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Abstract
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1 Introduction

Cooperation in repeated interactions is important for much socio-economic activity. How-

ever, despite an extensive experimental literature, it is still unclear what exactly determines

cooperative behavior in prisoner’s dilemma settings (see Dal Bó and Fréchette (2018) for a

survey). One common observation is that subjects sometimes cooperate even in a one-shot

prisoner’s dilemma. Equally, subjects sometimes cooperate too little when a dilemma is

indefinitely repeated. For example, when the continuation probability (discount factor) is

sufficiently high that strategies supporting cooperation such as the Grim trigger strategy

could be an equilibrium, a significant proportion of subjects always choose to defect, thereby

leaving money on the table. However, it is difficult to interpret either behavior as mis-

taken, given many possible confounds, including diverse beliefs about opponents’ strategies,

heterogeneous risk attitudes, social preferences and cognitive limitations.

This study attempts to simplify the analysis by conducting a novel experiment that ex-

cludes several confounding factors by design. Two subject pools, a traditional one composed

of university students (Lab), and a second one composed of Amazon Mechanical Turk (AMT)

workers (Mturkers), play a series of indefinitely repeated prisoner’s dilemma (IRPD) games

with different continuation probabilities against a robot opponent known to play the Grim

trigger strategy. This design reduces or eliminates multiple equilibria, strategic uncertainty,

and social preferences as factors influencing cooperation. This allows one to focus attention

on the cognitive task of trading off present gains against future rewards, relying on basic

dynamic programming arguments. The optimal policy is simple in theory: a subject should

cooperate in each round if and only if the continuation probability, δ, is above a critical

level, here 0.5. Further, much existing experimental analysis of repeated games focuses on

first round behavior because behavior in subsequent rounds depends on a subject’s experi-

ence with her opponent. Here, opponent behavior is perfectly predictable, and thus one can

analyse whether subjects implement the optimal policy over the entire supergame.

Despite this simple setup, we find that both the Lab student subjects and the more repre-
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sentative population of Mturkers (AMT) behave spectacularly different from the predictions

of the rational choice framework used to explain cooperative behavior. Overall, across all

supergames, only 2% and 1% of subjects (in Lab and AMT pools, respectively) behave con-

sistently with the rational choice predictions, and only 5% and 3% behave consistently with

that theory at least 95% percent of the time (making no more than 2 suboptimal choices

out of 48). These low frequencies essentially amount to noise, and suggest that the rational

choice framework used to explain cooperative behavior may not be empirically relevant.

Using subjects’ choices in the first rounds of each supergame as a clear upper bound for

the overall counts of rational play, we find that only 2% and 3% of subjects (in Lab and

AMT pools, respectively) behave consistently with the rational choice predictions at the

start of each supergame. We further find that first round cooperation is strongly increasing

in the continuation probability δ, from 10% and 26% when δ = 0.1 to 76% and 74% when

δ = 0.7 (again, in Lab and AMT pools, respectively). This responsiveness to the continuation

probability δ (particularly in the Lab pool) is much greater than estimates based on Dal Bó

and Fréchette (2018) in standard subject versus subject experiments, which suggests that

our design is successful in reducing strategic uncertainty. However, on average, subjects

cooperate too much in the first round (48% and 52% of decisions rather than the theoretically

optimal value of 33%).

As noted, our methodology allows us to look in detail beyond the first round. We find that

there are substantial deviations from the optimal strategy. First, 52% and 54% of subjects (in

the Lab and AMT pools, respectively) cooperate at least once after already having defected

in a supergame, behavior that is difficult to rationalize. Further, 24% and 30% of subjects

make this type of mistake repeatedly, in at least 3 out of 17 relevant supergames, though

the frequency of such behavior decreases with experience. Second, subjects commonly defect

after having started out the play of a supergame by cooperating. Specifically, we find that

cooperation is significantly decreasing with the round number – when theory suggests that,

given initial cooperative play, a player should continue cooperating for the duration of the

supergame. Although the supergames have an unknown, random end, subjects appear to
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be engaging in what we call “sniping”: defecting in the round they guess will be the last

round of the supergame, and this sniping behavior increases with experience.1 We are able

to identify these behaviors only because of our novel, single-person design, and our findings

offer an alternative interpretation of results from other repeated game experiments involving

matched pairs of human subject participants.2

We further find that test scores from a cognitive reflection test (CRT) predict earnings

and are negatively associated with the error of cooperating after having defected, supporting

the idea that cognitive failures are a cause of deviations from optimal behavior. However,

we also find that individuals with higher cognitive test scores are more likely to snipe. More

generally, our results suggest that cognitive factors are important in explaining the excess

cooperation observed when δ is low and the insufficient cooperation observed when the

continuation probability, δ, is high.

Further, behind the aggregate results, there is considerable heterogeneity - some subjects

never cooperate while others always do. In an effort to explain this diversity, we propose

and test a novel model of inattentive behavior. Specifically, we hypothesize that subjects

might be inattentive to the payoff-generating process, including continuation probabilities δ,

opponent’s strategies, and so on. First, we adapt the approach of Gabaix (2019) and assume

that there is an unknown payoff associated with an unknown state of the world, which the

agent seeks to match with her action. As we show, this formulation of rational inattention

is convenient as it directly implies a probit choice rule. Second, inattention theory suggests

that individuals with less precise information about a decision problem will therefore be more

influenced by their initial prior payoff, which is typically obtained in comparable situations

outside the laboratory. Indeed, we find that choices to cooperate by subjects with lower

cognitive test scores (particularly for the Lab sample) are correlated with their intrinsic level

1As is standard in indefinitely repeated games, we employ a constant termination probability of 1 − δ,
where δ is fixed and known to subjects. Subjects may nonetheless believe that the length of a supergame
rises with the termination probability. Alternatively, Mengel et al. (2022) find that subjects respond to past
realized supergame lengths.

2Romero and Rosokha (2018) and Cooper and Kagel (2022) also report decreasing cooperation rates in
indefinitely repeated prisoner’s dilemma experiments. However in those settings, the decrease in cooperation
may be caused by beliefs that cooperation by opponents may be about to end.
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of patience (which we elicited), even though the only fundamental factor relevant to making

cooperate/defect decisions is the δ continuation probability. In contrast, subjects with higher

test scores respond more strongly to the continuation probability δ, and are not influenced

by their own patience level. Furthermore, only the choices of subjects with high cognitive

test scores correlate with their interpretation of the structure of the game, as represented by

another elicited measure, their prediction of the aggregate frequency with which they will

play cooperate in the first round of all supergames, after they were informed about the set

of continuation probabilities, but before they play.

Experimental economists have used robot players for control purposes in a number of

studies.3 Two prior studies, by Roth and Murnighan (1978) and Murnighan and Roth

(1983), are most closely related in having a population of subjects play the repeated PD game

against a fixed strategy, as well as being the first studies to run experiments on supergames

with an uncertain end. However, subjects in those studies were not informed of the strategy

they faced or that their opponent was in fact the experimenter. Thus, subjects in those

two studies, who participated in sessions along with other subjects, faced some strategic

uncertainty.4 By contrast, in this experiment we instruct subjects that they are playing

against programmed opponents who play the Grim trigger strategy. In addition, these two

prior studies did not allow subjects to play multiple supergames with the same continuation

probability. Dal Bó and Fréchette (2018) argue that such repetition is an important feature,

in that more recent experiments have found significant learning effects with experience.

Learning may be less important in our setting where there is no strategic uncertainty, but

nonetheless we think it is important to give subjects an opportunity to learn by doing. In

the most similar paper, Duffy and Xie (2016) consider play against robot players known to

3For surveys of experiments combining human subjects and robot players see March (2021) and Bao et al.
(2022).

4In Roth and Murnighan (1978), subjects “were told that they played a programmed opponent, but were
not told what strategy he would be using” (p.194). The programmed opponent was in fact an experimenter
playing the Tit for Tat (or “matching”) strategy. In Murnighan and Roth (1983), subjects “were told that
they would be playing a different individual in each of the three sessions but that the person’s identity
would not be revealed. Actually all of the subjects played against the experimenter who implemented either
matching [Tit for Tat] or [the] unforgiving strategy [Grim trigger]” (p.289). Roth and Murnighan (1978)
explain that such design choices were made to “control for differences in subjects’ behavior due to differences
in their opponents” (p.194).
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play the Grim trigger strategy but in an n-player Prisoner’s Dilemma game under random

matching, where they vary n and the stage game payoffs but not δ. Also related is Andreoni

and Miller (1993) who study play of finitely repeated PD games when there is a known

probability that the opponent could be a robot, tit-for-tat player (and not another human

subject). They find that cooperation increases with the probability of facing such a robot

player.

