞ 5 1. Invest-
ments are utilitarian efficient even if the investment cost functions are dif-
ferent for the two sexes. As we shall see later, this is an example of a more
general result: if there are no gender differences whatsoever, this ensures
utilitarian efficiency. In general, if there are any differences between the

FIG. 1.—If a boy with shock realization ε increases investment by an amount D, he would
overtake other boys with shock realizations between ε and ε 1 D. The boy’s match would
improve from the girl with shock value f(ε) to one at f(ε 1 D).
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sexes, f ðεÞ=g ðfðεÞÞwill differ from one, and so one cannot expect utilitar-
ian efficiency. The following theorem sharpens this conclusion.
Theorem 2. When noise is additive, in a quasi-symmetric equilibrium,

investments are generically excessive relative to Pareto efficiency.
Proof. It is useful tomake the following change in variables in the first-

order condition for the girls, (11). Since h 5 f(ε),

dh 5 f0ðεÞ  dε 5 f ðεÞ
g ðfðεÞÞ  dε:

Thus the first-order condition for girls is rewritten as

E�ε

ε
g ðfðεÞÞ  dε 5 c 0Gðx*

GÞ:

Consider the product of the two first-order conditions:

c 0Bðx*
BÞ � c 0Gðx*

GÞ 5 E�ε

ε

f ðεÞ
g ðfðεÞÞ f ðεÞ  dε

" #
E�ε

ε
g ðfðεÞÞ  dε

" #
:

By the Cauchy-Schwarz inequality,

E�ε

ε

f ðεÞ
g ðfðεÞÞ f ðεÞ  dε

" #
E�ε

ε
g ðfðεÞÞ  dε

" #

≥ E�ε

ε

f ðεÞ
½g ðfðεÞÞ�1=2

( )
½g ðfðεÞÞ�1=2  dε

 !2
5 1;

with the inequality being strict if the two terms are linearly independent.
Thus cB0ðx*

BÞ � cG
0ðx*

GÞ > 1 if f ðεÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðfðεÞÞp

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðfðεÞÞp

are linearly in-
dependent functions of ε. Since Pareto efficiency requires cB

0ðx*
BÞ �

cG
0ðx*

GÞ 5 1, we have overinvestment generically if the distributions f and
g differ. QED
Example 1. Let us assume that F(ε)5 ε on [0, 1], that is, ε is uniformly

distributed.15 Assume that G(h) 5 hn on [0, 1]. Then F(ε) 5 G(f(ε)) im-
plies fðεÞ 5 ε1=n and g ðfðεÞÞ 5 nεðn21Þ=n. The equilibrium conditions are

c 0Bðx*
BÞ 5 E1

0

f ðεÞ
g ðfðεÞÞ f ðεÞ dε 5

1

nE
1

0

εð12nÞ=n  dε 5 1;

15 The uniform distribution violates our assumption 1, since f ðεÞ > 0. This implies that
the left-hand derivative of a boy’s payoffs with respect to investments is strictly greater than
the right-hand derivative (see fn. 21 in the Appendix). We focus on the equilibrium in
which the right-hand derivative equals zero, i.e., the one with smallest investments. Any
other equilibrium will have strictly larger investments.
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c 0Gðx*
GÞ 5 E1

0

g ðhÞ
f ðf21ðhÞÞ g ðhÞ dh 5 n2E1

0

h2n22  dh 5
n2

2n 2 1
:

The product of the marginal costs equals n2=ð2n 2 1Þ > 1 for n > ½
and n ≠ 1. Efficiency requires that the product equals one, which it does
only for n 5 1, that is, when f 5 g.
The example provides additional intuition for the inefficiency result.

Let n 5 2, so that the density function for women g(h) 5 2h on [0, 1].
The incentive for investment for a man at any value of ε depends on the
ratio of the densities, f ðεÞ=g ðfðεÞÞ. This ratio exceeds one for low values
of ε but is less than one for high values of ε. Conversely, for women, the in-
centive to invest dependson the inverseof this ratio, g ðhÞ=f ðf21ðhÞÞ, which
is low at low values of h but high at high values of h. In other words, the ra-
tio of the densities plays opposite roles for the two sexes. However, the
weights with which these ratios are aggregated differ between the sexes;
high values of h are given relatively large weight in the case of women,
since g(h) is large in this case, while they are given relatively less weight
in the case of men.

2. Gender Differences

We use our model to examine a contentious issue: what are the implica-
tions of gender differences? Let us assume that the shocks to quality con-
stitute talent shocks and that quality is additive in talent and investment
(our results in this section also apply when quality is multiplicative). One
issue that excites great controversy is whether the distributions differ for
men and women. For example, Baron-Cohen (2003) and Pinker (2008)
argue that there are intrinsic gender differences that are rooted in biol-
ogy, while Fine (2008) has attacked this view. In any case, in a study based
on test scores of 15-year-olds from 41 OECD countries, Machin and Pek-
karinen (2008) find that boys show greater variance than girls in both
reading and mathematics test scores in most countries. We now explore
the implications of differences in variability between the sexes.
Suppose that the shocks are more variable for men than for women.

One way to formalize the idea of a distribution being more variable than
another is the dispersive order. A distribution F is larger in the dispersive
order than a distribution G, or F ≥d G if

g ðG21ðzÞÞ ≥ f ðF 21ðzÞÞ for all z ∈ ð0; 1Þ; ð12Þ
with the inequality being strict on a set of z values with positive measure
(see Shaked and Shanthikumar 2007, 148–49). For example, if F and G
are both uniform distributions, where the support of F is a longer inter-
val than that of G, then F ≥d G. A second example is two normal distribu-
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tions; the one with the higher variance is larger in the dispersive order.
These measures of dispersive order do not rely on an equality of means
(see Hopkins and Kornienko [2010] for further examples and discus-
sion).
Suppose that F ≥d G, so that f ðεÞ=g ðfðεÞÞ ≤ 1 for all values of ε and is

strictly less on a set of values of ε of positive measure. Thus the integral
on the left-hand side of equation (10) is strictly less than one, and the in-
tegral on the left-hand side of equation (11) is strictly greater than one.
As utilitarian efficiency requires cB

0ðxBÞ 5 1 5 cG
0ðxGÞ, boys underinvest

and girls overinvest, relative to the utilitarian level. We therefore have
the following proposition.
Proposition 1. With additive shocks, if the distribution of shocks for

boys is more dispersed than that for girls, that is, F ≥d G, then there is un-
derinvestment in boys and there is overinvestment in girls relative to the
utilitarian efficient level.
The intuition for this result is as follows. If the distribution of shocks

for boys is relatively dispersed, then at any realization of ε, an increment
in his investment results in only a small improvement in his rank, and
thus of his partner. Since the quality of the girls is relatively compressed,
this improvement in the rank of his partner translates to only a small in-
crease in quality. In contrast, for a girl, an increment in investment results
in a large improvement in her rank, and this improvement in the rank of
her partner also translates to a large increase in quality, given the higher
dispersion in boy qualities. Therefore, in equilibrium, investment in girls
is greater than in boys.
Empirically, the average performance of girls in school is often better

than that of boys, especially in developed countries, where there is less dis-
crimination. Our model provides a possible partial explanation for this:
the incentives to invest for girls are greater, frommarriage market match-
ing considerations. While differences in the dispersion of shocks have
strong implications, differences in the mean play no role in investment
incentives. To see this, suppose that f is a translation of g, that is, f(ε) 5
g(ε1 k) for some k. This implies that f(ε)5 ε1 k, so that f ðεÞ=g ðfðεÞÞ 5
1 for every ε. Investments will be utilitarian efficient, and this difference
in average quality has no implications for investment incentives.

3. Normal or Lognormal Shocks

Suppose that the shocks are normally distributed, that is, ε ∼N(mε, jε) and
h ∼ N(mh, jh). Thus F ðεÞ 5 Fððε2 mεÞ=jεÞ and GðhÞ 5 Fððh2 mhÞ=jhÞ,
where F denotes the standard normal cdf. Thus the matching f(ε) is lin-
ear, and f ðεÞ=g ðfðεÞÞ 5 jh=jε at all values of ε. Furthermore, linearity of
the matching implies that f0(ε1 D) is constant and equal to jh=jε, imply-
ing that agents’ optimization is strictly concave as long as the cost func-
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tion is convex. Since shocks are unbounded, an agent is always matched
even when he deviates downward, and the misery effect plays no role in
deterring downward deviations. The first-order conditions for invest-
ment are

c 0
Bðx*

BÞ 5
jh

jε

;  c 0
Gðx*

GÞ 5
jε

jh

:

Investments are always Pareto efficient but will not be utilitarian efficient
if the variances differ. If onemeasures the degree of over- or underinvest-
ment relative to the utilitarian level by the associatedmarginal costs and if
jε > jh, then the overinvestment by girls, relative to the utilitarian level, is
proportional to the ratio of the standard deviations.
Our analysis can be extended to the case in which an increasing func-

tion of the shocks is normally distributed. For example, consider lognor-
mal shocks, so that ln(ε) ∼ N(0, jε) and ln(h) ∼ N(0, jh). The first-order
conditions for investment (see the Appendix for derivation) are given by

jh

jε

exp
1

2
ðjh 2 jεÞ2

� �
5 c 0

Bðx*
BÞ;

jε

jh

exp
1

2
ðjh 2 jεÞ2

� �
5 c 0

Gðx*
GÞ:

As in the normal case, the ratio of the marginal costs is related to the ra-
tio of the variances. However, here we have

cB
0ðx*

BÞ � cG
0ðx*

GÞ 5 exp ðjh 2 jεÞ2;
so that the outcome is neither utilitarian nor even Pareto efficient unless
jε5 jh. The extent of inefficiency is related to the difference in variances.
Finally, note that our general existence theorem does not apply to

these examples since it assumes bounded shocks. In the normal case, lin-
earity of the matching suffices to ensure that the maximization problem
is strictly concave. The Appendix shows that large upward deviations are
not profitable in the lognormal case under plausible assumptions on the
ratio of variances and the convexity of costs. Thus our analysis can be ex-
tended more generally, beyond the class of distributions satisfying as-
sumption 2, if one assumes explicit forms for the distribution of shocks.

4. Sex Ratio Imbalances

Sex ratio imbalances are an important phenomenon in countries such as
China and parts of India. These imbalances are extremely large in China,
where it is estimated that one in five boys born in the 2000 census will be
unable to find a marriage partner (see Bhaskar 2011). Wei and Zhang
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(2011) argue that the high savings rate in China is partly attributable to
the sex ratio imbalance. They argue that parents of boys feel compelled
to invest more in order to improve their chances of finding a partner,
thus raising the overall savings rate. However, one might conjecture that
this might be counterbalanced by the reduced pressure felt by the par-
ents of girls. We therefore turn to our model to provide an answer to this
question.
Assume that each sex is ex ante identical, and let the relative measure

of girls equal r < 1. At the matching stage, since r ≤ 1, all girls should be
matched, and the highest-quality boys should be matched. Since every
girl is matched, the investment in her generates benefits for herself and
for her partner (for sure). Thus the first-best investment level in a girl,
x**
G , satisfies c

0
Gðx**

G Þ 5 1. Now consider investment in a boy. If we assume
that the idiosyncratic component of match values is sufficiently small,
then welfare optimality requires that only a fraction r of boys invest and
that their investments also satisfy cB0ð⋅Þ 5 1. However, if we restrict atten-
tion to symmetric investment strategies, then investment will take place
in all boys; and since investment occurs before ε is realized, each boy
has a probability r of being matched. Thus the utilitarian efficient level
of investment in a boy, x**

B , must satisfy cB0ðx**
B Þ 5 r ; that is, the marginal

cost must equal the expected marginal benefit. Similarly, the condition
for Pareto efficiency, with arbitrary weights on the welfare of boys and
girls, is

cB
0ðx**

B Þ � c 0Gðx**
G Þ 5 r : ð13Þ

We now examine a quasi-symmetric equilibrium in which all boys in-
vest x*

B and all girls invest x*
G . Since only the top r fraction of boys will

be matched, this corresponds to those having a realization of ε ≥ ~ε, where
F ð~εÞ 5 12 r . In this case, a boy of type ε ≥ ~ε will be matched with a girl of
type f(ε, r), where

12 F ðεÞ 5 r ½12 Gðfðε; r ÞÞ�:

The derivative of this matching function is given by

fεðε; rÞ 5
f ðεÞ

rg ðfðε; rÞÞ :

That is, an increase in ε increases a boy’s match quality relatively more
quickly, since the distribution of girls is relatively thinner, since r < 1.
Those boys with realizations below ~ε will not be matched and receive a

payoff �u < h, what we have called the misery effect. As Hajnal (1982) has
noted, in Asian societies such as China and India, marriage rates have his-
torically been extremely high (over 99 percent, as compared to the tradi-
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tional “European marriage pattern” with marriage rates around 90 per-
cent). Thus the misery effect is likely to be large in Asian societies.
The first-order condition for boys in an equilibrium in which all boys

invest the same amount x*
B while all girls invest the same amount x*

G is
given by

1

rE
�ε

~εðrÞ

f ðεÞ
g ðfðε; rÞÞ f ðεÞ dε1 f ð~εðr ÞÞðh 1 x*

G 2 �uÞ 5 c 0Bðx*
BÞ: ð14Þ

As compared to our previous analysis, we notice two differences. The first
term is the improvement in match quality, and the sparseness of girls in-
creases the investment incentives because of the term in 1/r. Addition-
ally, an increment in investment raises the probability of one’s son getting
matched, at a rate f ð~εÞ, and the marginal payoff equals the difference be-
tween matching with the worst-quality girl and receiving h 1 x*