Of course, there are many experiments on the repeated prisoner’s dilemma, where subjects

play other subjects. For example, Proto et al. (2019) (see also Proto et al. (2022)) also find

that individual differences between subjects affect play, with higher cognitive ability players

being more cooperative, making fewer mistakes and earning higher payoffs. Personality

differences across subjects also help to explain differences in the frequency of cooperative

behavior as documented, e.g., by Kölle et al. (2020) and Gill and Rosokha (2022).

Yet, in the human vs. human subject pairings used in all of these studies, there is no

unique optimum policy as there is in our study and so any errors have to be inferred. For

example, Proto et al. (2019) assume that playing defect directly after both players chose to

cooperate is an error in implementation. However, here it seems that such behavior may

represent an attempt to guess the final round. Further, as noted, with our design we can

also identify dominated cooperation after defection.

Recently and independently, Normann and Sternberg (2021) and Reverberi et al. (2021)

also carry out experiments that involve human subjects playing repeated games against

robot strategies. Their designs and research questions are very different from ours, however.

In Reverberi et al. (2021), subjects played repeated games against robot opponents but

the game and the strategy faced could change randomly over time. They then look at the

interaction between the complexity of the strategy subjects face and their cognitive ability

in determining the frequency of mistakes. Normann and Sternberg (2021) investigates three

and four firm oligopolies in which one firm’s prices are determined by an algorithm. The

question is whether such algorithmic pricing facilitates collusion. This latter study indicates

that interactions between humans and algorithms or robots may have increasing practical
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importance.

Our methodology is similar to that of Charness and Levin (2009) who show experimen-

tally that the winner’s curse phenomenon is still a factor in a single person bidding problem.

That is, both in their and our experiments, by simplifying the environment, it becomes

possible to find individual cognitive failures that would be more difficult to identify in the

original strategic settings. Here, the individual failure is the inability to play a constant

strategy in a stationary environment, which leads to suboptimal behavior even in the ab-

sence of strategic uncertainty. The difference here (besides the different game investigated)

is our use of a within-subject design where subjects face situations both where cooperation

is optimal and where it is not. In that sense, in our study of repeated interactions, we are

adapting the methodology of Duffy et al. (2021) and Charness et al. (2021), which also have

an experimental design where subjects face contrasting environments.

2 Theory and Hypotheses

In our experiment, subjects play the indefinitely repeated prisoner’s dilemma with known

continuation probability δ against a computer playing a known fixed strategy, the Grim

trigger strategy. The specific payoffs subjects faced in the stage game are given in (1),

X Y

X 75, 75 15,120

Y 120, 15 30, 30

(1)

where X (Y ) denote the cooperate (defect) actions.
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2.1 Insights from the Theory of Repeated Games

The main theoretical prediction tested in our experiment comes from the Folk Theorem for

repeated games which states that if players are sufficiently patient, then any pure-action

profile whose payoff strictly dominates the pure-action minimax is a subgame perfect equi-

librium of the repeated game in which this action profile is played in every period (Mailath

and Samuelson, 2006, p.69). This result carries over to the situation of indefinitely repeated

games by replacing “players are sufficiently patient” with “the continuation probability is

sufficiently high”. However, here for one player, the computer, the strategy is fixed to be the

Grim trigger strategy. This converts the problem from a game with multiple equilibria to a

single person decision problem with a unique optimum policy. This is to cooperate (defect)

in every round of a supergame if the continuation probability exceeds (is below) a critical

level δ∗, which for our parameterization (1) is 0.5.

To see this, note first that since the computer is programmed to play the Grim trigger

strategy, it begins each supergame by choosing to cooperate. It continues to cooperate so

long as all previous play by the human opponent has been to cooperate as well, but after

any defection by the human opponent, the computer program switches to defect for all

remaining periods of the supergame. Thus, any human player should understand, given that

the continuation probability is fixed at δ, that the return to playing cooperate (X) forever

is

75 + 75δ + 75δ2 + ... =
75

1− δ
. (2)

In contrast, the expected return to defecting (Y) in period one is,

120 + 30δ + 30δ2 + ... = 120 +
30δ

1− δ
. (3)

Simple calculations reveal that (2) is greater than (3) if δ > 0.5. Thus, the critical continu-

ation probability is δ∗ = 0.5.

Note that, because the continuation probability δ is constant over time, the problem is
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stationary and so, if it is optimal to cooperate in period one, it is also optimal to cooperate in

all future periods. Thus, it cannot be optimal to switch within a supergame from cooperate

to defect. Further, given the fixed Grim trigger strategy of the computer, if a player ever

defects, it is always optimal to continue defecting and not to switch back to cooperating.

This brings us to a simple hypothesis.

Hypothesis 1. Rational Play: subjects should play Cooperate/X (Defect/Y ) in every round

of every supergame when δ > (<) δ∗ = 0.5.

Three important factors present in the standard two player repeated prisoner’s dilemma

are removed in our experimental design. First, our design eliminates the problem of multiple

equilibria. When the continuation probability δ is sufficiently high for cooperation to be

supported, there is typically an infinite number of equilibria which presents subjects with

difficult coordination problems. Given that the opponent in our design is playing the Grim

trigger strategy, the set of equilibria is reduced to just a singleton – either always cooperate,

or always defect, depending on the continuation probability δ.

Second, our design minimizes strategic uncertainty. This type of uncertainty is always

present in the standard design because subjects do not know which strategy their opponent

is following. Indeed, a simplification used by Dal Bó and Fréchette (2018), following Blonski

et al. (2011), is to suppose that strategy choices are limited to the Grim trigger strategy

and the strategy of always defecting. They show that there exists a δRD > δ∗ such that only

if δ > δRD is it risk dominant to choose the Grim trigger strategy and hence to start out

cooperating. Or, in other words, although it is an equilibrium to cooperate as long as δ > δ∗,

strategic uncertainty can make it difficult to cooperate unless δ > δRD, a higher hurdle.

Third, researchers have found evidence for social preferences being important in many

experimental settings, see, e.g., Camerer (2003), Chaudhuri (2008). In the repeated pris-

oner’s dilemma, Bernheim and Stark (1988) and Duffy and Muñoz-Garćıa (2012) show how

social preferences, in the form of positive concerns for the other player, reduce δ∗. Thus, in

conventional experiments, subjects with social preferences could cooperate even when δ < δ∗.
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Further, there is a second order effect of these social preferences. Subjects who are entirely

self-interested, but who believe that other subjects have social preferences and are thus more

likely to cooperate, will themselves be more cooperative than in the absence of such beliefs

(see, for example, Andreoni and Samuelson (2006)). That is, strategic uncertainty and so-

cial preferences can potentially interact with one another. However, in our design, since the

opponent that subjects face is known to always play the Grim trigger strategy, there is a

unique optimum response and no strategic uncertainty. Further, subjects are unlikely to

feel altruism toward their computer opponent, or believe that it has altruistic feelings for

them.5 Thus, multiple equilibria, strategic uncertainty and social preferences as well as any

interactions between them are minimized, if not eliminated by our design.

2.2 A Simple Cognitive Model

In this section, we outline a very simple cognitive model that may be used to explain de-

viations from optimality in single-person decision problems. The optimal strategy is to

cooperate if and only if the current δ is greater than δ∗ = 1
2
. This cognitive model tries to

place some structure on deviations from this ideal and how this might vary across subjects

according to their cognitive ability. It is based on ideas about attention in Gabaix (2019)

and cognitive uncertainty in Enke and Graeber (2019).6

The model works in the following way. A decision maker is faced with a single person

decision problem. She has a default payoff which is derived from previous experience. But

she also attempts to determine the optimal action by introspection. This is modelled by

assuming that she receives a signal, the informativeness of which depends on her cognitive

ability which varies across individuals. A further assumption is that she is in effect aware

of her cognitive limitations and will place greater weight on her default payoff the higher is

her cognitive uncertainty.

5Houser and Kurzban (2002) and Johnson et al. (2002) pioneered the use of robot players to remove the
influence of social preferences in applications involving finitely repeated games.

6We show here that this leads to the choice of cooperation being given by a probit choice rule, which is
similar to the rational inattention model of Matějka and McKay (2015) which results in a logit choice rule.
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We can represent this mathematically, adapting Gabaix (2019)’s simple Gaussian frame-

work, by saying that a subject i has an initial default payoff di, which we can think of as a

typical payoff to cooperation in situations outside the laboratory. Now in the lab, faced with

a supergame with a particular continuation probability δ, she must try to update the payoff

to match the particular circumstances faced. Let the true relative return to cooperation

(that is, the payoff to cooperation minus the payoff to defection) in a repeated game with

continuation probability δ be π(δ) so that π(·) is a strictly increasing function with, given

our chosen parameters, π(1
2
) = 0. Then assume a subject i, faced with a specific decision

problem where the continuation probability is δ̂, subjectively estimates π(δ̂) as being nor-

mally distributed with expectation di and variance σ2, i.e. N(di, σ
2). That is, the subject’s

initial evaluation of the return to cooperation is influenced by her outside default relative

payoff di, and this default varies across subjects (though we assume for simplicity that σ2 is

constant).

However, by further cognitive introspection, she can gain a potentially more accurate

estimate of π(δ̂). We model this by assuming the subject receives a noisy payoff signal si

which is equal to the true value π(δ̂) plus noise εi, where εi ∼ N(0, σ2
i ), so that

si(δ̂) = π(δ̂) + εi. (4)

The noisiness of the payoff signal varies across individuals with σ2
i being the variance of the

noise εi for individual i. The hypothesis is that the higher is the subject’s cognitive ability,

the lower is the variance σ2
i , and the more precise is the signal.

The subject’s posterior estimate of π(δ̂) is, following Gabaix (2019) and by standard

Bayesian updating, a weighted average of the signal and the prior estimate,

Pi(π(δ̂)|si) = λisi(δ) + (1− λi)di (5)
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where the weighting is determined by the relative variances,

λi =
σ2

σ2 + σ2
i

.

Note that, as the cognitive noise σ2
i goes to zero, the weighting λi goes to one and the

posterior estimate Pi is closely clustered around the true value of the payoff π. However,

for a subject with a high σ2
i , the posterior estimate is in fact very close to the individual’s

default payoff di.

Remember that given our definition of π as the relative payoff to cooperation, the indi-

vidual estimates that cooperation is preferable to defection if the posterior estimate Pi > 0.7

Thus, when the subject faces a decision problem with an arbitrary continuation probability

δ, the subject’s probability of cooperation is the probability that the posterior estimate Pi

is positive which is,

Ci(δ) = Pr(λisi + (1− λi)di > 0) = Φ

(
π(δ) +

σ2
i di
σ2

)
(6)

where Φ is the normal CDF of εi with variance σ2
i . So, the individual’s actions are given by

a probit in which the probability of cooperation is influenced both by the true payoff and

the individual specific default payoff.

Further, one can see that those individuals with higher cognitive ability, and thus with

lower cognitive noise σ2
i , will place less weight on the default payoff di and more weight on

the true payoff π. Because π(δ) is increasing in the continuation probability δ, one can draw

a similar conclusion: those with higher cognitive ability should be more sensitive to δ in

their choice of cooperation.8

Hypothesis 2. Cognitive Ability and Cooperation:

1. for high cognitive ability subjects the probability of cooperation will be less influenced

7We depart a little from Gabaix (2019) at this point, because he considers a continuous action space,
rather than the discrete choice of cooperation versus defection here.

8Note that, specifically, ∂C/∂δ is proportional to Φ′(·) which is decreasing in σi around the critical point
π(δ) = 0, by the properties of the normal distribution.
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by their default payoff value to cooperation than for low ability subjects;

2. the probability of cooperation for high cognitive ability subjects will be more influenced

by the true payoff to cooperation or the current continuation probability δ that they face

than for low ability subjects.

A related, natural hypothesis is that higher ability individuals earn higher payoffs. This

is implied by the model in that the probability of cooperation C will be closer to its optimal

value, the larger the relative weight on the true payoffs (holding the default payoff di con-

stant). As we have seen, this is the case when σ2
i is lower, which is associated with higher

cognitive ability.

Hypothesis 3. Cognitive Ability and Payoffs: subjects with higher cognitive ability will earn

higher average payoffs than those with lower cognitive ability.

3 Experimental Design

The main experimental task consisted of the play of 24 indefinitely repeated prisoner’s

dilemma games or “supergames” against a computer program known by subjects to play

the Grim trigger strategy. The payoff matrix for the prisoner’s dilemma stage game was

held constant across all treatment conditions and is shown in (1). Subjects were instructed

that the rows referred to their action and the columns referred to the computer opponent’s

actions and that the first number in each cell (in bold) was their payoff in points and the

second number in each cell (in italics) was the computerized opponent’s payoff in points.9

The 24 indefinitely repeated games were chosen with the following considerations. First,

we wanted subjects to have some experience with the same continuation probability, and we

also wanted to vary the continuation probability δ so as to assess the subject’s attentiveness

9We provided the computer program’s payoff so that the game setup would be comparable to two player,
human-to-human games, where both players’ payoffs are common knowledge.
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to the nature of the supergame they were playing. We chose to have them face 6 different

continuation probabilities 4 times each, which yields the 24 supergame total.

The set of 6 continuation probabilities, δ ∈ {0.1, 0.25, 0.33, 0.4, 0.67, 0.7}, were selected

using several criteria. First, with this set, the expected theoretical payoff is the same for

subjects who are biased towards either always cooperating or always defecting. Second, the

expected payoff from always following the theoretically optimal strategy relative to either

of the fully biased strategies is substantial and results in a clear difference. Finally, since

the threshold probability δ∗ = 0.5 for sustaining cooperation in the stage game (1), we

did not want the simple heuristic of cooperating in 50% of the supergames to correspond

to the optimal policy. Instead, optimal play would involve cooperating in just 8 of the 24

supergames (those with δ = 0.67 or 0.7) and always defecting in the other 16 supergames.

Thus, in contrast to most existing studies, our set of continuation probabilities δ is biased

towards producing supergames with a shorter duration.

We ran the current experiment with Grim Trigger as the only programmed strategy.

While Tit-for-Tat (TFT) seems a reasonable alternative to Grim, it has the following diffi-

culties. First, as it gives a weaker punishment than Grim, cooperation is only a best response

for higher continuation probabilities (δ∗ = 0.75 for current parameters). We would therefore

have to run supergames with a higher expected length. Second and more importantly, TFT

provides a much weaker restriction on optimal strategies: cooperation after defection is not

necessarily an error against TFT while it is against Grim. Thus, the identification of optimal

play is significantly more difficult if the robot player plays TFT rather than Grim.

The experiment was computerized and conducted entirely online for both subject pools,

university students (Lab) and Mturkers (AMT). The program was the same for both subject

groups, programmed using oTree (Chen et al. (2016)). Example screenshots are provided in

Appendix E. Subjects were always informed of the probability that the supergame (sequence)

would continue with another round. They were also reminded of the strategy (X or Y ) that

their computer opponent would play in each round (following the Grim trigger strategy and

based on the history of play in all prior rounds of the current supergame) on the same
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decision screen where they made their own action choice (X or Y ) for that same round.

Thus, any strategic uncertainty should have been eliminated.

Subjects were first asked to provide demographic information. Next, they answered 7

questions on economic preferences (e.g., “Patience”,“Risk”, and so on) on an 11-point Likert

scale (taken from Falk et al. (2018)), followed by 7 cognitive reflection test (CRT7) questions

(based on Toplak et al. (2014) and Ackerman (2014) – see Appendix C for these questions).

Subjects were then presented with written instructions regarding the 24 IRPD games (re-

ferred to neutrally as “sequences”) they would play. Then they had to successfully complete a

comprehension quiz that tested their understanding of payoff outcomes, their understanding

of the Grim trigger strategy that the computer program would follow in various scenarios

and their understanding of how the continuation probability affected the duration of the

game.

After subjects were presented the list of all continuation probabilities δ, they were asked

to provide their belief as to the proportion of times they would choose the cooperative

action (referred to neutrally as action “X”) in each of the first rounds of the 24 sequences

(supergames) that they would face, given knowledge that they would face 4 supergames for

each of the 6 different δ values. After this “Prediction” belief was elicited, they played the

24 supergames against the computer opponent.