G and not
beingmatched and receiving �u. An unbalanced sex ratio tends to amplify
investments in boys, for two reasons. First, a given increment in invest-
ment pushes boys more quickly up the distribution of girls, and second,
there is an incentive to invest in order to increase the probability of a
match taking place at all, since there is a discontinuous payoff loss from
not being matched at ~ε due to the misery effect.
Similarly, the first-order condition for investment in girls is given by

rE�h

h

g ðhÞ
f ðf21ðhÞÞg ðhÞ dh 5 c 0Gðx*

GÞ: ð15Þ

Notice here that the role of r < 1 is to reduce investment incentives, since
an increment in investment pushes a girl more slowly up the distribution
of boy qualities. Furthermore, there is no counterpart to the misery ef-
fect for the scarcer sex, and the only reason to invest arises from the con-
sequent improvement in match quality.
Since boys are in excess supply, a girl whose parents invest and whose

quality realization is discretely lower than that of every other girl will still
be able to find a partner. Such a girl will get a match payoff of x*

B 1 ~ε, no
matter how low her own quality. Thus, the conditions for the existence of
a quasi-symmetric equilibrium are more stringent than in the balanced
sex ratio case. Large downward deviations in investment will not be prof-
itable provided that the dispersion in the qualities of boys is sufficiently
large and the cost function for girls is sufficiently convex.
Proposition 2. If r < 1 and the noise is additive, there exists a unique

quasi-symmetric equilibrium, provided that f(�) is sufficiently dispersed
and cB(�) is sufficiently convex. Investments are excessive relative to Pa-
reto efficiency, for generic distributions of noise.
It is worth pointing out that even without the misery effect, there will

be strictly excessive investments, even if the noise distributions are iden-
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tical, unless they happen to be uniform. When r < 1, g(f(ε)) is not a lin-
ear transformation of f(ε) unless f and g are uniform. Thus investment
will be strictly greater than the efficient level.
As we have already noted, if F andGhave the same distributions and r5

1, investments are utilitarian efficient. Thus a balanced sex ratio is suffi-
cient to ensure efficiency of investments in this case. This provides an ad-
ditional argument for the optimality of a balanced sex ratio, over and
above the congestion externality identified in Bhaskar (2011).
We may use our model to evaluate the theoretical basis of the empir-

ical work by Wei and Zhang (2011), attributing the high savings rate in
China to the sex ratio imbalance. Given the condition for utilitarian ef-
ficiency c 0Bðx**

B Þ 5 r , investment in boys should actually fall as r decreases
below one, from a utilitarian point of view. In a related signaling model,
Hoppe et al. (2009) show that an increase in the number of men will in-
crease total signaling by men; however, the effect on signaling by women
is ambiguous and depends on the shape of the distribution of abilities
among men. The shape of the distribution also matters for our model,
but a further difficulty here is that investment by one side affects the in-
centives to invest by the other. In particular, the equilibrium choice of in-
vestment by girls enters the boys’ first-order condition (14). This poten-
tially would alsomake the investment by boys respond ambiguously to the
sex ratio becoming less equal.
As an example, consider the case in which f and g are increasing and

f ðεÞ 5 g ðhÞ 5 0:

rE�h

h

g ðhÞ
f ðf21ðh; rÞÞ g ðhÞ dh 5 E�ε

~εðrÞ
g ðfðε; r ÞÞ dε:

Since g is increasing and both f and the range of integration ½~εðr Þ;�ε� are
increasing in r, it follows that investment by girls is unambiguously in-
creasing in r. Similarly,

1

r E
�ε

~εðrÞ

f ðεÞ
g ðfðε; r ÞÞ f ðεÞ dε 5 E

�h

h

f ðf21ðh; r ÞÞ dh:

Since f is assumed increasing and f21 is decreasing in r, overall this ex-
pression is decreasing in r. That is, the matching incentive for boys in-
creases as the sex ratio becomesmore uneven. However, the overall effect
on boys’ investments is ambiguous, as the left-hand side of (14) also de-
pends on xG*, which is increasing in r. One can at least conclude that for
r close to one, so that ~ε is close to ε and f ð~εÞ is close to zero, xB* is decreas-
ing in r.
In summary, under some assumptions, an uneven sex ratio can indeed

increase investment incentives for men but will also decrease incentives
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for women. The predicted effect on total investment is consequently am-
biguous. An uneven gender ratio increases the relative weight of boys
in the population and their increased investment may be enough to in-
crease the total, but this is not guaranteed.

B. Talent Shocks and Complementarities with Investment

Consider next the case in which investment is in education and the uncer-
tainty is talent risk. It is plausible that the return to education depends
on the talent of the child. To model this, we suppose that quality is given
by a multiplicative production function, qB(x, ε) 5 xε and qG(x, h) 5 xh,
where ε and h are always strictly positive. Further, investment levels must
be strictly positive since investments below the individually optimal level
are strictly dominated. Investments in a quasi-symmetric equilibriummust
therefore satisfy thefirst-order condition for equilibrium(8) and(9). Since
qi
x
5 ε and qi

ε 5 x, these can be rewritten as

x*
G

x*
B
E f ðεÞ
g ðfðεÞÞεf ðεÞ dε 5 c 0

Bðx*
BÞ; ð16Þ

x*
B

x*
G
E g ðhÞ
f ðf21ðhÞÞhg ðhÞ dh 5 c 0

Gðx*
GÞ: ð17Þ

Unlike the additive case, the “reaction function” for the boys is upward
sloping in the girls’ investments and vice versa. Intuitively, if quality is
multiplicative, an increase in the girls’ investment levels increases the
dispersion in qualities on the girls’ side, thereby increasing investment
incentives for boys. Thus, with multiplicative shocks, one has interesting
interaction effects between investments on the two sides of the market.
First, we examine the implications of gender differences.
Proposition 3. Assume multiplicative shocks that have the same

mean for boys and girls and identical cost functions for the two sexes.
If the distribution of shocks for boys is more dispersed than that for girls,
that is, F ≥d G, then there is underinvestment in boys and there is overin-
vestment in girls relative to the utilitarian efficient level.
Proof. From the first-order conditions, if F ≥d G,

c 0Bðx*
BÞ 5

x*
G

x*
B
E f ðεÞ

g ðfðεÞÞ εf ðεÞ dε <
x*
G

x*
B

EðεÞ;

c 0Gðx*
GÞ 5

x*
B

x*
G
E g ðhÞ

f ðf21ðhÞÞ hg ðhÞ  dh >
x*
B

x*
G

EðhÞ:
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Utilitarian investments x**
B and x**

G satisfy cB
0 ðx**

B Þ 5 EðεÞ and cG
0 ðx**

G Þ 5
EðhÞ. Since EðεÞ 5 EðhÞ and the cost functions are the same, cB0 ðx*

BÞ <
EðεÞ and c 0

Gðx*
GÞ > EðhÞ. QED

Multiplicative shocks have the interesting implication that an increase
in investment by one side, say girls, also increases the dispersion in quality
among girls, thereby providing more incentives to invest for the boys. So
if shocks are relatively less variable among girls, the induced investments
are such that the resulting difference in variability in quality between the
two sides is less pronounced. Since girls invest more and boys invest less,
this raises quality dispersion among girls and reduces it among boys.
Both the additive model and the multiplicative model show that the

side with more dispersed shocks has weaker incentives for investment. A
similar argument is also found in Hoppe et al. (2009), where differences
in the dispersion of exogenously given unobserved qualities affect signal-
ing expenditures by men and women. The additive shocks model yields
conclusions similar to those of Hoppe et al. since investments by one side
do not affect investment incentives on the other side. The multiplicative
model is richer, since increased investments by girls raise the incentives to
invest for boys.
These interaction effects have interesting implications also when the

mean value of shocks differs between the sexes. Suppose that F(ε) 5
G(ε1 k) for some k > 0, so that average quality is higher among the girls
but the distributions are of the same type. An example would be the case
in which shocks are normally distributed, with the girls having a higher
mean. Since f ðεÞ=g ðfðεÞÞ 5 1 for all values of ε, the first-order conditions
reduce to

cB
0 ðx*

BÞ 5
x*
G

x*
B

EðεÞ;

cG
0 ðx*

GÞ 5
x*
B

x*
G

EðhÞ:

From the first-order conditions, under the assumption that the genders
have identical cost functions, we see that women invest more than men.
However, the interaction effects imply that women invest less than theutil-
itarian efficient amount, and men invest more than the utilitarian level.
Thus, in the multiplicative case, investment behavior partially offsets dif-
ferences in mean quality.
Finally, the multiplicative model also shows us that facilitating invest-

ment by one side, say girls, also increases investment incentives for boys.
In some developing countries such as India, governments have sought to
overcome discrimination against girls by subsidizing their education. In-
creased investment in girls raises the dispersion in their quality, thereby
providing greater incentives to invest for the boys.
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1. Investment under Traditional Gender Roles

Suppose that shocks are additive for women but multiplicative for men.
One example is a traditional society, where women do not work, and so
investment in them takes the form of a dowry, while parents invest in
their sons’ human capital. This interpretation fits our model if invest-
ments toward dowries must take place in advance; that is, parents must
forgo consumption in order to save for their daughter’s dowry. The first-
order condition for investments in boys is

1

x*
B
E f ðεÞ
g ðfðεÞÞ εf ðεÞ dε 5 c 0

Bðx*
BÞ: ð18Þ

Notice that this is independent of the investment level of the girls,
since the quality of girls is additive. On the other hand, since the disper-
sion of qualities among the boys increases with their investment level, the
investment by girls is increasing in boys’ investments, as the girls’ first-
order condition shows:

x*
BE g ðhÞ

f ðf21ðhÞÞg ðhÞ dh 5 c 0
Gðx*

GÞ: ð19Þ

This mixed model can provide an explanation for why dowries may in-
crease during the process of development, as, for example, in India.16

Suppose that themarginal costs of investing in human capital fall, so that
cB
0 ðxBÞ is reduced at any value of xB. From (18), x*

B must go up. From (19),
x*
G also increases. Intuitively, the increased investment by boys increases

the variability in their quality, thereby increasing the incentives for the
parents of girls for investing in their dowries. A similar argument can also
be made if the return to human capital goes up; this will increase invest-
ment levels by boys, increasing the dispersion in their qualities. The in-
creased dispersion in boys’ qualities increases the investment incentives
for girls.

2. Efficiency in a Generalized Multiplicative/Additive Model

We now examine whether investments are Pareto efficient in a general-
ized model in which quality has multiplicative as well as additive compo-
nents. Assume that quality satisfies assumption 3, set out in Section III.
Utilitarian efficiency requires

cB
0ðx**

B Þ 5 vB 1 ð12 vBÞg 0ðx**
B ÞEðεÞ

16 Anderson (2007) surveys the evidence on dowries, while Anderson (2003) provides an
alternative explanation for the increase in dowries during modernization, based on social
stratification.
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and

c 0
Gðx**

G Þ 5 vG 1 ð12 vGÞg0ðx**
G ÞEðhÞ:

Pareto-efficient investments are such that

c 0
Bðx**

B Þ � c 0
Gðx**

G Þ 5 ½vB 1 ð12 vBÞg 0ðx**
B ÞEðεÞ�

�½vG 1 ð12 vGÞg 0ðx**
G ÞEðhÞ�:

The following theorem shows that there will be generic overinvestment
relative to the above Pareto efficiency condition if the densities are both
symmetric, as long as they differ.
Theorem 3. Suppose that quality is generalized additive/multiplica-

tive and that the distributions f and g are symmetric. Then in any quasi-
symmetric equilibrium, investments are generically excessive relative to
Pareto efficiency.
This overinvestment result applies both to the pure multiplicative

model and to the one with traditional gender roles. The proof is based
on the Cauchy-Schwarz inequality, and the result is robust. If f and g are
symmetric and linearly independent, investment will be strictly too high.
Now if we perturb the distributions so that ~f is close to f and ~g to g, then
cB
0ðx*

BÞ � cG
0 ðx*

GÞ will still be greater than those required for efficiency,
since the integrals defining this are continuous in the distributions. In
other words, we will have excessive investments even with asymmetric dis-
tributions as long as the asymmetries are not too large.
Why does the result require that the asymmetry not be too large? To

provide some intuition for this, assume a purely multiplicative quality,
and return to the example in which the distribution of shocks is uniform
on [0, 1] formen and the density function for women, g(h)5 2h, on [0, 1].
Here again, the ratio of the densities that is relevant for men, f ðεÞ=g ðfðεÞÞ,
is relatively large when ε is low. While these values of ε still have large
weight (since f(ε) is constant in ε), in the multiplicative case, the payoff
to investment is low when ε is small. Under symmetry, neither particularly
low values nor particularly high values of ε have any special weight, and
thus the inefficiency result applies.