For half the subjects, the sequence of randomly drawn continuation probabilities δ and

the realised durations (in parentheses) for each of the 24 supergames (4 supergames of each

of the 6 δ values) were as follows:10 0.67 (4), 0.33 (1), 0.4 (2), 0.25 (1), 0.7 (3), 0.33 (2), 0.7

(5), 0.4 (1), 0.67 (2), 0.1 (1), 0.25 (1), 0.1 (1), 0.25 (2), 0.1 (1), 0.4 (1), 0.67 (4), 0.33 (2),

0.25 (1), 0.7 (2), 0.4 (3), 0.67 (2), 0.1 (1), 0.7 (4), 0.33 (1), resulting in a total of 48 decisions

(see Table A2 in Appendix A). For the other half of subjects, the order of these supergames

was reversed.11

10These supergame lengths were drawn using a random number generator. Subjects were instructed of
this procedure. To reduce noise across subjects, we used the same supergame lengths across all subjects.

11See Appendix B.1 for a discussion of order effects.
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Subjects were instructed that at the end of the session, six supergames would be chosen

from all 24 played, one from each of the six different values for δ. Their points earned in

those sessions would be multiplied by $0.01, and this amount would comprise their monetary

earnings from the repeated PD game.

3.1 Subject Pools and Earnings

We recruited two types of subjects. The first pool involved 100 undergraduate students, 52%

female, recruited using Sona system from the Experimental Social Science subject pool at

the University of California, Irvine (henceforth, the Lab subjects). The mean age of these

subjects was 21.5 years with a range of 18-34. All subjects were university students from a

diverse set of majors, with 36 subjects reported majoring in engineering, 25 in social sciences,

21 in life sciences, 9 in physical sciences, 7 in education, 5 in arts and humanities, and 3 in

business studies (double majors double counted).

The Lab subjects were instructed that their total point earnings from the six randomly

chosen supergames (one for each δ value) would be multiplied by USD $0.01 and this amount

would comprise their monetary earnings from the repeated PD games. Subjects were guar-

anteed $7 for showing up and completing the study. The student subjects’ total earnings

averaged $17.90 for a 1 hour experiment.12

We also recruited 300 subjects on Amazon Mechanical Turk (AMT) who resided in the

United States (henceforth the AMT subjects). Only 149 AMT subjects completed the exper-

iment. There was an equal number of AMT subjects who reported to be males and females;

one subject preferred not to report their gender (coded as 0.5). The age of the AMT subjects

is dramatically different from that of the Lab subjects, with a mean age of 39.8 years and a

range of 21-75. (See Table B3 for a formal comparison of the two subject pools.) The AMT

subjects also had more dispersed levels of educational attainment including 2 subjects who

12Following the 24 repeated PD games, the Lab subjects (and only the Lab subjects) were randomly paired
to participate in another two-player task which we do not report on in this paper, and where the subjects
could earn an additional $1.00-1.70 payment.
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reported not having a high school diploma.

Like the Lab sample, the AMT subjects were instructed that at the end of the study, their

total point earnings from the six randomly chosen supergames (one for each δ value) would

be multiplied by USD $0.01 and that this amount would comprise their monetary earnings

from the repeated PD games. Thus, the AMT and Lab subjects faced the same variable

earnings potential in the repeated PD games of the study, which facilitates comparisons.

However, the fixed show-up payments to the Lab and the AMT subjects were $7 and $1,

respectively. This difference in show-up payments reflects different payment norms toward

recruitment of conventional pool of lab subjects versus online workforces such as the AMT

sample – see, e.g., Rand (2012). The AMT subjects’ total earnings averaged $10.37 for a 1

hour experiment.

Exactly half of the Lab subjects (50/100, or in 4 out of 8 sessions) and almost half of the

AMT subjects (74/149) faced the “long” order (where the first supergame involved δ = 0.67),

and the remaining subjects faced the reverse order (starting with δ = 0.33).

4 Results

In this section we report on the main results of our experiment, which we present as a number

of different findings. For each finding, we analyze and report on data from the Lab and AMT

samples separately.

The design for both subject populations required completion of 24 supergames each

involving the play of at least 1 round. Given the randomization, 7 of these 24 supergames

ended after round 1. The remaining 17 supergames lasted 2-5 rounds. Thus, each subject

made 24 first round choices and (by chance) 24 non-first round choices for a total of 48 choices.

(see Table A2). Given the parameters of our design, the theoretically optimal strategy

involves choosing to cooperate in all rounds of the 8 supergames where δ = {0.67, 0.7}

(and thus, a total of 26 choices to cooperate), and to defect in all rounds of the other 16

16



supergames.

4.1 The Headline Result

We will start with our main result. As Figure 1 shows, only a small fraction of subjects

behave according to the equilibrium predictions. Specifically, only 2 subjects out of 100 (or

2%) in the Lab student sample and only 1 subject out of 149 (or 0.7%) in the AMT sample

behaved perfectly as predicted. Furthermore, in both subject pools, no more than 5% of

subjects made no more than 3 mistakes out of 48 total choices (i.e., at least 45 optimal

choices out of 48, or 93.75% of choices). And about 10% in each sample (10% in the Lab,

10.7% in AMT) made at least 42 optimal choices out of 48 (or 87.5% of all choices). (See

Appendix B.2 for corresponding results on the first rounds of each supergame, as well as for

the juxtaposition with the per-subject counts of cooperative choices.)

Figure 1: Left: Frequency and cumulative distributions of per-subject counts of optimal choices across
all 24 supergames (48 decisions total): Lab (N=100) vs. AMT (N=149) subjects. Right: Both cumulative
distributions on the same graph.

Finding 1. Across all 48 decisions in all 24 supergames, the fraction of subjects who behaved

according to equilibrium predictions (either perfectly or near-perfectly) does not exceed 5%.

About 90% in both samples made fewer than 42 optimal choices out of 48 (87.5%).

Interestingly, while student subjects behaved significantly more optimally than AMT

subjects (using a Kolmogorov-Smirnov one-sided test D = 0.1799, p = 0.021), the differences
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between samples are less pronounced among subjects with greater tendencies to make optimal

choices as revealed in Figure 1.

In what follows we will attempt to decompose the observed deviations from the equilib-

rium predictions.

4.2 Response to the Continuation Probability δ

Figure 2: Patterns of cooperation and defection: Average per-subject counts of cooperation versus defection
(left) and optimality versus suboptimality (right), split by continuation probability δ (the first row of the
horizontal axis scale) and by the round number of a sequence (the second row of the horizontal axis scale).
In the left panel showing cooperation counts, a distinction is made between undominated cooperation and
dominated cooperation after defection (CaD). In the right panel the counts of suboptimal choices are divided
between the error of CaD and other suboptimal choices. The later rounds were never reached for some δ
values (see Table A2 in Appendix A). (Lab: 100 subjects, 2,400 supergames, AMT: 149 subjects, 3,576
supergames).

As the left panel of Figure 2 reveals, cooperation is strongly increasing with the con-

tinuation probability δ. This finding is confirmed by mixed-effects probit regression results

reported in Table 3, specifications (1)-(2). First round cooperation rates are as low as 9.5%

for Lab subjects and 25.5% for AMT subjects when δ = 0.1, and as high as 76.25% for Lab

subjects and 73.83% for AMT subjects when δ = 0.7. For the Lab subjects, this responsive-

ness is much greater than is observed in standard subject versus subject experiments.13 In

13Using the probit estimates in (Dal Bó and Fréchette, 2018, p.66, Table 4), we calculate that in subject-
to-subject experiments that used our continuation probabilities, cooperation would be predicted to vary only
from 45.5% (when δ = 0.1) to 56% (when δ = 0.7) among inexperienced subjects. Even after 25 supergames,
cooperation in such experiments is predicted only to vary from 16.1% (δ = 0.1) to 62.7% (δ = 0.7).
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contrast, the AMT subjects are less responsive, particularly for δ = 0.1.

Finding 2. For every round of a supergame, the rate of cooperation (defection) tends to

increase (decrease) with the continuation probability δ. The Lab subjects are more responsive

to the continuation probability δ than are the AMT subjects.

4.3 Strategic Error of Cooperating after Defection (CaD)

Since the robot opponent was programmed to play the Grim trigger strategy, a defection

at any time in a given supergame would trigger subsequent defection by the automated

opponent in all remaining rounds. Thus, given that subjects were informed of the robot’s

strategy, choosing to cooperate after defecting earlier within the same supergame (CaD) is

dominated for any δ, and is a strategic error. In Figure 2 such suboptimal cooperation is

distinguished from un-dominated/non-erroneous cooperation in the cooperation counts of

the left panel, and from other theoretically sub-optimal counts in the right panel. Among

the relevant observations (i.e., in games lasting more than one round), the share of CaD

errors is 7.57% for the Lab subjects and 11.47% for the AMT subjects.

Figure 3: Strategic errors of dominated cooperation after defection (CaD) in 17 relevant supergames (i.e.,
those lasting longer than one round). Left: Distribution of per-subject counts of instances of cooperation
after defection (CaD). Right: Per-subject counts of CaD instances vs. count of supergames with those
instances. Bubble size is proportional to the share of subjects (100 Lab subjects, 149 AMT subjects).

As Figure 3 (left) shows, slightly less than half of subjects (48% for Lab and 45.64%
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for AMT) never made the strategic error of CaD, and 20% of the Lab subjects and 28.86%

of the AMT subjects made at least 4 dominated CaD choices. Some such choices could be

intentional, e.g., due to a desire to verify the computer opponent’s behavior.14 Others could

be due to a genuine “trembling hand” error of accidentally pressing the “defect” button

without noticing it. In either case, an attentive payoff-maximizing subject would likely

refrain from repeatedly making dominated choices in multiple supergames.

Figure 3 (right) compares the total count of strategic errors (CaD) per subject (vertical

axis) versus the count of supergames where such errors were made (horizontal axis). While

most strategic errors were made only once in a supergame (as revealed by the bubbles located

on the diagonal in the figure), the extent of strategic errors is substantial, with 24% of Lab

subjects and 29.53% of AMT subjects making errors in at least 3 out of the 17 relevant

supergames (those lasting more than one round), suggesting that some of the dominated

CaD behavior could instead be due to inattention or a lack of strategic understanding of the

game (though recall that subjects had to pass a quiz before proceeding to the play). While

the prevalence of CaD errors is relatively small, it nevertheless complicates the interpretation

of the deviations from the theoretically optimal behavior.

Finding 3. A majority of subjects (52% in Lab and 54.36% in AMT) made at least one

strategic error of choosing to cooperate after defecting (CaD) earlier within the same su-

pergame, i.e., after triggering a “grim” response. Overall, suboptimal, excessive cooperation

amounts to 7.58% for Lab and 11.47% for AMT of the relevant observations, with 24% of

the Lab subjects and 29.53% of the AMT subjects making dominated choices in at least 3 out

of 17 relevant supergames (i.e., those lasting longer than one round).

14Recall, however, that the computer program’s action choice of X or Y in the current round, based on the
history of play and following the Grim trigger strategy, was shown to subjects in advance of their entering
a choice on their decision screen, so this uncertainty should have been minimized.
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4.4 Overall Point Totals

Figure 4 reports on subjects’ overall total awarded points (i.e., the sum of their point earnings

across all 48 decisions). As this figure shows, the empirical range of overall point totals is

[3285, 4185] points for the Lab subjects and [3195, 4185] for the AMT subjects with a mean

(st. dev.) of 3835.05 (203.38) for Lab and 3766.21 (240.58) for AMT.

As Figure 4 further reveals, 16% of the Lab subjects and 28.86% of the AMT subjects

could have increased their total point earnings to the level of 3600 points by simply choosing

either to always cooperate (All-C) or to always defect (All-D). (Recall that the expected

payoffs to these two extremely biased strategies are the same by design). This observation

suggests that, among other deviations, strategic errors (CaD) reduce overall point totals.

Figure 4: Distribution of overall point totals, or the sum of point earnings across all 48 decisions.

As Figure 4 further shows, the mode for the Lab sample is at the theoretically optimal

point total of 4050, and this point total is also relatively frequent among the AMT subjects.

Yet, strikingly, the maximum point total is still higher in both samples. Overall, 19% of the
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Lab subjects and 16.11% of the AMT subjects were able to achieve at least the theoretically

optimal point value of 4050, despite only two subjects in the Lab sample and one subject in

the AMT sample actually behaving in a way that was fully theoretically optimal (in all 48

choices). Thus, given the random realization of the supergames, some subjects were able to

achieve at least as much as the theoretically optimal point total despite pursuing strategies

that were not theoretically optimal. A potential explanation for this mystery is provided in

the next Section 4.5.

Finding 4. 16% of the Lab subjects and 28.86% of the AMT subjects achieved lower point

totals than what they could have achieved by either always cooperating or always defecting.

Importantly, 17% of the Lab subjects and 15.43% of the AMT subjects were able to achieve

point totals at least as high as the theoretically optimal point totals – without always following

the theoretically optimal strategy.

4.5 “Sniping” (DaC)

Note that if one knew in advance exactly when each supergame would end when playing

against a robot known to play the Grim trigger strategy, then one could achieve up to 4680

points in our study, a much higher point total than from following the theoretically optimal

strategy (4050 points) by always cooperating in all rounds prior to the final round of a

supergame, and defecting in the final round. Such a “sniping” strategy would allow one

to earn the temptation payoff without triggering the “grim” punishment as the supergame

ends.15 Of course, subjects did not know when supergames (sequences) would end in our

experiment, but they may have formed some expectations about that possibility in their use

of a sniping strategy.

We formally define the “sniping” strategy as consistently defecting after the earlier play

of cooperation in the same supergame, or (DaC) for short. Such a sniping strategy involves

15While we refer to this type of behavior as “sniping”, borrowing terminology from the auction literature,
it is also an instance of “gambler’s fallacy,” as discussed by Cowan (1969). This is the erroneous belief that
the probability of an event is lowered when that event has occurred recently even though the probability of
the event is known to be independent from one instance to the next.
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riding a cooperative wave, and is risky, as it is most profitable if the first defection happens

in the final round of the supergame. It is thus possible that subjects employ a δ-specific

“sniping” strategy, believing that the supergame is highly likely to end at its expected

length, even though the continuation probability δ in reality does not change.16

Figure 5: Patterns of cooperation and defection: Left: Average per-subject counts of first defection within a
supergame by δ and round number. Right: The population shares of the behavioral patterns in a supergame,
by δ value. By construction, the four strategies, CaD, DaC, All-D and All-C are mutually exclusive. (Lab:
100 subjects, 2,400 supergames; AMT: 149 subjects, 3,576 supergames.)

Indeed, Figure 5 (left) shows that, for some continuation probabilities δ, some subjects

defect for the first time (thus triggering subsequent defection by the automated opponent)

later in the sequence, rather than in the first round (if ever) as predicted by the theory.17

Furthermore, as Figure 5 (right) shows, the shares of the supergames where subjects always

defected (All-D) are declining as the continuation probability δ increases. However, this does

not translate into an increase in the prevalence of the always cooperate (All-C) strategy as

the continuation probability δ increases. Instead, as δ (and thus the expected duration

of a supergame) increases, both the prevalence of strategic errors (CaD) and “sniping”

(DaC) strategies increase. Note that interpreting All-C strategies is complicated by attrition,

16Suppose a subject believes that the continuation probability is δ in the initial rounds but (incorrectly)
believes the experimenter will stop the supergame with probability one at some final round T . Then one
can calculate that, when δ > δ∗ = 1

2 , the optimal strategy is to cooperate in every round up to round T but
defect after round T .

17Note that the expected duration of a sequence, 1
1−δ , as calculated from the perspective of round 1, as

well as the average realized final round of a sequence, are both increasing with δ – see Table A2. Mengel
et al. (2022) report that subjects respond to the realized supergame length, and are more likely to cooperate
when they have experienced supergames of longer duration.
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as a subject might have intended to snipe, but a supergame ended earlier than expected.

Similarly, All-D strategies in low δ supergames may not only be due to theoretically optimal

behavior, but might also be observationally equivalent to the use of a sniping strategy.

Indeed, if the behavior were theoretically optimal, then in the mixed-effects probit re-

gressions reported on in Table 3 (specifications 1-2), the coefficients on δ = {0.25, 0.33, 0.4}

would have been insignificantly different from the baseline of δ = 0.1, and would only be

significantly different for δ = {0.67, 0.7}. In addition, the round dummies would all be

insignificantly different from the baseline of the first round. Instead, as Table 3 reveals,

subjects’ tendency to choose cooperation increases with δ, but decreases significantly with

the round number, which is consistent with the use of the sniping strategy.