IV. No Gender Difference Implies Efficiency

We now consider the implications of ex ante heterogeneity, where indi-
viduals differ even before shocks are realized, beginning with an illustra-
tive example. Assume that the sex ratio is balanced. Suppose that we
have two classes, H and L, with fractions vH and vL in the population. As-
sume that the marginal costs of investment are lower for the upper class,
H. Let cH(�) and cL(�) be the cost functions, which depend on class but
not on gender, where c 0H ðxÞ < c 0LðxÞ for any x. Let fi(�) and gi(�), i ∈ {H, L},
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denote the density function of shocks for the boys from class i and the
girls from class i, respectively. Assume that the quality function is additive
in the shocks and investment.
Consider a profile of investments (xHB, xLB, xHG, xLG), where each indi-

vidual who belongs to the same class and the same gender chooses the
same investment. This profile induces a distribution of qualities for the
boys, ~F ðqÞ, and for girls, ~GðpÞ. Since any stablemeasure preservingmatch-
ing ~fmust be assortative, we must have ~F ðqÞ 5 ~Gð~fðpÞÞ.
Let x*

HB , x
*
LB , x

*
HG , x

*
LG be the equilibrium investment levels. Suppose

that the distribution of qualities in both the sexes has a connected sup-
port without any gaps. In class i, the first-order condition for investment
in boys is given by

Eqmax

qmin

~f ðqÞ
~g ðfðqÞÞ f ðq 2 x*

iBÞ dq 5 c 0Bðx*
iBÞ: ð20Þ

The density function for boys’ quality is given by (that for girls is analo-
gous)

~f ðqÞ 5 vH fH ðq 2 x*
HBÞ1 vL fLðq 2 x*

LBÞ:
Let the class differences be arbitrary, so that fH can differ from fL and

gH from gL. However, assume that there are no gender differences, so that
fH 5 gH and fL 5 gL. Consider a gender-neutral strategy profile, where invest-
ments depend on class but not on gender, so that x*

iB 5 x*
iG for i ∈ {H, L}.

Since the shocks do not vary between the sexes, the induced distribution
of qualities will be identical in the two sexes. That is, for any value q,
~F ðqÞ 5 ~GðqÞ, implying that ~fðqÞ 5 q. This in turn implies that ~f ðqÞ 5
~g ðfðqÞÞ. Therefore, the left-hand side of equation (20) equals one.
Consider a utilitarian social planner who puts equal weight on each

type of individual, irrespective of gender or social class. Since the mar-
ginal benefit of additional investment in a boy is unity, for any girl who
ismatched with him, such a planner would set themarginal cost of invest-
ment to one. We conclude, therefore, that investment in boys is utilitar-
ian efficient if there are no gender differences, even if there is large het-
erogeneity between classes. Similarly, investment in girls is utilitarian
efficient.
This argument is very general: provided that there are no differences

between the sexes, equilibrium investments will be utilitarian efficient
even if there is wide heterogeneity within each sex. Assume that there
is a finite set of types, indexed by i ∈ {1, 2, . . . , n}. Type i has a measure
mi of boys and an equal measure of girls, with on

i51m
i 5 1. A boy or girl of

type i has an idiosyncratic component of quality, ε, that is distributed with
a density function fi(ε) and cdf Fi(ε). We shall assume a general quality
function q(x, ε), where q is continuous, increasing in both arguments,
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and differentiable and concave in x, the investment. We assume that the
quality function is identical for the two sexes and is therefore not indexed
by gender. The cost of investment may also depend on type and is de-
noted ci(x). We assume that assumption 1 holds for each type; that is, it
holds for each cost function ci and each density function fi and the quality
function.
We assume no gender difference: Men and women are symmetric with

regard to costs of investment and the idiosyncratic component of qual-
ity. Specifically, for any type i, (i) there are equal measures of men and
women, (ii) the investment cost functions and quality functions do not
differ across the sexes, and (iii) the idiosyncratic component of quality
has the same distribution, fi, that depends on type but not on gender.
The assumption of no gender difference is strong, but there are rea-

sonable conditions under which it is satisfied. Suppose that investment
costs or the idiosyncratic component depend on the “type” of the parent
(e.g., parental wealth, human capital, or social status) but not directly on
gender. If the gender of the child is randomly assigned, with boys and
girls having equal probability, then no gender difference will be satisfied.
A utilitarian efficient profile of investments ðx**

Bi ; x
**
GiÞni51 is one that max-

imizes the sum of payoffs of all individuals, irrespective of type or gender.
This satisfies the conditions below for all i; that is, themarginal social ben-
efit from increased qualitymust equal themarginal cost to the individual:

ci
0ðx**

BiÞ 5 Eqxðx**
Bi ; εÞfiðεÞ dε; ð21Þ

ci
0ðx**

GiÞ 5 Eqxðx**
Gi; hÞgiðhÞ dh: ð22Þ

Under assumption 1, the cost function ci is strictly convex and qxx(�) ≤
0, so that the above conditions are sufficient for the profile to be utilitar-
ian efficient. Assuming no gender difference, utilitarian efficiency re-
quires that individuals of the same type choose the same investments
even if they differ in gender, that is, x**

Bi 5 x**
Gi ; x**

i for all i.
Consider now a quasi-symmetric strategy profile ððx*

BiÞni51; ðx*
GiÞni51Þ, spec-

ifying investment levels for each type of each gender. This profile, in con-
junction with the realizations of idiosyncratic shocks, induces a cdf of
qualities, ~F , in the population of boys. Since ε is assumed to be atomless
and q is continuous, ~F admits a density function ~f , although its support
may not be connected if the investment levels of distinct types are suffi-
ciently far apart (i.e., there may be gaps in the distribution of qualities).
Similarly, let ~G denote the cdf of girl qualities, given ðxGiÞni51. A stablemea-
sure preserving matching must be assortative, so that a boy of type q is
matched to a girl of type ~fðqÞ if and only if ~F ðqÞ 5 ~GðfðqÞÞ. Thus the dis-
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tributions ~F and ~G define the match payoffs associated with equilibrium
investments for each type of boy and each type of girl. For the profile
ððx*

BiÞni51; ðx*
GiÞni51Þ to be an equilibrium, it must satisfy the first-order con-

ditions for each type i for the boys and girls, respectively:

c 0
i ðx*

BiÞ 5 E~f 0ð⋅Þq
x
ðx*

Bi ; εÞfi ðεÞ dε; ð23Þ

c 0iðx*
GiÞ 5 Eð~f21Þ0ð⋅Þq

x
ðx*

Gi ; hÞg i
ðhÞ dh: ð24Þ

We shall call a strategy profile gender-neutral if xBi 5 xGi for all i, so each
type of parent invests the same amount regardless of the gender of their
child. Suppose that ððx*

BiÞni51; ðx*
GiÞni51Þ is gender-neutral and is an equilib-

rium. Under the assumption of no gender difference, the induced distri-
butions of qualities are identical on the two sides, that is, ~F ð⋅Þ 5 ~G ð⋅Þ.
Thus ~fð⋅Þ is the identity map on the support of ~F ð⋅Þ. The first-order con-
ditions reduce to

c 0i ðx*
BiÞ 5 Eqx

ðx*
Bi ; εÞfi ðεÞ dε 5 c 0

iðx*
GiÞ: ð25Þ

The first-order conditions for an equilibrium that is gender-neutral, (25),
coincide with the first-order conditions for utilitarian efficiency, (21) and
(22). Thus if a gender-neutral equilibrium exists, it must be utilitarian ef-
ficient. Also, if large deviations from the utilitarian profile are unprofit-
able for every type, then it is the unique gender-neutral equilibrium.
A profile of investments, ððxBiÞni51; ðxGiÞni51ÞÞ, has no quality gaps if the

induced distributions of qualities, ~F ðqÞ and ~GðpÞ, have connected sup-
ports. Large deviations will be unprofitable as long as there are no qual-
ity gaps.
Theorem 4. Suppose that there is no gender difference and assump-

tion 1 is satisfied.Theutilitarianefficientprofileof investments is a gender-
neutral equilibrium if it has no quality gaps and �u is sufficiently small. A
gender-neutral strategy profile is an equilibrium only if it is utilitarian
efficient.
Theefficiency result appliesplausibly toanonmarriagecontext.Consider

a single-population matching model, where quality is a one-dimensional
scalar variable. An example is partnership formation, for example, firms
consisting of groups of lawyers. Theorem 4 implies that one has efficient
ex ante investments, even without transferable utility. While the formal
proof restricts attention to pairwise matching, the extension to matches
consisting of more than two partners is immediate.
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The intuition for the efficiency result is as follows. Consider a gender-
neutral profile of investments, where there are no quality gaps. Then a
boy of quality q will be matched with a girl of the same quality, that is,
~fðqÞ 5 q. Thus the marginal return to investment equals the increment
to his own quality, and thus private incentives and utilitarian welfare are
perfectly aligned.
This result does require the no quality gap assumption, which will be

satisfied if the support of the shocks is large enough or if there is suffi-
cient similarity between adjacent types so that their equilibrium invest-
ments are not too far apart. Interestingly, if there are quality gaps, then
there is a tendency for overinvestment rather than underinvestment. Let
us return to the two-class illustrative example at the beginning of this sec-
tion and suppose that the differences in utilitarian investments between
the rich and the poor are so large that there is a quality gap. Suppose that
an individual boy deviates from this profile and has a quality realization
that is greater than that of the best poor boy and smaller than that of
the worst rich boy. Assume that the deviator is assigned either the match
of the former or that of the latter, each with probability one-half. Under
such a matching rule, the poor boys would have an incentive to deviate
upward: the rich boys have no incentive to deviate downward.17

V. A Model with Finite Numbers

We now set out a model with finitely many boys and girls, where there is
uncertainty as to whether there are slightly more boys than girls or the
reverse.18 Thus the lowest-quality boy (or girl) will be unmatched with
probability one-half. We show that the payoffs in this finite model con-
verge to those in the continuummodel as the number of participants be-
comes large. This provides a justification for our assumption in the con-
tinuum case, that a downward-deviating agent, whose quality is below the
support of the equilibrium distribution of qualities, is unmatched with
probability one-half. We also show that if the number of agents is suffi-
ciently large, there exists a unique quasi-symmetric equilibrium of the fi-
nite model, which converges to the equilibrium of the continuummodel
as the number of agents tends to infinity.
Assume that there are 2n 1 1 agents, with their sex being determined

as follows: n of the agents are randomly chosen (equiprobably, so that

17 The matching rule can be justified as the limit of a model with a large but finite num-
ber of agents of each type, along the lines of the argument in the next section. Efficiency
can be obtained even with quality gaps if we modify the matching rule so that a deviator is
always assigned the match of the next-worst individual. This matching rule is formally cor-
rect in the continuum model but does not seem to correspond to the limit of a reasonable
finite model.

18 We thank Roger Myerson for suggesting this approach. See also Myerson (1998) for
large games with a random set of players.
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each agent has an equal chance of being chosen), and then a fair coin is
tossed to determine whether these n chosen individuals are all male or
all female. The n 1 1 unchosen individuals are then specified to be of
the opposite sex. We assume that at the time of investment, individuals
each know their sex but not whether they were among the n chosen in-
dividuals. Thus, at the investment stage, an individual does not know
whether boys or girls are in excess.
For tractability, we assume that quality is additive in investment and in

the idiosyncratic shock. Shocks are i.i.d. and are drawn from F for the
boys andG for the girls. Agents arematched assortatively in terms of qual-
ity, and so all agents are matched except the lowest-quality agent on the
long side of the market. Suppose that all girls invest xG and all boys invest
xB. If a single boy deviates and invests xB 1 D and his shock value is ε, then
since his quality equals ε 1 D 1 xB, it is the same as if he had invested xB
and had shock value ε1 D. Consequently, his prospects for marriage are
the same as if he did not deviate (and hence are independent of xB) and
had a shock value ε 1 D, with the caveat that if ε1 D > �ε, he marries the
highest-quality girl, and if ε1 D < ε, hemarries the lowest-quality girl with
probability n=ð2n 1 1Þ and is unmarried with probability ðn 1 1Þ=ð2n 1
1Þ. The shock received by the girl that this deviating boy is matched with
is defined to be �u 2 xG if the boy is unmatched. Let fn(ε1 D) denote the
expected shock value of the boy’s match.
Then the expected quality of the girl that the boy is matched with

equals fn(ε 1 D) 1 xG. Thus the ex ante expected benefit of a boy, aver-
aged over his shock realizations, when he invests xB 1 D equals

BnðD; xGÞ 5 E�ε

ε

fnðε1 DÞf ðεÞ  dε1 xG : ð26Þ

The benefit function Bn(D, xG) is differentiable with respect to D, and its
derivative at D5 0 is strictly positive. Since marginal investment costs are
strictly negative at zero and unbounded as investments tend to the upper
bound, any quasi-symmetric equilibrium ðx*

Bn; x
*
GnÞmust lie in the interior

of the set of feasible investments. Thus equilibrium investments must sat-
isfy the first-order conditions:

c 0Bðx*
BnÞ 5 B 0

nð0; x*
GnÞ;

c 0Gðx*
GnÞ 5 B 0

nð0; x*
BnÞ:

We have the following result.
Theorem 5. Suppose that quality is additive and that assumptions 1

and 2 are satisfied. Forn sufficiently large, the game with uncertain finite
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numbers has a unique quasi-symmetric equilibrium with investments
ðx*

Bn; x
*
GnÞ, provided that �u is sufficiently small. Further, limn→∞ðx*

Bn; x
*
GnÞ 5

ðx*
B; x

*
GÞ, the equilibrium investments in the continuummodel.

We prove this result in the Appendix by showing that the benefit func-
tion in the finite model and its derivatives converge to their counter-
parts in the continuum model. Since theorem 2 shows that one has ge-
neric overinvestment in the continuum case, our main convergence result
here, theorem 5, implies that there is excessive investment when the num-
ber of agents is sufficiently large. However, exactly how investment incen-
tives depend on population size is quite complex, and we do not analyze it
here.