Figure 6: Left: Distribution of per-subject counts of supergames with “sniping” (DaC), among 17 relevant
supergames. Right: Per-subject counts of supergames with strategic errors (CaD) vs. supergames with
sniping (DaC). Bubble size is proportional to the share of subjects (100 Lab subjects, 149 AMT subjects)

As the right panel of Figure 6 shows, some potential sniping behavior may be uninten-

tional, amounting to “mistakes” by subjects who make frequent strategic errors (CaD), i.e.,

those with higher counts on the horizontal axis of the scatterplots. Yet a few subjects who

never or almost never commit strategic errors (CaD) (those closer to zero on the horizontal

axis indicating CaD errors) appear to be engaged in sniping behavior.

Finding 5. Some subjects appear to use a “sniping” strategy where they attempt to time

their first defection to the unknown final round of a supergame. Following this risky strategy

enabled some subjects to earn more than the theoretically optimal payoff.
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4.6 Learning Over Time

In this section we ask whether subjects learn to play the theoretically optimal strategy

and/or make fewer errors such as dominated CaD with experience. As Table 1 shows,

subjects in both pools change their behavior in the second half of the experiment (in the last

12 supergames) relative to the first half (first 12 supergames). Specifically, they make fewer

dominated CaD errors18 and cooperate less over time. Interestingly, the AMT subjects move

towards the theoretically optimal behavior and earn marginally more total points. However,

both subject pools exhibit a pronounced increase in their sniping activity (DaC).

Learning
1st Half 2nd Half

t-stat df pvalue
Mean StDev Mean StDev

Lab Cooperate 0.52 0.50 0.48 0.50 2.63 4798 0.01***
Per Round Optimal 0.64 0.48 0.66 0.47 -1.72 4798 0.09*
(N=4,800) CaD 0.05 0.22 0.03 0.16 4.24 4798 0.00***†

Optimal (All-D+All-C) 0.59 0.49 0.62 0.49 -1.33 2398 0.18
Lab Optimal All-D 0.42 0.49 0.44 0.50 -1.44 2398 0.15

Optimal All-C 0.17 0.38 0.17 0.38 0.16 2398 0.87
Per Supergame Suboptimal All-D 0.04 0.20 0.05 0.22 -1.15 2398 0.25

Suboptimal All-C 0.19 0.39 0.15 0.36 2.55 2398 0.01**
(N=2,400) CaD 0.08 0.27 0.04 0.20 3.89 2398 0.00***†

DaC (Snipe) 0.10 0.30 0.14 0.35 -3.11 2398 0.00***
Point Total 158.20 71.33 161.40 71.46 -1.08 2398 0.28

AMT Cooperate 0.57 0.50 0.54 0.50 2.07 7150 0.04**
Per Round Optimal 0.59 0.49 0.62 0.49 -2.51 7150 0.01**
(N=7,152) CaD 0.07 0.25 0.05 0.22 3.05 7150 0.00***

Optimal (All-D+All-C) 0.52 0.50 0.57 0.50 -2.55 3574 0.01**
AMT Optimal All-D 0.35 0.48 0.40 0.49 -2.87 3574 0.00***

Optimal All-C 0.17 0.38 0.17 0.38 0.31 3574 0.76
Per Supergame Suboptimal All-D 0.04 0.20 0.04 0.20 0.17 3574 0.87

Suboptimal All-C 0.25 0.44 0.21 0.41 3.38 3574 0.00***†
(N=3,576) CaD 0.10 0.30 0.07 0.25 3.54 3574 0.00***†

DaC (Snipe) 0.08 0.27 0.12 0.32 -3.96 3574 0.00***†
Point Total 154.70 71.72 159.20 72.50 -1.85 3574 0.06*

Table 1: The effect of learning, first half (first 12 sequences) vs second half (last 12 sequences): Means and
standard deviations, and t-tests of differences between the two halves. DF stands for degrees of freedom or
Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz Errors. Pvalue stands for
Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)

Finding 6. Over time, subjects learn to commit fewer dominated CaD errors, and move

closer to theoretically optimal behavior. However, the play of dominated CaD does not dis-

appear over time, and, moreover, the frequency with which subjects engage in sniping behavior

(DaC) increases over time.

18As Figure B4 in the Appendix shows, while the incidence of dominated CaD errors decline over time,
they do not disappear entirely, with the CaD errors comprising 4% for the Lab subjects and 7% for the AMT
subjects across the supergames in the second half of play.
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4.7 Classifying the Patterns of Play Within Each Supergame

The complex pattern of non-constant intra-supergame play (discussed earlier in Section 4.5)

highlights the difficulties in interpreting each type of play in isolation, calling for a more

holistic approach. Indeed, our two design innovations allow us to interpret each subject’s

entire play across all supergames. It turns out that we can classify subjects’ patterns of

play within each supergame into 6 mutually exclusive types: optimal All-C, optimal All-D,

suboptimal All-C, suboptimal All-D, strategic errors (CaD), and sniping (DaC).

Figure 7: Subject heterogeneity in patterns of choices within supergames, out of 24 supergames, by
subject, ordered by the count of supergames with (combined optimal and sub-optimal) All-Defect choices
(100 Lab subjects and 149 AMT subjects). The theoretically optimal strategy involves always defecting in 16
supergames and always cooperating in the remaining 8 supergames (represented by the solid red horizontal
line).

As Figure 7 shows, there is no prevalent pattern to subjects’ play. The two (out of 100)

Lab subjects and eight (out of 149) AMT subjects who always cooperated are represented

by dark green and light green bars meeting at the solid red line on the far left side of each
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panel. Single subjects in each pool who always defected are represented by dark blue and

light blue bars meeting at the solid red line on the far right side of each panel. The two Lab

subjects and the one AMT subject who always made perfect, theoretically optimal choices

are represented by dark green and dark blue bars meeting at the solid red line, towards the

right hand side end of each panel.

Furthermore, as Figure 7 shows, both types of non-constant play (CaD and DaC) as

well as both optimal and suboptimal constant play (All-C and All-D) all tend to co-exist in

subjects’ patterns of play.

Finding 7. There is a notable heterogeneity in subjects’ choices to cooperate or defect. Only

two out of 100 Lab subjects and one out of 149 AMT subjects always followed the theoretically

optimal strategy. Two (one) Lab subjects and eight (one) AMT subjects are fully biased

towards cooperation (defection). The rest of the subjects appear to pursue strategies that are

neither theoretically optimal nor purely biased.

5 Individual Differences and Rational Inattention

We will now turn to the analysis of individual determinants of subjects’ play.

5.1 The Effect of Cognitive Abilities

As noted earlier, we asked all of our subjects to answer 7 cognitive reflection test (CRT7)

questions as part of the study, and we use subjects’ total score on this 7-item test as a proxy

for their cognitive ability. The mean (st. dev.) of the CRT7 score was 3.78 (2.26) for the

Lab subjects and 3.58 (2.17) for the AMT subjects, with a median of 4 for both (see Figure

B6, left panel). In terms of CRT scores, there is no significant difference between the two

subjects pools (two-sided t-test= 0.72, p = 0.48).

As Table 2 shows, CRT7 predicts the rational aspects of subjects’ behavior rather well.
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Overall Point Totals Dominated(CaD) Theor.Optimal Sniping(DaC) Th.Opt.+Snipe(DaC)
(OLS) (Tobit, ll=0) (Tobit, ul=24) (Tobit, ll=0) (Tobit, ul=24)

(1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT (9) Lab (10) AMT
Order Long 57.11 -44.90 -0.22 -0.30 0.87 -1.16 0.34 -0.25 1.01 -1.42*

(38.27) (32.17) (0.68) (0.73) (0.79) (0.72) (0.59) (0.53) (0.78) (0.74)
Female -65.92 -81.49** 1.40** 2.15*** 0.09 -1.05 -0.88 0.51 -0.52 -0.74

(41.98) (31.99) (0.69) (0.70) (0.80) (0.71) (0.59) (0.53) (0.82) (0.74)
Age -4.85 -0.67 0.12 0.02 0.25 0.05 -0.24* -0.04 0.07 0.02

(9.17) (1.50) (0.14) (0.03) (0.18) (0.04) (0.14) (0.03) (0.18) (0.04)
CRT7 26.37*** 61.74***† -0.51*** -0.94***† 0.32* 0.98***† 0.11 0.04 0.46** 1.06***†

(9.32) (7.05) (0.16) (0.17) (0.19) (0.16) (0.14) (0.12) (0.19) (0.16)
Constant 3845.38***† 3635.03***† -1.03 2.11 7.46* 8.58***† 7.47** 3.00** 13.78*** 11.82***†

(212.24) (70.31) (3.06) (1.60) (3.95) (1.59) (3.09) (1.18) (4.19) (1.60)
F 5.47 25.26 4.52 10.11 1.44 14.89 1.80 0.76 2.72 15.18
p 0.00 0.00 0.00 0.00 0.23 0.00 0.14 0.56 0.03 0.00
Nobs. 100 149 100 149 100 149 100 149 100 149

Table 2: Individual differences in rationality. (Significance: * 0.10 ** 0.05 *** 0.01 ***† 0.001).