VI. Conclusions

We examined a model of marriage with investments that have stochastic
returns. This approach ensures the existence of a unique pure strategy
equilibrium, in an area where models often have multiple equilibria or
equilibria only in mixed strategies. Our main result is that investments
are inefficiently high, generically. The intuition for our inefficiency result
is somewhat subtle: it is not due to the usual positional externality that
arises in tournaments, since investments in our context are not wasteful.
Investments by boys increase welfare for the girls and vice versa. Indeed,
when the two sides or sexes are identical and there are no gender dif-
ferences, one gets efficient investments. However, when there are differ-
ences between the sexes, there are some realizations of shocks in which
boys have a relatively higher incentive to invest and other realizations
in which girls have a relatively higher incentive to invest. Each sex gives
greater weight to those states in which they have relatively greater incen-
tives, giving rise to overinvestment. When the sexes are identical, at every
shock realization, both sexes have identical investment incentives, which
ensures efficiency. Our model also has interesting observational implica-
tions. For example, if shocks are more variable for boys as compared to
girls, boys invest less than girls. If there is an unbalanced sex ratio, the
abundant sex invests more, while the scarcer one invests less.
While formal tests of the Pareto efficiency of investments at the aggre-

gate level are yet to be developed, Wei and Zhang (2011) present evi-
dence that the sex ratio imbalance drives higher savings in China by
the parents of boys, which is possibly inefficiently high. Similarly, the
global boom in the higher education of women is arguably not explained
by higher returns to education on the labor market (see Becker, Hub-
bard, and Murphy 2010). Our model suggests that matching consider-
ations from themarriagemarket could explain the greater investment in-
centives of girls.
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Appendix

Proofs

Proof of Theorem 1

We first derive the first-order conditions as given in (8) and (9). We then show
that these first-order conditions are sufficient and that no individual can benefit
from large deviations. Next, we show that the first-order conditions define a
unique symmetric best response for the boys as a function of the investment level
of the girls and vice versa. These best-response functions are continuous, estab-
lishing existence of equilibrium. Finally, we show that under assumption 3 equi-
librium is unique.

Note that any investment x < �xi is strictly dominated, since ci
0ðxÞ < 0 if x < �xi

and quality is increasing in x, implying that the marginal benefit on the marriage
market is positive. So we may restrict attention to profiles in which every agent
invests strictly positive amounts. Consider a quasi-symmetric equilibrium in
which all boys invest xB > 0 and all girls invest xG > 0. Suppose that a parent of
a boy deviates from this equilibrium and invests xB 1 D in his son. Without loss
of generality, wemay restrict D to lie in a compact interval ½D; �D�, whereD < 0 < �D.
Let D0 be defined by qBðxB 1 D0;�εÞ 5 qBðxB ; εÞ if there exists xB 1 D0 ≥ 0 that solves
this equation; otherwise, let D0 5 2xB. Define D≔ maxfD0; �x B 2 xBg. This defini-
tion reflects two facts. First, deviations below �xB are unprofitable. Second, very
large downward deviations cause a boy to be below the support of the equilib-
rium distribution of boy qualities and thus unmatched with probability one-half;
we assume that �u is sufficiently small that such deviations are unprofitable.19 Let
D00 be defined by qBðxB 1 D00; εÞ 5 qBðxB ;�εÞ, and define �D ≔ minfD00; ~xB 2 xBg,
where ~xB is the upper bound on investments introduced in assumption 1. The
definition of D00 reflects the fact that there is no advantage in deviating more than
D00, since there is no better outcome than being matched with the best-quality
woman.

Suppose that a parent of a boy deviates from this equilibrium and invests xB 1
D in his son, where D ∈ ½D; �D�. If the realization of the shock for his son is ε, the
son will hold the same rank in the population of boys as a boy with a shock level y,
where y(x, ε, D) is defined by the equation

qBðxB 1 D; εÞ 5 qBðxB ; yðxB ;D; εÞÞ:

For example, in the additive case, y(xB, D, ε) 5 ε 1 D. Given this deviation, the
boy now holds rank F(y) in the population of boys and can expect a match with a
girl holding rank G(f(y)) in the population of girls. She would be of quality qG

(xG, f(y)). Applying the implicit function theorem to the above equation, it is
easy to show that y(xB, D, ε) has the following properties:

19 If D < D0, then BðDÞ 5 ½qGðxG ; h Þ1 �u �=2. Thus the overall payoff from such a deviation
is no greater than ½qGðxG ; h Þ1 �u �=22 cBð�x BÞ. Since the equilibrium match payoff of a boy
is no less than qGðxG ; hÞ, if �u < qG ðxG ; h Þ2 2½cBðxBÞ2 cBð�x BÞ�, such a deviation is unprofit-
able.

marriage as a rat race 1023



yD > 0; yε > 0; yεε 5 0; yDε ≥ 0; yDx ≤ 0; yDD ≤ 0; ðA1Þ

given our assumptions that qB
xx
≤ 0, qB

εx ≥ 0, and qB
εε 5 0.

Let D ∈ ð0; �D� and define ε̂ðDÞ by yðxB ;D; ε̂Þ 5 �ε. That is, given an upward devi-
ation of D, ε̂ðDÞ is the shock value that results in the same quality as the highest-
ranked nondeviating boy, and given our assumption that D ≤ �D, ε̂ðDÞ ≥ ε. If a de-
viating boy has a shock value that is greater than ε̂ðDÞ, then he matches for sure
with the highest-ranking girl, with quality qGðxG ; �hÞ, where �h 5 fð�εÞ. Thus, if all
other boys invest an amount xB and all girls xG, then the expected match quality
or benefit B(D) of a boy investing xB 1 D, where D > 0, is given by20

BðDÞ 5 Eε̂ðDÞ
ε

qGðxG ;fðyðxB ;D; εÞÞÞf ðεÞ  dε1 ½12 F ðε̂ðDÞÞ�qGðxG ; �hÞ: ðA2Þ

Evaluating B 0(0) is troublesome because downward deviations induce a posi-
tive probability of being unmatched, while upward deviations do not. Thus we will
first consider upward deviations to derive the limit limD→01B 0ðDÞ, which we denote
by B 0(01). Then we consider downward deviations to derive limD→02B 0ðDÞ, which
we denote byB 0(02). The two turn out to be equal, fromwhich we conclude (from
the mean value theorem) that B 0(01) 5 B 0(02) 5 B 0(0).

The derivative of the expected match or benefit with respect to D when
D ∈ ð0; �DÞ equals

B 0ðDÞ 5 Eε̂ðDÞ
ε

qG
h
ðxG ;fðyðxB ;D; εÞÞÞf0ðyðxB ;D; εÞÞyDðxB ;D; εÞf ðεÞ  dε: ðA3Þ

To take its limit as D ↓ 0, note that f0 and yD are both continuous in D, and at D5
0, they are given by

f0ðεÞ 5 f ðεÞ
g ðfðεÞÞ ; yDðxB ;D; εÞ 5 qB

x
ðxB ; εÞ

qB
ε ðxB ; εÞ :

Similarly, y(xB, D, ε) is continuous in D and equals ε at D 5 0, and so ε̂ 5 �ε when
D 5 0. Thus, we have

B 0ð01Þ 5 E�ε

ε

qG
h
ðxG ;fðεÞÞ f ðεÞ

g ðfðεÞÞ
q
x
ðxB ; εÞ

qB
ε ðxB ; εÞ f ðεÞ dε: ðA4Þ

Thus the right-hand derivative, B 0(01), equals the left-hand side of the first-order
condition (8).

Turning to downward deviations, D ∈ ðD; 0Þ, define ~εðDÞ by the relation
yðxB ;D;~εÞ 5 ε; since D ≥ D, this ensures that ~εðDÞ ≤ �ε. For D ∈ ðD; 0Þ, B(D) is given
by

20 Note that B is properly a function of (D, xB, xG); but from the point of view of an indi-
vidual boy, xB and xG are fixed, and thus we write B(D) for simplicity.
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BðDÞ 5 E�ε

~εðDÞ
qGðxG ;fðyðxB ;D; εÞÞÞf ðεÞ dε1 F ð~εðDÞÞ�u 1 qGðxG ; h Þ

2
: ðA5Þ

The final term depends on the following crucial assumption. If the deviating
boy has a low shock realization, in the interval ½ε;~ε�, his quality will be less than
the lowest quality in the equilibrium distribution of boys’ qualities. With equal
probability, he will be left unmatched and have utility �u or match with the lowest-
quality girl. The derivative with respect to D, given D ∈ ðD; 0Þ, is

B 0ðDÞ 5 E�ε

~εðDÞ
qG
h
ðxG ;fðyð⋅ÞÞÞf0ðyð⋅ÞÞyDðxB ;D; εÞf ðεÞ dε

1f ð~εðDÞÞd~ε
dD

�u 2 qGðxG ; h Þ
2

:

ðA6Þ

Since ~ε is defined by the relation qBðxB 1 D;~εÞ 5 qBðxB ; εÞ, ~ε→ ε as D → 0. Since
f ðεÞ is zero by assumption 1, the above derivative approaches (A4) as D goes to
zero. Thus, the left and right derivatives exist and are equal at D 5 0 and give
the first-order condition (8). The first-order condition for girls, (9), can similarly
be derived.21

We now show that the integral defining B 0(D) is well defined (even though
1/g(f(ε)) is unbounded). As in the proof of theorem 2, we make a change of
variables, from ε to h:

B 0ð0Þ 5 E�h

h

qG
h
ðxG ; hÞf ðf21ðhÞÞ qx

ðxB ;f
21ðhÞÞ

qB
ε ðxB ;f

21ðhÞÞ dh:

Since f(f21(h)) is bounded, as is qh, and since qB
ε ðxB ;f

21ðhÞÞ > 0 and is constant as
a function of f21(h), the integral defining B 0(0) is well defined.

Assume for now that for any xG ∈  ½0; ~xG �, there exists x̂BðxGÞ such that the boys’
first-order condition (8) is satisfied (we demonstrate below that this is indeed the
case). We show first that large deviations are not profitable, considering in turn
upward deviations and downward deviations.

Upward deviations.—Let B 00(D) denote the derivative of B 0(D) on ð0; �DÞ.22 Let
U 00

BðD; x̂BÞ 5 B 00ðDÞ2 c 00Bðx̂B 1 DÞ. We show that U 00
BðD; x̂BÞ < 0 for D∈ð0; �DÞ, which

implies B 0ðDÞ2 cB
0ðx̂B 1 DÞ < B0ð0Þ2 cB

0ðx̂BÞ, so that no upward deviation is prof-
itable. Suppressing most arguments, B 00(D) on ð0; �DÞ can be written as

21 In some of our examples, e.g., those with a uniform distribution, the density f is non-
zero at ε, the lower bound of its support, and the left-hand derivative of the benefit func-
tion, (A4), is strictly greater than the right-hand derivative, (A6). Since optimality requires
that the left-hand derivative of benefits is greater than or equal to marginal costs and that
the right-hand derivative is less than or equal, there is a continuum of equilibria in this
case. We focus in these examples on the equilibria with the smallest investments, i.e., where
the right-hand derivative equals marginal costs. Given that our results demonstrate overin-
vestment, investments will be greater only in any other equilibrium.

22 Note that B 0(D) is not differentiable at zero.
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B 00ðDÞ 5 Eε̂ ðDÞ
ε

½qG
hh
ðf0yDÞ2 1 qG

h
f00y2

D
1 qG

h
f0yDD� f ðεÞ dε

1
d ε̂
dD

qG
h
f0yD f ðε̂Þ:

ðA7Þ

The second term is negative since d ε̂=dD < 0 and qG
h
, f0, and yD are all positive.

Thus B 00(D) < 0 if the first term, under the integral sign, is negative, and this
is the case if all three functions qG

hh
, f00, and yDD are (weakly) negative.23 First,

qG
hh
5 0 by assumption 1. Second, we have yDD ≤ 0 from (A1). This leaves f00(�).
Invoking assumption 2, either (a) F and G are of the same type or (b) f(�) and

g(�) are increasing. If point a is true, then G(x) 5 F(a 1 bx), which implies that
f(ε) is linear and f00(�) 5 0. Thus, B 00(D) < 0.

We now consider point b : f 0(ε) ≥ 0 and g 0(h) ≥ 0. The expression (A7) can be
written as

B 00ðDÞ 5 Eε̂ðDÞ
ε

qG
h
f0yDD f ðεÞ dε1Eε̂ðDÞ

ε

qG
h
f00y

2
D

yε

yε f ðεÞ dε2 qG
h
f0y

2
D

yε

f ðε̂Þ; ðA8Þ

given qG
hh
5 0 by assumption and since d ε̂=D 5 2yD=yε when ε̂ðDÞ > ε. Note that

the first integral is nonpositive, as a result of our finding that yDD ≤ 0. We now
show that the sum of the second and third terms is negative. Starting with the
second term, note that the ratio y2

D
=yε is increasing in ε because qxε ≥ 0 by assump-

tion, f(ε) is also increasing by assumption, and their product is also increasing.
Then, by the second mean value theorem for integrals,24 there is a c ∈ ½ε ; ε̂� such
that the second integral is equal to

f ðε̂Þy
2
D
ðε̂Þ

yεðε̂ÞE
ε̂ðDÞ

c

qG
h
f00yεðεÞdε 5 f ðε̂Þy

2
D
ðε̂Þ

yεðε̂Þ
½qG

h
ðxG ;fð�εÞÞf0ð�εÞ2 qG

h
ðxG ;fðyðcÞÞÞf0ðyðcÞÞ�;

where y(c)5 y(xB, D, c) and the arguments of yD and yε are similarly abbreviated.
That is, we can write the second and third terms of (A8) together as

2qG
h
ðxGx*

G ;fðcÞÞf0ðcÞf ðcÞ y
2
D
ðx̂B ;D; cÞ

yεðx̂B ;D; cÞ < 0:

Thus B 00(D) < 0 on ð0; �DÞ if f is increasing.
Downward deviations.—Let D ∈ ðD; 0Þ. Differentiating (A6), one obtains

23 The integral defining the function B 00(D) can be shown to be well defined using an
argument similar to that employed for B 0(D).

24 More specifically, this is the special case known as Bonnet’s theorem, which considers
the integral of the product of two functions, where one (here f ðεÞy2

D
=yε) is nonnegative and

increasing (see, e.g., Bartle 2001, 194).
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B 00ðDÞ 5 E�ε

~εðDÞ
½qG

hh
ðf0yDÞ2 1 qG

h
f00y2

D
1 qG

h
f0yDD� f ðεÞ dε

2
d~ε

dD
qG
h
f0yD f ð~εðDÞÞ1 f 0ð~εðDÞÞ d~ε

dD

� �2
1 f ð~εðDÞÞd

2~ε

dD2

� �

� �u 2 qG
qðxG ; h̲Þ
2

:

ðA9Þ

The limit as D ↑ 0, B 00(02), is given by

B 00ð02Þ 5 Eε
ε

½qG
hh
ðf0yDÞ2 1 qG

h
f00y2

D
1 qG

h
f0yDD� f ðεÞdε

2 f 0ðε Þ d~ε

dD

� �2qGðxG ; h Þ2 �u

2
:

ðA10Þ

Since f 0ðεÞ > 0 by assumption 1, we can choose �u sufficiently small so that B 00(02)
< 0. Since B 00(D) is continuous to the left at 0, there exists d > 0 such that B 00(D) <
0 if D ∈ (2d, 0).

Let d 0 ∈ (0, d). We now consider deviations in the set ðD;2d 0� and show that
B 0ðDÞ ≥ B 0ð0Þ if �u is sufficiently small. One has from (A6)

B 0ðDÞ2 B 0ð0Þ 5 Eε
~εðDÞ

qG
h
ðxG ;fðyð⋅ÞÞÞf0ðyð⋅ÞÞyDðxB ;D; εÞf ðεÞ  dε

1 f ð~εðDÞÞ d~ε
dD

�u 2 qGðxG ; h Þ
2

2Eε
ε

qG
h
ðxG ;fðεÞÞ f ðεÞ

g ðfðεÞÞ
qB
x
ðxB ; εÞ

qB
ε ðxB ; εÞ f ðεÞ  dε:

The first term is positive for any D and is thus bounded below by zero. The func-
tion f ð~εðDÞÞ is bounded away from zero given assumption 1 and givenD ∈ ðD;2d 0�,
which implies ~εðDÞ ∈ ½�ε;~εð2d 0Þ�. Then

d~ε

dD
5 2

qB
ε ðx̂ B 1 D; εÞ

qB
x
ðx̂ B 1 D; εÞ ;

and given our assumptions qB
xε ≥ 0 and qB

xx
≤ 0, and since xB 1 D ≥ �xB , this is

boundedabove by 2½qB
ε ð�x B ; εÞ=qB

x
ð�x B ; εÞ� < 0.Thus, we canfind �u sufficiently small

so that the above expression is always positive for D ∈ ðD;2d 0�.
We have therefore established that B 0(D) ≥ B 0(0) for any D ∈ ðD;2d 0� and that

B 00(D) < 0 for any D ∈ [2d, 0), where d > d 0. Since the cost function is strictly con-
vex, this establishes that no downward deviation in the set ðD; 0Þ is profitable.

We now show that the first-order conditions define reaction functions. For any
xG ∈ ½0; ~xG �, let x̂B be a solution to the first-order condition for the boys, that is,
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E�ε

ε

qG
h
ðxG ;fðεÞÞ f ðεÞ

g ðfðεÞÞ
qB
x
ðx̂ B ; εÞ

qB
ε ðx̂ B ; εÞ f ðεÞ dε2 c 0Bðx̂ BÞ 5 0: ðA11Þ

Let h(xB, xG) denote the left-hand side of equation (A11), evaluated at an arbitrary
xB and xG. Since qG

hx
≥ 0, ∂h=∂xG ≥ 0. Since qB

xx
≤ 0, qB

εx ≥ 0, and c 00BðxBÞ > 0, h(�) is
strictly decreasing in xB. Thus x̂B is weakly increasing in xG. The function h(xB,
xG) is strictly positive when xB 5 0 since cB

0ð0Þ < 0. Since cB
0ðxÞ→∞ as x → ~xB and

since the first term on the left-hand side of equation (A11) is bounded, h(xB,
xG) is negative for xB sufficiently close to ~xB . Thus, by the intermediate value the-
orem, there exists x̂BðxGÞ ∈ ð0; ~xBÞ such that h(xB, xG)5 0. Since h(�) is strictly de-
creasing in xB, this value is unique. By the implicit function theorem, the reaction
function for the boys, x̂BðxGÞ, is differentiable (and thus continuous). An identi-
cal argument establishes that the reaction function for the girls, x̂GðxBÞ, is differ-
entiable and increasing.

We now show that there exists a profile such that the reaction functions cross.
Let z : ½0; ~xB � → ½0; ~xB � be defined by zðxÞ 5 x̂Bðx̂GðxÞÞ. Note that if x*

B is a fixed
point of z, then the profile ðx*

B ; x̂Gðx*
BÞÞ is such that the first-order condition is sat-

isfied for boys and for girls. Since x̂ Gð⋅Þ and x̂ Bð⋅Þ are continuous functions, so is
z. Note that zð0Þ ≥ �xB > 0, since x̂ BðxÞ ≥ �xB for all x. Also, zð~xBÞ < ~xB , since x̂BðxGÞ <
~xB for any xG. Thus, the intermediate value theorem implies that z has a fixed
point in ½0; ~xBÞ.

We now show uniqueness under assumption 3. Since investments below the in-
dividually optimal investments are dominated, any equilibrium ðx*

B ; x
*
GÞmust sat-

isfy x*
B > 0 and x*

G > 0. Since qG
h
ðx*

G ; hÞ > 0 when x*
G > 0, the left-hand side of the

first-order condition for boys, (8), is strictly positive, and thus cB0ðx*
BÞ > 0. Similarly,

cG
0ðx*

GÞ > 0. Use assumption 3 to rewrite the equilibrium first-order condition for
boys, (8), as

vG 1 ð12 vGÞgðx*
GÞ

vB 1 ð12 vBÞgðx*
BÞE

�ε

ε

½vB 1 ð12 vBÞg0ðx*
BÞε�

� f ðεÞ
g ðfðεÞÞ f ðεÞ dε 5 c 0Bðx*

BÞ:
ðA12Þ

So if we take the product of the two first-order conditions,

c 0Bðx*
BÞc 0Gðx*

GÞ 5 E½vG 1 ð12 vGÞg0ðx*
GÞh�

½g ðhÞ�2
f ðf21ðhÞÞ  dh

�E½vB 1 ð12 vBÞg0ðx*
BÞε�

½f ðεÞ�2
g ðfðεÞÞ  dε > 0:

ðA13Þ

If we have two distinct equilibria, both x*
B and x*

G must be higher in one of the
equilibria since the reaction functions are increasing. The product of the mar-
ginal benefits, that is, the right-hand side of (A13), is decreasing in x*

B and x*
G

by the concavity of g. The product of the marginal costs cB0ðx*
BÞcG0ðx*

GÞ is increasing
because of the convexity of costs. So both equilibria cannot satisfy (A13) and we
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have a contradiction. We therefore have proved the existence and uniqueness of
the quasi-symmetric equilibrium. QED

Proof of the Lognormal Example

Let quality be additive in xB and ε for the boys and in xG and h for the girls. Let
h(ε) and k(h) be strictly increasing differentiable functions, such that h(ε) ∼N(mε,
jε) and k(h) ∼ N(mh, jh). Let ~f and ~g denote the density functions of the shocks,
and let f denote the density function of h(ε) and g denote the density of k(h). The
matching f(ε) is defined by

~F ðεÞ 5 ~GðfðεÞÞ ⇔ F ðhðεÞÞ 5 GðkðfðεÞÞÞ:

This implies that

f0ðεÞ 5 f ðhðεÞÞh0ðεÞ
g ðkðfðεÞÞk 0ðfðεÞÞ :

The first-order condition for boys is given by

E∞

0

f0ðεÞ~f ðεÞ dε 5 c 0Bðx*
BÞ:

Let us now make a change of variables, from ε to h. Since ~F ðεÞ 5 F ðhðεÞÞ, we
also have that ~f ðεÞ 5 f ðhðεÞÞ ⋅ h0ðεÞ. Furthermore, dh 5 h 0(ε)dε. Thus

B 0ð0Þ 5 E∞

2∞

f ðhðεÞÞ2h0ðεÞ
g ðkðfðεÞÞÞk 0ðfðεÞÞ  dh 5

jh

jε
E∞

2∞

f ðhðεÞÞh0ðεÞ
k 0ðfðεÞÞ  dh:

Changing variables again, back from h to ε,

B 0ð0Þ 5 jh

jε
E∞

0

~f ðεÞh0ðεÞ
k 0ðfðεÞÞ dε:

Specializing to the lognormal case, suppose h(ε)5 ln(ε) and k(h)5 ln h. Thus
h0ðεÞ 5 1=ε and

B 0ð0Þ 5 jh

jε
E∞

0

~f ðεÞfðεÞ
ε

dε 5 c 0Bðx*
BÞ:

Suppose that mε 5 mh 5 0. Since F(h(ε))5 G(k(h)), ln ðεÞ1=jε 5 ln ½fðεÞ�1=jh , so that
fðεÞ 5 εjh=jε . The first-order condition for the boys is

jh

jε
E∞

0

~f ðεÞεðjh=jεÞ21dε 5 c 0Bðx*
BÞ:

When ε is lognormally distributed, the expectation of εa equals expðamε 1
1
2a

2j2
ε Þ. Since mε 5 0,
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jh

jε

exp
1

2

jh 2 jε

jε

� �2

j2
ε

� �
5

jh

jε

exp
1

2
ðjh 2 jεÞ2

� �
5 c 0Bðx*

BÞ:

Let us now consider large deviations. For D < 0, with probability 1
2
~F ðDÞ, a

downward deviation will result in being unmatched and is unattractive if �u is
low enough. For D > 0,

B0ðDÞ 5 jh

jε
E∞

0

~f ðεÞðε1 DÞðjh=jεÞ21dε:

Define a 5 ðjh=jεÞ2 1. When a ≤ 0, B 0(D) is clearly concave in D. So let us con-
sider the case in which a ∈ (0, 1), so that the variance of the log of the shocks
in the girls is less than twice that in the boys. A second-order Taylor expansion
of (ε 1 D)a around D 5 0 yields

ðε1 DÞa 5 εa 1 aεa21D1 aða2 1Þεa22d2;

for some d ∈ (0, D]. Thus,

B 0ðDÞ 5
jh

jε

½EðεaÞ1 aEðεa21ÞD1 aða2 1ÞEðεa22Þd2�

≤
jh

jε

½EðεaÞ1 aEðεa21ÞD�

and

c 0
Bðx*

B 1 DÞ 5 c 0
Bðx*

BÞ1 c 00Bðx*
BÞD1 c 000B ðx*

BÞ~d2; ~d ∈ ½0;D�:
Assume that c 000B ðx*

BÞ ≥ 0. Thus the problem is concave in D if

jh

jε

aEðεa21ÞD2 c 00Bðx*
BÞD ≤ 0:

This is satisfied if

c 00Bðx*
BÞ ≥

jh

jε

jh 2 jε

jε

� �
exp

1

2
ðjh 2 2jεÞ2

� �
:

In the boundary case in which jh 5 2jε, the condition reduces to c 00Bðx*
BÞ ≥ 2. Thus

as long as the ratio of the variances is less than two and the second derivative of
the cost function exceeds two at x ≥ x*

B , the problem is globally concave.