Specifically, it is positively correlated with their overall point totals (specifications 1-2) and

negatively with a count of the number of supergames with strategic errors (dominated CaD)

(specifications 3-4). Interestingly, for the AMT subjects only, the count of theoretically

optimal choices (specification 6) is positively correlated with the CRT7 score. (For the Lab

subjects, the relationship is marginal, but the overall fit represented by the F statistics, is

poor.) For both subject pools, the count of apparent sniping behavior (DaC) (specifications

7-8) is not correlated with the CRT7 score, or with any other characteristic. Note however,

that by construction, these last two counts (Theoretically optimal and DaC) are mutually

exclusive. However. as discussed earlier in Section 4.5, some choices which are consistent

with following the theoretically optimal strategy, are observationally equivalent to a sniping

strategy. Thus, it is not a surprise that the combined count of whether subjects follow

either the theoretically optimal strategy (which involves either All-D for δ < 0.5 or All-C

for δ > 0.5), or engage in sniping (which involves consistent defection after cooperation, or

DaC) is positively correlated with the CRT7 score for both subject pools (see specifications

9-10).

In contrast, the CRT7 score on its own has no effect on the choice to cooperate which

can be seen in specifications 3-4 of Table 3, which contains average marginals (dy/dx) from

mixed-effects probit regressions of the choice to cooperate or defect in all 48 rounds of the

prisoners’ dilemma game, controlling for demographics, CRT7 score, and other personal
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characteristics.19, 20

Finding 8. Subjects with higher proxy values for cognitive ability are more likely to behave

in a payoff-maximizing fashion, and engage in sniping.

5.2 Inattention

Recall the main hypotheses of the simple inattention theory presented in Section 2.2. In

deciding whether to cooperate or defect, individuals with lower cognitive ability will tend to

be influenced more by their default values. In contrast, those with higher cognitive ability

will tend to be influenced by the structure of the game.

To explore these hypotheses, we split our samples in two, according to the median CRT7

score (equal to 4 in both samples). As Figure 8 shows, the two groups of subjects exhibit

different patterns of play. Subjects in the lower CRT7 group (the two top panels of Figure

8) make relatively more frequent strategic errors (CaD) and engage in suboptimal consistent

defecting behavior (Suboptimal All-D). By contrast, subjects in the higher CRT7 group

(bottom two panels) are closer to the theoretically optimal policy and engage in sniping

behavior (DaC) more often.

As specifications 7-8 in Table 3 further show, subjects with relatively high proxies for

cognitive ability (CRT7>4), tend to respond more strongly to the continuation probability

δ, and exhibit a stronger tendency for following the “sniping” strategy as their coefficients on

the round dummies tend to be negative and strongly significant. In contrast, as specifications

5-6 show, subjects with relatively lower proxies for cognitive ability (CRT7≤4) do not exhibit

any systematic sensitivity to the round number.

19Note that Table 3 presents marginals, rather than odds, so that the same explanatory variable in different
models can have different statistical significance despite similar coefficients and robust errors.

20Note that while the coefficient on the female dummy in specifications 3-4 of Table 3 is significantly
negative, and the CRT7 score is negatively correlated with being female for Lab subjects (r = −0.2365, p =
0.0178) but not for AMT subjects (r = −0.0625, p = 0.4497), the coefficient on the CRT7 score remains
insignificant if we exclude the age and gender demographic variables, or other individual characteristics
(results available on request).
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Cooperate All CRT7 ≤ 4 CRT7 > 4
(Marginals, dy/dx) (1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT
δ=0.25 0.23***† 0.08***† 0.22***† 0.08***† 0.24***† 0.08*** 0.18***† 0.09**

(0.03) (0.02) (0.03) (0.02) (0.04) (0.03) (0.04) (0.03)
δ=0.33 0.31***† 0.18***† 0.30***† 0.18***† 0.31***† 0.14***† 0.28***† 0.24***†

(0.03) (0.03) (0.03) (0.03) (0.05) (0.03) (0.05) (0.04)
δ=0.4 0.47***† 0.28***† 0.46***† 0.28***† 0.44***† 0.21***† 0.46***† 0.37***†

(0.04) (0.03) (0.04) (0.03) (0.05) (0.04) (0.06) (0.04)
δ=0.67 0.66***† 0.42***† 0.65***† 0.42***† 0.61***† 0.29***† 0.68***† 0.60***†

(0.04) (0.03) (0.04) (0.03) (0.06) (0.04) (0.06) (0.04)
δ=0.7 0.69***† 0.46***† 0.68***† 0.45***† 0.62***† 0.33***† 0.73***† 0.63***†

(0.04) (0.04) (0.04) (0.04) (0.06) (0.04) (0.06) (0.05)
Round 2 -0.04 0.03 -0.04 0.03 -0.00 0.03 -0.09** -0.02

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.03)
Round 3 -0.12***† 0.04 -0.12***† 0.04 -0.06 0.06* -0.20***† -0.06

(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.04)
Round 4 -0.19***† -0.02 -0.18***† -0.02 -0.10* 0.04 -0.28***† -0.16***†

(0.04) (0.03) (0.04) (0.03) (0.05) (0.04) (0.06) (0.04)
Round 5 -0.17*** -0.13*** -0.17*** -0.13*** -0.13* -0.10* -0.23*** -0.23***†

(0.05) (0.04) (0.05) (0.04) (0.07) (0.06) (0.08) (0.06)
Supergame -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00 -0.00 -0.00***†

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Order Long 0.05 0.03 0.06 0.04 0.07 0.06 0.04 0.04

(0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.05) (0.06)
Prior Defect -0.20***† -0.23***† -0.20***† -0.23***† -0.17***† -0.19***† -0.23***† -0.22***†

(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.03)
CRT7 -0.00 0.01

(0.01) (0.01)
Prediction 0.02*** 0.02*** 0.02 0.01 0.02***† 0.02***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Female -0.08** -0.08** -0.08 -0.11** -0.07 -0.05

(0.04) (0.04) (0.06) (0.05) (0.06) (0.05)
Age -0.01 -0.00 -0.01 -0.00 -0.01 0.00

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
Risk -0.00 -0.01 -0.01 -0.02* 0.00 -0.00

(0.01) (0.01) (0.02) (0.01) (0.02) (0.02)
Patience 0.02 0.01 0.04***† 0.03* -0.02 -0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
Punishment 0.00 -0.01 0.01 0.00 -0.01 -0.02**

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Altruism -0.02 -0.00 -0.02 -0.01 -0.02 -0.00

(0.01) (0.01) (0.02) (0.01) (0.02) (0.01)
Reciprocity 0.02 -0.01 0.01 -0.02 0.05 0.00

(0.02) (0.01) (0.02) (0.01) (0.04) (0.01)
Retribution -0.01 0.01 0.00 0.01 -0.02** 0.01

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Trust 0.00 0.01 -0.01 0.00 0.02* 0.00

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
chi2 266.09 203.19 406.22 231.92 227.73 110.77 200.85 218.72
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 7152 4800 7152 2688 4512 2112 2640

Table 3: Choices to cooperate: mixed-effects probit regressions, marginals (dy/dx), robust errors in paren-
theses. (See Table B5 for the corresponding odds.) “Supergame” is the supergame number in the sequence
of supergames, “Order Long” is a dummy variable for whether the first supergame in the sequence had
δ = 0.67, “Prior Defection” is a dummy variable for whether the subject defected in prior rounds of a given
supergame, “Prediction” is the subjects’ predictions of the share of their own cooperative choices in Round 1
across all 24 supergames (scaled down by 10). Chi2 and corresponding p-values are from the odds regressions
(see Table B5). (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)
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Figure 8: Inattention: subjects’ patterns of choices within supergames (out of 24 supergames), split by
median CRT7. Patterns are presented for each subject, ordered by the count of supergames with (combined
optimal and sub-optimal) All-Defect choices. The theoretically optimal strategy involves always defecting
in 16 supergames and always cooperating in the remaining 8 supergames (represented by a horizontal line).
(100 Lab subjects and 149 AMT subjects)
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These regressions further reveal that both lower and higher CRT7 groups each have a

single significant factor that consistently correlates with their decision to cooperate in both

subject samples. In the lower CRT7 group (Table 3, specifications 5-6), those with higher

self-reported Patience tend to cooperate more frequently (and, vice versa, those with higher

self-reported impatience tend to defect more frequently)21 – significantly among the Lab

subjects and marginally for the AMT subjects. Interestingly, Fehr and Leibbrandt (2011)

find that patience measures are very highly correlated with cooperative behavior in a field

experiment.