Proof of Proposition 2

Existence can be established by following the proof of theorem 1 except in the
case of downward deviations by girls. A girl choosing x*

G 1 D for some D < 0 faces
a marginal benefit of

B 0ðDÞ 5 E
h

�h1D
g ðhÞ

f ðf21ðhÞÞ g ðh2 DÞ dh:
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We can find a distribution F(ε) sufficiently dispersed in the sense of the disper-
sion order (see eq. [12] for a definition) so that f(�) is small enough to ensure
that B 0ðDÞ > c 0Gðx*

G 1 DÞ for D < 0.
Turning to the efficiency of investments, we have f ð~εÞðh 1 x*

G 2 �uÞ > 0, reflect-
ing our assumption that the misery effect is strictly positive. Thus, combining the
first-order conditions (14) and (15), we have

c 0Bðx*
BÞ � c 0Gðx*

GÞ >
1

r E
�ε

~εðr Þ

f ðεÞ
g ðfðεÞÞ f ðεÞ dε

" #"
rE�h

h

g ðhÞ
f ðf21ðhÞÞ g ðhÞ dh

#
:

Making a change of variables, from h to ε, results in

c 0Bðx*
BÞ � c 0Gðx*

GÞ >
1

r E
�ε

~εðr Þ

f ðεÞ
g ðfðεÞÞ f ðεÞ dε

" #
E�ε

~εðr Þ
g ðfðεÞÞ dε

" #
:

By the Cauchy-Schwarz inequality, it follows that

1

r E
�ε

~εðr Þ

f ðεÞ
g ðfðεÞÞf ðεÞ dε

" #
E�ε

~εðr Þ
g ðfðεÞÞ dε

" #

≥
1

r E
�ε

~εðr Þ

f ðεÞ
½g ðfðεÞÞ�1=2

( )
½g ðfðεÞÞ�1=2  dε

 !2
5

r 2

r
:

Thus, c 0Bðx*
BÞ � c 0Gðx*

GÞ > r while efficiency requires equality. QED

Proof of Theorem 3

Let f and g be symmetric functions around their means, ~ε and ~h. Symmetry im-
plies that f ð~ε2 DÞ 5 f ð~ε1 DÞ for any D. If f and g are both symmetric, then
f(ε) and g(f(ε)) are also symmetric around fð~εÞ 5 ~h and g ðfð~εÞÞ, respectively,
and f ðεÞ=g ðfðεÞÞ is also symmetric around f ð~εÞ=g ðfð~εÞÞ. Using these facts,

E�ε

ε

ε
½ f ðεÞ�2
g ðfðεÞdε 5 E0

ε 2~ε

ð~ε 1 DÞ ½ f ð~ε 1 DÞ�2
g ðfð~ε 1 DÞÞdD

1E0

ε 2~ε

ð~ε 2 DÞ ½ f ð~ε 2 DÞ�2
g ðfð~ε 2 DÞÞdD

5 2~εE0

ε2~ε

½ f ð~ε 1 DÞ�2
g ðfð~ε 1 DÞÞdD

5 2~εE~ε
ε

½ f ðεÞ�2
g ðfðεÞÞdε:

Similarly,

E�ε

ε

½ f ðεÞ�2
g ðfðεÞÞ  dε 5 2E~ε

ε

½ f ðεÞ�2
g ðfðεÞÞ dε:
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A similar argument and a change of variables yield

E
h

�hh
½g ðhÞ�2

f ðf21ðhÞÞ  dh 5 E�ε

ε

fðεÞg ðfðεÞÞ dε 5 2fð~εÞE~ε

ε

g ðfðεÞÞ dε:

We may therefore write the product of the equilibrium marginal costs as

2½vG 1 ð12 vGÞg0ðx*
GÞ~h�E ~ε

ε
g ðfðεÞÞ dε

8<
:

9=
;

� 2½vB 1 ð12 vBÞg0ðx*
BÞ~ε�E~ε

ε

½f ðεÞ�2
g ðfðεÞÞ  dε

8<
:

9=
;:

ðA14Þ

By the Cauchy-Schwarz inequality, the above is weakly greater than

4½vG 1 ð12 vGÞg0ðx*
GÞ~h�½vB 1 ð12 vBÞg0ðx*

BÞ~ε� E~ε

ε

f ðεÞ dε
2
4

3
5
2

;

which is equal to

½vG 1 ð12 vGÞg0ðx*
GÞ~h�½vB 1 ð12 vBÞg0ðx*

BÞ~ε�:
Thus the product of marginal costs is strictly greater than for Pareto efficiency if
f ðεÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ðfðεÞÞp
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðfðεÞÞp

are linearly independent. QED

Proof of Theorem 4

Under assumption 1, since costs are strictly convex and quality is concave in x,
there is a unique profile of investments that satisfies the first-order conditions
for maximizing utilitarian payoffs; assumption 1 also ensures that maximizing in-
vestments must be in the interior of the feasible set andmust thus satisfy the first-
order conditions. Since we have established that the first-order conditions for
utilitarian efficiency are identical to the first-order conditions for an equilibrium
that is gender-neutral, a gender-neutral profile can be an equilibrium only if it is
utilitarian efficient.25

We now show that under the stated assumptions, deviations from the utilitar-
ian profile are unprofitable, so that the utilitarian profile is an equilibrium. Given
the convexity of the cost function and qxx ≤ 0, the utilitarian investments x**

i glob-
ally maximize the utilitarian payoffs, implying

Eqðx; εÞf i
ðεÞ dε2 ciðxÞ ≤ Eqðx**

i ; εÞf i
ðεÞ dε2 ciðx**

i Þ 8x: ðA15Þ

25 Note that because of the strong assumption of symmetry between the sexes, we do not
need assumption 3, which was required to assure uniqueness in the general asymmetric
case.
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Since each type chooses x**
i in any gender-neutral equilibrium, the payoff to

any individual of type i equals the right-hand side of (A15). Thus if the payoff
to the individual from deviating to any x ≠ x**

i is less than or equal to the left-hand
side of (A15), no deviation is profitable. We show that this is the case if there are
no quality gaps under the utilitarian profile and if �u is sufficiently small. Let Cð~F Þ
denote the support of ~F under the utilitarian profile, which is connected under
the no quality gap assumption. If a deviating individual’s qðx; εÞ ∈ Cð~F Þ, then his
or her match payoff equals q(x, ε). If qðx; εÞ > maxCð~F Þ, then the match payoff
equals maxCð~F Þ. If qðx; εÞ < minCð~F Þ, then thematchpayoff equals ½minCð~F Þ1
�u �=2, which is less than q(x, ε) if �u is sufficiently small. Thus nodeviation from x**

i is
profitable. QED

Proofs for the Finite Case

Our main result for the finite model, theorem 5, is the existence of a quasi-
symmetric equilibrium and its convergence to the quasi-symmetric equilibrium
of the continuum model. Our strategy of proof for this result is as follows. First,
we consider the decision problem of a boy in a quasi-symmetric equilibrium. We
fix a profile in which every girl chooses investment xG and every other boy chooses
investment xB, and we consider the benefit function of a boy who chooses xB 1 D.
This benefit function as given in (26) is written Bn(D, xG). As we assume additive
quality, Bn does not depend on xB, but only on D and xG, and is linear in xG. From
the individual boy’s point of view, xG is exogenously given, while D is a choice var-
iable. We show in lemma4below that this benefit function converges to thebenefit
function in the continuum case, B(D, xG), uniformly in (D, xG), as n→∞. Lemma 4
also shows that the first derivative with respect to D evaluated at D 5 0, B 0

nð0; xGÞ,
converges to B 0(0, xG) for any value of xG (B

0(0, xG) is a constant function of xG).
Since B 0

nð0; xGÞ is linear in xG and since xG is bounded, the convergence of
B 0
nð0; xGÞ is uniform in xG. The first derivative, B 0

nð0; xGÞ, defines the “best-
response” function for boys, x̂BnðxGÞ, and similarly, the first derivative for girls de-
fines their “best-response” function, x̂GnðxBÞ. It is shown in lemma 5 that the con-
vergence of the first derivatives to their continuum values implies that for n large
enough, thebest-response functionshavepositive slope less thanone-quarter (the
continuumbest-response functions have slope zero), so that there exists a unique
profile ðx*

Bn; x
*
GnÞ that are mutual best responses. Furthermore, uniform conver-

gence of the first derivatives implies that ðx*
Bn; x

*
GnÞ → ðx*

B ; x
*
GÞ, the continuum equi-

libria, as n → ∞.
It remains to verify that no individual boy has an incentive to deviate from x*

Bn .
Since Bn(D, xG) converges uniformly to B(D, xG), ðx*

Bn; x
*
GnÞ → ðx*

B ; x
*
GÞ as n → ∞;

and since large deviations are unprofitable in the continuum game, they are also
unprofitable in the finite case when n is large enough. To show that small devi-
ations are unprofitable, we establish two additional uniform convergence results,
lemmas 6 and 7, for the second derivatives of Bn(D, xG), for upward and downward
deviations. Since Bn(D, xG) is strictly concave for D in a neighborhood around
zero, this establishes that no local deviations are profitable when n is large enough.

It might be worthwhile, before proceeding to the proof, to explain some of the
issues involved in establishing uniform convergence. Lemma 1 shows that thematch-
ing function in the finite case, fn(ε 1 D), converges pointwise to f(ε 1 D), the
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matching function in the continuummodel (except at a single point, ε). However,
the finite agentmatching function (see [A16]) is continuous on its domain, while
the continuummatching function is discontinuous to the left at ε. Consequently,
by Weirstrass’s theorem, convergence cannot be uniform.26 Fortunately, we do
not require uniform convergence of the matching function, but of the payoff
function Bn(�), which is the integral of the matching functions (see lemmas 3 and
4 below).

Define f(ε 1 D), the shock value of the girl who is matched with a boy who
invests xB 1 D and receives shock ε, by

fðε1 DÞ 5

1

2
ðh 1 �u 2 xGÞ if ε1 D < ε

G21ðF ðεÞÞ if ε1 D ∈ ½ε ;�ε�
�h if ε1 D > �ε:

8>>><
>>>:

Similarly, let ~fnðε1 DÞ denote the shock value of the girl who is matched with a
boy who invests xB 1 D and receives shock ε. Let fn(ε 1 D) denote the expec-
tation of ~fnðε1 DÞ. As we have already discussed in the text, this equals the ex-
pected shock value of a girl who is matched with a boy of shock value ε1 D, with
the caveat that if ε1 D > �ε, he marries the highest-quality girl, and if ε1 D < ε, he
marries the lowest-quality girl with probability n=ð2n 1 1Þ and is unmarried with
probability ðn 1 1Þ=ð2n 1 1Þ, in which case the shock value is defined to be �u 2
xG . Also, fn(ε 1 D) can be written as

fnðε1 DÞ 5 n

2n 1 1
fn;n11ðε1 DÞ1 n 1 1

2n 1 1
fn11;nðε1 DÞ; ðA16Þ

where fn,n11(ε 1 D) (respectively, fn11,n(ε 1 D)) equals the expected shock value
of the girl that the boy with shock ε 1 D is matched with, conditional on there
being n boys and n 1 1 girls (respectively, n girls and n 1 1 boys). Specifically,

fn;n11ðε1 DÞ 5 o
n

i51

F n
i ðε1 DÞEhði11;n11Þ; ðA17Þ

where, using the notation of Hoppe et al. (2009), F n
i ðεÞ denotes the probability

that a boy with shock ε is ranked i when there are n boys, and Eh( j,n11) is the ex-
pectation of the j th order statistic for shocks for girls when there are n 1 1 girls.
Similarly,

fn11;nðε1 DÞ 5 o
n11

i52

F n11
i ðε1 DÞEhði21;nÞ 1 F n11

1 ðε1 DÞð�u 2 xGÞ; ðA18Þ

where F n11
i ðε1 DÞ and Eh(i21,n) are defined analogously. The final term repre-

sents the probability of coming last and remaining unmatched.
For our convergence results, we shall restrict D to lie in the compact interval

[2d, d] that contains ½D; �D�. We consider an arbitrary but larger interval than

26 This does not preclude uniform convergence of the matching function on a restricted
domain where the continuum matching function is continuous, as we show in lemma 2.
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½D; �D� in order to show that deviations outside ½D; �D� are unprofitable in the fi-
nite model just as in the continuum case. The following lemma establishes the
pointwise convergence of the matching function fn that is the average of fn,n11

and fn11,n. Since fn,n11 is well behaved for upward deviations (even though fn11,n

is not), it also establishes its pointwise convergence in this case.
Lemma 1. Let D ∈ [2d, d], where d > 0 is arbitrary. For any ε1 D ∈ ½ε 2 d;�ε1

d� except ε1 D 5 ε , fnðε1 DÞ converges pointwise to f(ε 1 D) as n → ∞. More-
over, fn,n11(ε 1 D) converges pointwise to f(ε 1 D) at any ε1 D ∈ ½ε;�ε1 d�.

Proof. Let Fn(t) (respectively, Gn(t)) denote the fraction of boys (respectively,
girls) with shock value below t in a sample of n boys (girls), where t ∈ ðε̲;�εÞ. By
the Glivenko-Cantelli theorem, Fn(t) → F(t) almost surely as n → ∞. Similarly,
Gn(t)→G(t) almost surely as n→∞. Thus for any a, b such that ε < a < ε1 D < b <
�ε, the probability that ~fðε1 DÞ ∈ ðfðaÞ;fðbÞÞ tends to one as n→∞. Hence fn(ε1
D) ∈ (f(a), f(b)) for all n sufficiently large. Consequently, since a and b were arbi-
trary, fn(ε 1 D) → f(ε 1 D) if ε < ε1 D < �ε. Also, by definition, if ε1 D ≥ �ε,

fnðε1 DÞ 5 n

2n 1 1
Ehðn11;n11Þ 1

n 1 1

2n 1 1
Ehðn;nÞ;

which converges to �h 5 fðε1 DÞ. Finally, when ε1 D < ε ,

fnðε1 DÞ 5 n

2n 1 1
Ehð2;n11Þ 1

n 1 1

2n 1 1
ð�u 2 xGÞ:

Since Ehð2;n11Þ → h, as n→∞, fn(ε1D) converges to 1
2 ðh 1 �u 2 xGÞ 5 fðε1 DÞ as

n → ∞. Hence fn(ε 1 D) converges pointwise to f(ε 1 D) for all values of ε 1 D

except ε1 D 5 ε. The argument for fn,n11(ε1 D) is identical for ε1 D > ε. At ε1
D 5 ε, fn,n11(ε 1 D) 5 Eh(2,n11), which converges to h as n → ∞. Since fðεÞ 5 h,
fn,n11(ε 1 D) → f(ε 1 D) for any ε1 D ∈ ½ε;�ε1 a�. QED

Note that fnðεÞ does not converge to fðεÞ. Thus one cannot expect uniform
convergence of thematching function in general, but the following lemma shows
uniform convergence on a restricted domain.

Lemma 2. Let 0 < b < d, and let D ∈ [b, d]. The function fn(ε 1 D) converges
to f(ε 1 D) as n → ∞, uniformly on ε1 D ∈ ½ε 1 b;�ε1 d �. Further, fn,n11(ε 1 D)
converges to f(ε 1 D) uniformly in D on ½ε;�ε1 d �.

Proof. Lemma 1 establishes that fn(ε1D) converges to f(ε1D) at each value
except ε1 D 5 ε. Since fn(ε1 D) is a strictly increasing and continuous function
and it converges to a continuous function on the compact domain ½ε 1 b;�ε1 d �,
convergence is uniform (as an immediate consequence of Polya’s theorem).
Similarly, lemma 1 shows that fn,n11(ε 1 D) converges to f(ε 1 D) at any ε1
D ∈ ½ε;�ε1 d �, and again Polya’s theorem implies uniform convergence. QED

We move on to the convergence of the benefit function Bn, as introduced in
(26), and its derivatives. The following lemma ensures that establishing point-
wise convergence of the matching functions ensures uniform convergence of
the benefit function.

Let y : ℝ → ℝ equal zero except on a compact interval. Without loss of gen-
erality, let this interval be [0, 1], so that y(x) 5 0 for all x ∉ [0, 1]. Let h : [2a,
1 1 a] → ℝ, and for n ∈ ℕ, let hn : [2a, 1 1 a] → ℝ. Assume that each of these
functions y, h, and hn are measurable and bounded, and let �y > 0 be an upper
bound for FyF. For D ∈ [2a, a], define Wn(D) and W(D) by
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WnðDÞ 5 E1

0

hnðx 1 DÞyðxÞ dx;

W ðDÞ 5 E1

0

hðx 1 DÞyðxÞ dx:

Lemma 3. Assume that for almost any z ∈ [2a, 1 1 a], hn(z)→ h(z) as n→ ∞;
that is, hn converges pointwise to h almost everywhere on [2a, 1 1 a]. Assume
also that hn(z) is uniformly bounded; that is, Fhn(z)F < H for all n and for all
z ∈ [2a, 1 1 a]. Then, Wn converges to W(D) uniformly in D.

Proof. Using the change of variables s 5 x 1 D, we have

WnðDÞ 5 E11D

D

hnðsÞyðs 2 DÞ ds;

W ðDÞ 5 E11D

D

hðsÞyðs 2 DÞ ds:
 

Hence,

jW nðDÞ2W ðDÞj 5 E11D

D

½hnðsÞ2 hðsÞ�yðs 2 DÞ ds
�����

�����
≤ E11D

D

jhnðsÞ2 hðsÞj  jyðs 2 DÞj ds

≤ �yE11a

2a

jhnðsÞ2 hðsÞj ds:

ðA19Þ

Since the last expression, which does not depend on D, converges to zero by the
dominated convergence theorem, the conclusion follows. QED

With additive quality, the benefit function B(D, xG) as introduced in (A2) and
its finite equivalent Bn(D, xG) are given by

BðD; xGÞ 5 E�ε

ε

fðε1 DÞf ðεÞ  dε1 xG ;

BnðD; xGÞ 5 E�ε

ε

fnðε1 DÞf ðεÞ  dε1 xG :

ðA20Þ

We now write B as a function of (D, xG) to emphasize that convergence of the fi-
nite equivalent Bn is joint in both variables (B is not a function of xB, however). In
the proof of theorem 1 we established that since f ðεÞ 5 0, the left-hand and right-
hand derivatives with respect toD of B(D, xG), evaluated at D5 0, are equal. Thus,
the derivative exists and equals
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B 0ð0; xGÞ 5 E�ε

ε

f0ðεÞf ðεÞ dε:

Note that B 0(0, xG) does not depend on xG. The derivative of Bn(�) with respect to
D is

B 0
nð0; xGÞ 5 E�ε

ε

f0
nðεÞf ðεÞ dε: ðA21Þ

Since quality is additive, B(D, xG), Bn(D, xG), and their derivatives are all linear
in xG.

Lemma 4. Bn(D, xG) → B(D, xG) uniformly in (D, xG) as n → ∞. Further,
B 0

nð0; xGÞ→ B 0ð0; xGÞ uniformly in xG as n → ∞.
Proof. In the expression for Bn(D, xG) in (A20), the integrand is uniformly

bounded: below by �u 2 xG and above by �h. Thus lemma 3 and lemma 1 imply that
Bn(D, xG) converges to B(D, xG) uniformly in D. The result that it converges uni-
formly in (D, xG) follows since Bn is linear in xG and convergence is on the com-
pact set ½2a; a� � ½0; ~xG �.

Use integration by parts and the fact that f ðεÞ 5 0 to rewrite the expression for
B 0(0, xG) as

B 0ð0; xGÞ 5 2E�ε

ε

fðεÞf 0ðεÞ dε1 �hf ð�εÞ: ðA22Þ

Similarly, using integration by parts, we find that

B 0
nð0; xGÞ 5 2E�ε

ε

fnðεÞf 0ðεÞ dε1 fnð�εÞf ð�εÞ: ðA23Þ

Since f 0(ε) is bounded, lemma 3 and lemma 1 imply that the first term in (A23)
converges to the first term in (A22). Lemma 1 implies that the second term in
(A23) converges to the second term in (A22). Uniform convergence in xG again
follows from the linearity in xG and its boundedness. QED

Let ~BnðD; xBÞ denote the benefit function for girls, and let ~B 0
nð0; xBÞ denote its

derivative at D 5 0.
Lemma 5. For n sufficiently large, there exists a unique profile ðx*

Bn; x
*
GnÞ,

where the first-order conditions are satisfied, for the boys, c 0Bðx*
BnÞ 5 B 0

nð0; x*
GnÞ,

and for the girls, c 0Gðx*
GnÞ 5 ~B 0

nð0; x*
BnÞ. Furthermore, ðx*

Bn ; x
*
GnÞ→ ðx*

B ; x
*
GÞ, the

unique quasi-symmetric equilibrium of continuum economy.
Proof. Define x̂BnðxGÞ and x̂GnðxBÞ by

c 0Bðx̂BnÞ 5 B 0
nð0; xGÞ;

c 0Gðx̂GnÞ 5 ~Bn
0ð0; xBÞ:

Since c 0
Bð0Þ < 0 < B 0

nð0; xGÞ and c 0
BðxBÞ→∞ as xB → ~xB , and since c 0

Bð⋅Þ is strictly
increasing, x̂BnðxGnÞ is uniquely defined. Its derivative is
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dx̂ Bn

dxG

5
∂B 0

nð0; xGÞ
∂xG

1

c 00Bðx̂ BnÞ: ðA24Þ

Note that B 0(0, xG) does not depend on xG, while B 0
nð0; xGÞ is linear in xG and con-

verges uniformly to B 0(0, xG). Thus the derivative ∂B 0
nð0; xGÞ=∂xG → 0 as n → ∞.

Since c 00Bðx̂BnÞ ≥ g > 0 (cf. assumption 1), dx̂ Bn=dxG → 0 as n → ∞. Since the argu-
ment is identical for the girls, dx̂ Gn=dxB → 0 as n → ∞. Thus there exists N : n >
N ⇒ dx̂ Bn=dxG < 1

2 for any xG ∈ ½0; ~xG � and dx̂ Gn=dxB < 1
2 for any xB ∈ ½0; ~xB �.

Define zn : ½0; ~xB �→ ½0; ~xB � by znðxÞ 5 x̂Bnðx̂GnðxÞÞ. Since zn is a composition of
increasing differentiable functions, it is increasing and differentiable, with deriv-
ative equal to the product of the derivatives of x̂ Bnð⋅Þ and x̂ Gnð⋅Þ. Thus if n > N,
where N is as defined in the previous paragraph, zn has a slope that is bounded
above by ¼, and so any fixed point is unique. Since x̂BnðxGÞ ≥ �xB , zn(0) > 0; and
since znð~xBÞ < ~xB , the intermediate value theorem ensures existence of a fixed
point of zn, x*

Bn . Let x
*
Gn 5 x̂Gnðx*

BnÞ. Thus if n > N, there exists a unique profile
ðx*

Bn; x
*
GnÞ, where the first-order conditions are satisfied.

We now show that sequence ðx*
Bn; x

*
GnÞ∞n5N11 converges to ðx*

B ; x
*
GÞ, the unique

equilibrium in the continuum model. Recall that x*
B is defined by c0Bðx*

BÞ 5
B 0ð0; xGÞ, where B 0(0, xG) is a constant, so that x*

B 5 ðc 0
BÞ21ðB 0ð0; xGÞÞ, where ðc0BÞ21

denotes the inverse of the marginal cost function. On the other hand, x*
Bn 5

ðc 0
BÞ21ðB 0

nð0; x*
GnÞÞ. Let xGn be an arbitrary sequence that takes values in ½0; ~xGÞ,

and consider the induced sequence x Bn ≔ ðc 0
BÞ21ðB 0

nð0; xGnÞÞ. Since B 0
nð0; xGnÞ con-

verges uniformly to the constant B 0(0, xG) uniformly in xGn and since ðc0BÞ21 is a con-
tinuous function (since c 0BðxÞ is continuous and strictly increasing), limn→∞xBn 5
ðc 0

BÞ21ðlimn→∞B
0
nð0; xGnÞÞ 5 x*

B . Thus xBn → x*
B as n → ∞, and since the sequence

xGn was arbitrary, this proves that x*
Bn 5 ðc 0

BÞ21ðB 0
nð0; x*

GnÞÞ→ x*
B as n→∞. Similarly,

x*
Gn → x*

G as n→∞. QED
We now show that deviations from ðx*

Bn; x
*
GnÞ are unprofitable if n is large

enough. Our strategy is to show that if the global optimality conditions are sat-
isfied in the continuum case, then they are also satisfied in the large finite case.
For upward deviations, we show that the second derivative converges uniformly
to the continuum derivative plus a negative term. For downward deviations in
some interval, we do this by showing the uniform convergence of the second de-
rivative to that in the continuum model.

In the continuum model, the second derivative on ð0; �DÞ given in (A7) be-
comes with additive quality

B 00ðD; xGÞ 5 E�ε2D

ε

f00ðε1 DÞf ðεÞ dε2 f0ð�εÞf ð�ε 2 DÞ: ðA25Þ

For [2d, 0), the expression (A9) becomes,

B 00ðD; xGÞ 5 E�ε

ε2D

f00ðε1 DÞf ðεÞ dε1 f0ðε Þf ðε 2 DÞ

2 f 0ðε 2 DÞxG 1 h 2 �u

2
:

ðA26Þ
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The second derivatives in the finite case are, for D∈ð0; �DÞ,

B 00
n ðD; xGÞ 5 E�ε2D

ε

f00
nðε1 DÞf ðεÞ dε2 f0

nð�εÞf ð�ε 2 DÞ; ðA27Þ

and for D ∈ [2d, 0),

B 00
n ðD; xGÞ 5 E�ε

ε2D

f00
nðε1 DÞf ðεÞ dε1 f0

nðε Þf ðε 2 DÞ: ðA28Þ

At this point, for the convergence of B 00
nðD; xGÞ on [2d, 0), we invoke an addi-

tional assumption, f ð�εÞ 5 0. We will relax this assumption later.
Lemma 6. For any k > 0, there exists N : n > N ⇒ B 00

nðD; xGÞ < B 00ðD; xGÞ1 k for
anyD ∈ ð0; �DÞ. The functionB 00

n ðD; xGÞ→ B 00ðD; xGÞuniformly in (D, xG) forD ∈ [2d,
0) as n → ∞ if f ð�εÞ 5 0.

Proof. For D ∈ ð0; �DÞ we show that B 00
nðD; xGÞ can be written as the sum of two

terms, where the first converges to B 00(D, xG) uniformly in (D, xG) and the second
is negative. By iterated integration by parts, we obtain

B 00ðD; xGÞ 5 E�ε2D

ε

fðε1 DÞf 00ðεÞ dε2 fð�εÞf 0ð�ε 2 DÞ

1 fðε 1 DÞf 0ðε Þ;
ðA29Þ

B 00
n ðD; xGÞ 5 E�ε2D

ε

fnðε1 DÞf 00ðεÞ dε2 fnð�εÞf 0ð�ε 2 DÞ

1 fnðε 1 DÞf 0ðε Þ:
ðA30Þ

Since f 00(ε) is continuous on the support of f, it is bounded. Thus the first term of
(A30) converges to the first term in (A29). Turning to the second terms in the
two expressions, convergence follows since fnð�εÞ converges to fð�εÞ. These terms
are multiplied by f 0ð�ε2 DÞ, but since f 0 is continuous and therefore bounded,
the convergence is also uniform in D. Uniform convergence in xG follows from
the linearity of B 00

n in xG.
This leaves the final term in (A30), fnðε 1 DÞf 0ðεÞ. Let ~fn;n11ðε 1 DÞ be the ran-

dom variable that denotes the shock value of the partner when there are n 1 1
girls and n boys. Similarly, let ~fn11;nðε 1 DÞ be the random variable that denotes
the shock value of the partner when there are n 1 1 girls and n boys. Note that
~fn;n11ðε 1 DÞ first-order stochastic dominates ~fn11;nðε 1 DÞ,27 and so fn;n11ðε 1
DÞ > fn11;nðε 1 DÞ. Since fnðε 1 DÞ is a convex combination of fn;n11ðε 1 DÞ and
fn11;nðε 1 DÞ, it follows that fnðε 1 DÞ < fn;n11ðε 1 DÞ. Let ~B

00
nðD; xGÞ equal the

27 Given n2 1 realizations of draws from the distribution F(�), the absolute rank of ε1 D
in the set of n boys must be weakly lower when we have an additional draw from F(�). Sim-
ilarly, the shock value of a girl of any absolute rank j in a set of n 1 1 girls must be weakly
lower when we remove one of the girls. Thus ~fn;n11ðε 1 DÞ first-order stochastic dominates
~fn11;nðε 1 DÞ.
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right-hand side of (A30), modified by replacing fnðε 1 DÞ with fn;n11ðε 1 DÞ. By
lemma 2, fn;n11ðε 1 DÞ converges uniformly to fðε 1 DÞ, and so ~B 00

n ðD; xGÞ con-
verges to B 00(D, xG) uniformly in D. Since B 00

nðD; xGÞ < ~B
00
nðD; xGÞ and since for any

k > 0, for allD ∈ ð0; �DÞ, there existsN : n > N ⇒ j~B 00
nðDÞ2 B 00ðDÞj < k, implying that

B 00
n ðDÞ < B 00ðDÞ1 k.
Turning to B 00(D, xG) and B 00

nðD; xGÞ on [2d, 0), iterated integration by parts
yields

B 00ðD; xGÞ 5 E�ε

ε2D

fðε1 DÞf 00ðεÞ dε1 f 0ðε 2 DÞ xG 1 h 1 �u

2

� �

2 fð�ε 1 DÞf 0ð�εÞ1 f0ð�ε 1 DÞf ð�εÞ;
ðA31Þ

B 00
n ðD; xGÞ 5 E�ε

ε2D

fnðε1 DÞf 00ðεÞ  dε1 fnðε Þf 0ðε 2 DÞ

2 fnð�ε 1 DÞf 0ð�εÞ1 f0
nð�ε 1 DÞf ð�εÞ:

ðA32Þ

Uniform convergence of the first two terms in (A32) to the first two terms in
(A31) is by the same argument as for B 00 when D > 0. Uniform convergence of
the third term in (A32) to the third term in (A31) follows from lemma 2. Given
the assumption that f ð�εÞ 5 0, the fourth terms in (A32) and (A31) both equal
zero. QED

At this point, we could move directly to the proof of the main theorem if we
assume that f and g equal zero at the upper bound of their supports. This as-
sumption is not necessary, but relaxing it requires showing that f0

nð�ε1 DÞ con-
verges to f0ð�ε 1 DÞ uniformly for D belonging to some interval [2b, 0], as we
now show.

Lemma 7. There exists b > 0 such that, for D ∈ [2b, 0], f0
nð�ε1 DÞ converges

uniformly in D to f0ð�ε1 DÞ as n → ∞. Hence, B 00
nðD; xGÞ→ B 00ðD; xGÞ uniformly

in (D, xG) for D ∈ [2b, 0) as n → ∞.
Proof. Let b ∈ ð0;�ε2 εÞ, so that �ε1 D ∈ ½ε;�ε�. Since

f0
nð�ε 1 DÞ 5 n 1 1

2n 1 1
f0

n11;nð�ε 1 DÞ1 n

2n 1 1
f0

n;n11ð�ε 1 DÞ;

it converges to f0ð�ε1 DÞ if both f0
n11;nð�ε1 DÞ and f0

n;n11ð�ε1 DÞ converge. We
demonstrate the convergence of f0

n11;nð�ε1 DÞ since the argument for f0
n;n11ð�ε1

DÞ is almost identical. By differentiating (A18) we obtain

f0
n11;nð�ε 1 DÞ 5 f ð�ε 1 DÞo

n

i52

F n
i ð�ε 1 DÞn½Ehði;nÞ 2 Ehði21;nÞ�

1f ð�ε 1 DÞn½12 F ð�ε 1 DÞ�n21½Ehð1;nÞ 1 xG 2 �u � > 0:

ðA33Þ

Consider first the final term in the above expression. For anyn,n½12 F ð�ε1 DÞ�n ≤
n½12 F ð�ε2 dÞ�n, and n½12 F ð�ε1 DÞ�n → 0 as n → ∞ for every D ∈ [2b, 0]. Since
D5 b provides an upper bound, the convergence is uniform in D.
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Turning to the summation terms in (A33), f ð�ε1 DÞ enters both f0
n11;nð�ε1 DÞ

and f0ð�ε1 DÞ, so it suffices to show that

o
n

i52

F n
i ð�ε 1 DÞn½Ehði;nÞ 2 Ehði21;nÞ�→

1

g ðG21ðF ð�ε 1 DÞÞÞ

as n → ∞ uniformly in D.
Let the integer i(n)5 (n1 1)p for p taking values in [0, 1]. We now show that

the expression n[Eh(i(n),n) 2 Eh(i(n)21,n)] converges to 1/g(G21(p)) as n → ∞ uni-
formly in p for p belonging to an interval ½~p; 1�, where g(G21(p)) is bounded away
from zero. Assume that g ðG21ð1ÞÞ 5 g ð�hÞ > 0. Since g is continuous, there exists
an interval ½ p̂; 1� such that g ðG21ðpÞÞ > �g > 0 for all    p ∈ ½ p̂ ; 1�, and let ~p ∈ ð p̂; 1Þ.
From Arnold, Balakrishnan, and Nagaraja (1992, 128) we have

Ehði;nÞ 5 G21ðpÞ1 pð12 pÞ
2ðn 1 2Þ

d2G21ðpÞ
du2

1 O
1

n2

� �
;

where dG21(p)/du is the derivative of G21(u) evaluated at p. Furthermore, the
terms that are Oð1=n2Þ are so uniformly in p for p ∈ [0, 1]. Now,

n½Ehði;nÞ 2 Ehði21;nÞ� 5 n G21ðpÞ2 G21 p 2
1

n 1 1

� �� �

1n

d2G21 p 2
1

n 1 1

� �
du2

12 2p

n 1 1
1

1

n 1 1

� �2

2ðn 1 2Þ

2
64

3
75

1n
pð12 pÞ
2ðn 1 2Þ

d2G21ðpÞ
du2

2

d2G21 p 2
1

n 1 1

� �
du2

2
64

3
751 nO

1

n3

� �
:

ðA34Þ

We first show that the first term on the right-hand side converges uniformly to
1/g(G21(p)) as n → ∞ uniformly in p for p ∈ ½~p; 1�. By the mean value theorem,
there exists a ∈ (p 2 1/(n 1 1), p) such that

½1=g ðG21ðaÞÞ� 1

n 1 1
5 G21ðpÞ2 G21ðp 2 1=ðn 1 1ÞÞ:

Since 1/g(G21(�)) is continuous and since 1=ðn 1 1Þ→0 as n → ∞,

½1=g ðG21ðaÞÞ� n

n 1 1
→1=g ðG21ðpÞÞ

as n→∞. Convergence is uniform in p for p ∈ ½~p; 1� since 1/g(G21(�)) is uniformly
continuous on the compact interval ½ p̂; 1�.

Let us now turn to other terms in (A34) to show that they go to zero as n → ∞
uniformly in p, for p ∈ ðp; 1Þ. This is true for
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n

12 2p

n 1 1
2

1

n 1 1

� �2

2ðn 1 2Þ

2
64

3
75

since it is of order 1/n, and p5 1 provides an upper bound for its absolute value
for large n. Turning to the third term, our lower bound on g implies that

d2G21ðpÞ
du2

2

d2G21 p 2
1

n 1 1

� �
du2

is O(1/n) uniformly in p, and thus this term also converges to zero as n→ ∞ uni-
formly in p, for p ∈ ð~p; 1Þ. The final term is of order 1/n3 since the difference be-
tween the two O(1/n2) terms is O(1/n3).

Consider any p ∈ ð~p; 1Þ and a sequence (i(n), n), where i(n) 5 [np] 1 1. We
have verified that

n½Ehði;nÞ 2 Ehði21;nÞ�→
1

g ðG21ðpÞÞ

as n→ ∞, uniformly in p for p ∈ ð~p; 1Þ. Finally, by the Glivenko-Cantelli theorem,
and as noted in the proof of lemma 1, Fn(ε1 D) converges to the Dirac measure
on F(ε 1 D). Thus

f0
n11;nð�ε1 DÞ→f ðε1 DÞ=g ðG21ðF ð�ε1 DÞÞÞ

uniformly in D for D ∈ [2d, 0].
Finally, given the results in lemma 6, in particular (A31) and (A32), because

f0
nð�ε1 DÞ converges uniformly in D to f0ð�ε1 DÞ, then B 00

nðD; xGÞ→ B 00ðD; xGÞ uni-
formly in (D, xG) for D ∈ [2d, 0) as n → ∞. QED

Proof of Theorem 5

Lemma 5 shows that for n large enough, there exists a profile ðx*
Bn; x

*
GnÞ that

satisfies the first-order conditions. We now show that no deviation from x*
Bn is

profitable for n sufficiently large. With additive quality, �D 5 �ε2 ε and D 5
maxf2�D; �xB 2 xBg, and we may focus on deviations D ∈ ½D; �D�. In the proof of
theorem 1, we established that under assumptions 1 and 2, there exists d > 0 such
that B 00(D, xG) < 0 if D ∈ [2d, 0) and that B 00(D, xG) < 0 for D ∈ ð0; �DÞ. Recall from
the proof of lemma 6 that for D > 0, B 00

nðD; xGÞ < ~B
00
nðD; xGÞ and that ~B 00

nðD; xGÞ con-
verges to B 00(D, xG) uniformly in (D, xG); and for D < 0, B00

nðD; xGÞ converges to
B 00(D, xG) uniformly in (D, xG). Thus there existsN : n > N such that, forD either in
[2b, 0) or in ð0; �DÞ, B 00

nðD; x*
GnÞ < g=2, where g is the lower bound on c 00

Bð⋅Þ. Thus
B 00

nðD; x*
GnÞ2 c 00Bðx*

Bn 1 DÞ < g=2 if either D ∈ [2b, 0) or D∈ð0; �DÞ, so that no such D

deviation is profitable. In the proof of theorem 1, we also established that if �u
is small enough, there exists d 0 ∈ (0, d) such that B 0(D, xG) ≥ B 0(0, xG) for D ∈
½D;2d 0�. Thus the payoff loss from a2d 0 deviation is some L > 0 (since the payoff
function is strictly concave on the interval [2d 0, 0)), and the payoff loss from any
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larger downward deviation is no less than L. Let �u be sufficiently small such that a
larger downward deviation, which results in being unmatched with probability
one-half, leads to an expected payoff loss that is also greater than L. Since
ðx*

Bn; x
*
GnÞ→ðx*

B ; x
*
GÞ and Bn(D, xG) converges to B(D, xG) uniformly in (D, xG) as

n → ∞, there exists

N : n > N ⇒ ½Bnð0; x*
GnÞ2 cBðx*

BnÞ�2 ½BnðD; x*
GnÞ2 cBðx*

Bn 1 DÞ� > 0

for any D < 2d 0. This completes the proof of theorem 5. QED
Theorem 5 shows that the equilibrium of the continuum model is the limit of

a sequence of finite equilibria. We now provide a partial converse: the limit of a
sequence of finite equilibria must be an equilibrium of the continuum model, if
the payoff functions converge uniformly, so that the equilibrium correspon-
dence is upper hemicontinuous.

Proposition 4. In the continuum agent model, let UB(DFxB, xG) be the pay-
off function for any boy who chooses xB 1 D when all other boys choose xB and
when all girls choose xG and similarly for UG(DFxB, xG) for a girl. And in the finite
agent model with 2n 1 1 agents, let UBn(DFxBn, xGn) and UGn(DFxBn, xGn) be the
analogous payoff functions. Suppose that, for i 5 B and G, Uin converges uni-
formly in all three variables (D, xB, xG) to Ui. If for each n ðx*

Bn; x
*
GnÞ is an equilib-

rium of the finite agent model and limn→∞ðx*
Bn; x

*
GnÞ 5 ðx*

B ; x
*
GÞ, then ðx*

B ; x
*
GÞ is an

equilibrium of the continuum agent model.
Proof. Suppose not, so that ðx*

B ; x
*
GÞ 5 limn→∞ðx*

Bn; x
*
GnÞ is not an equilibrium

for the continuum agent model. Thus a boy (or girl—the argument is identi-
cal) must have a profitable deviation, that is, there exists D : U BðDjx*

B ; x
*
GÞ2

U Bð0jx*
B ; x

*
GÞ 5 2e > 0. Since UBn(�) converges to UB(�) uniformly in all three argu-

ments and since ðx*
Bn; x

*
GnÞ → ðx*

B ; x
*
GÞ as n → ∞, there exists

N : n > N ⇒ jU BnðDjx*
Bn; x

*
GnÞ2 U BðDjx*

B ; x
*
GÞj < e

and

jU Bnð0jx*
Bn; x

*
GnÞ2 U Bð0jx*

B ; x
*
GÞj < e:

Thus,

U BnðDjx*
Bn; x

*
GnÞ2 U Bnð0jx*

Bn; x
*
GnÞ

> ½U BðDjx*
B ; x

*
GÞ2 e�2 ½U Bð0jx*

B ; x
*
GÞ1 e� > 0:

Hence, for n sufficiently large, ðx*
Bn; x

*
GnÞ is not an equilibrium of the finite model.

QED
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