Importantly, the Patience measure was marginally higher for the higher CRT7 group in

the Lab subject pool (one-sided t = 1.3718, p = 0.0866), and there was no difference between

the two CRT7 groups in the AMT subject pool (two-sided t = 0.2802, p = 0.7798). Fur-

thermore, for the AMT subjects but not for the Lab subjects, being female was significantly

negatively correlated with choices to cooperate, and risk-prone AMT subjects cooperated

marginally less frequently.

In contrast, in the higher CRT7 group (Table 3, specifications 7-8), there are no personal

characteristics that systematically explain subjects’ choices to cooperate - as a rational inat-

tention theory would predict. (Though cooperation was significantly negatively correlated

with Retribution for the Lab subjects and with Punishment for the AMT subjects.) Instead,

subjects’ choices in Round 1 (which is the regression baseline) are strongly and systemati-

cally correlated with the“Prediction” variable (elicited from subjects before any choices were

made), possibly reflecting their understanding of the task.22

21The proxy for Patience is taken from Falk et al. (2018): “How willing are you to give up something that
is beneficial for you today in order to benefit more from that in the future?” (see Appendix C).

22Before any choices were made, subjects were asked what percentage of their Round 1 choices across all 24
supergames would be cooperative (see Section 3). The mean (st. dev.) of this “Prediction” variable for the
Lab subjects was 60.96 (29.57) with a median of 62, while for the AMT subjects it was 66.64 (27.04) with a
median of 72, with no significant difference between the two subjects pools (two-sided t-test= 1.56, p = 0.12,
see Figure B6, right panel). By comparison, the optimal choice is 1

3 (33.33%). In a tobit regression, this
measure is significantly negatively correlated with the “Altruism” measure (at p = 0.01) and marginally (at
p = 0.10) positively correlated with “Retribution” - but only for the AMT subjects, as for the Lab subjects
there is no correlation whatsoever (results available on request). Finally, we note that the Prediction variable
is significantly correlated with subjects’ actual first round choices (r = 0.3517, p = 0.0003 for the Lab sample
and r = 0.2350, p = 0.0039 for the AMT sample).
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Finding 9. Subject behaviour is broadly consistent with a simple model of inattention. Co-

operative choices by subjects with a lower proxy for cognitive ability (higher cognitive costs)

correlate with an elicited proxy for their degree of patience. In contrast, cooperative choices

by those with a higher proxy for cognitive ability (lower cognitive costs) are more affected by

the structure of the game, and do not correlate with their individual characteristics, but with

an elicited proxy for their understanding of the structure of the game.

Interestingly, Figure 8 further reveals differences in patterns of behavior between the two

subject pools. The top two panels showing behavior by subjects with CRT7 scores less than

or equal to the median score are consistent with the earlier insights of Arechar et al. (2018)

and Snowberg and Yariv (2021) that AMT subjects are more prone to pro-social behaviour

and more likely to make mistakes as compared with lab subjects. However, the bottom

two panels, showing behavior by subjects whose CRT7 scores are strictly above the median

suggest that there is hardly any difference in patterns of behavior across the two subject

pools, despite apparent individual differences in non-cognitive characteristics. Indeed, this

visual observation is further confirmed by formal t-tests in Table B4.

6 Conclusion

We have reported on an experiment where we test the most elemental aspects of the standard,

game-theoretic model of repeated interactions employing both student subjects and a more

representative sample of AMT subjects. In our experiment, subjects play the repeated

prisoner’s dilemma game against a robot player known to play the Grim trigger strategy.

This design converts the original strategic situation into a single-person decision problem

for which there is a unique optimal strategy, and eliminates other confounding factors such

as other regarding concerns and strategic uncertainty. We use a within-subject design in

which subjects play many different supergames with differing continuation probabilities.

Our design enables us to classify subjects’ within-supergame play according to one of 6

mutually exclusive patterns, and to separate theoretically optimal behaviour from bias. We
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can therefore identify systematic errors made by subjects and relate them to individual

characteristics, and, in particular, to their cognitive abilities.

Rather shockingly, we find that only 1-2% of subjects behave consistently with the ratio-

nal choice predictions, and only 3-5% behave consistently with those predictions more than

95% percent of the time. These very low frequencies essentially amount to noise and lead to

the inescapable conclusion that the dynamic, rational choice framework for understanding

cooperative behavior is not so empirically relevant.

When reporting results that are at odds with theoretical predictions, experimentalists are

often asked: why do subjects make mistakes? The alternative possibility – that the theory

may not be empirically relevant – is not usually up for discussion. Thus, it is important to

provide a convincing answer to the question as to why subjects make mistakes. As noted, our

stripped-down individual-choice experimental design enables us to “zero-in” on the nature

of subjects’ mistakes at a granular level and to further explore whether and how individual

subject characteristics may play a role in explaining these mistakes.

We find first that a majority (52-54%) of our subjects make at least one strategic error of

cooperating after defection. Second, some subjects employ a sniping strategy, consistently

defecting after initially choosing to cooperate (DaC) in the same supergame that can yield

them higher payoffs than the theoretically optimal strategy. This finding reveals how subjects

can be clever in ways that go beyond the confines of the standard theory and thus why it

is important to conduct an experimental evaluation. Third, we show that these different

behaviors are correlated with our proxy measure for cognitive ability. Finally, we find a

qualitative difference between subjects with high and low proxies for cognitive abilities, and

argue that this is consistent with a simple model of inattention.

We hope that our findings stimulate further theoretical and empirical work on how players

interact in repeated, strategic settings and that our findings will be useful for differentiating

intentional strategies from errors in repeated games more generally.
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Duffy, J. and F. Muñoz-Garćıa (2012): “Patience or fairness? Analyzing social pref-
erences in repeated games,” Games, 3, 56–77.

Duffy, J. and H. Xie (2016): “Group size and cooperation among strangers,” Journal of
Economic Behavior & Organization, 126, 55–74.

Enke, B. and T. Graeber (2019): “Cognitive uncertainty,” National Bureau of Economic
Research Working Paper No. 26518.

Falk, A., A. Becker, T. Dohmen, B. Enke, D. Huffman, and U. Sunde (2018):
“Global Evidence on Economic Preferences,” Quarterly Journal of Economics, 133, 1645–
1692.

Fehr, E. and A. Leibbrandt (2011): “A field study on cooperativeness and impatience
in the tragedy of the commons,” Journal of Public Economics, 95, 1144–1155.

Gabaix, X. (2019): “Behavioral inattention,” in Handbook of Behavioral Economics: Ap-
plications and Foundations 1, Elsevier, vol. 2, 261–343.

Gill, D. and Y. Rosokha (2022): “Beliefs, learning, and personality in the indefinitely
repeated prisoner’s dilemma,” working paper.

Houser, D. and R. Kurzban (2002): “Revisiting kindness and confusion in public goods
experiments,” American Economic Review, 92, 1062–1069.

Johnson, E. J., C. Camerer, S. Sen, and T. Rymon (2002): “Detecting failures of
backward induction: Monitoring information search in sequential bargaining,” Journal of
Economic Theory, 104, 16–47.

Kölle, F., S. Quercia, and E. Tripodi (2020): “Social preferences under the shadow
of the future,” SSRN Working Paper 3622125.

Mailath, G. J. and L. Samuelson (2006): Repeated Games and Reputations: Long-run
Relationships, Oxford University Press.

March, C. (2021): “Strategic interactions between humans and artificial intelligence:
Lessons from experiments with computer players,” Journal of Economic Psychology, 87,
102426.
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Appendices (For Online Publication)

A Experimental Design: Continuation Probabilities and

Realizations

Tables A1 and A2 report on the continuation probability δ for each of the 24 sequences along
with the actual number of rounds played for the two treatment orders.

OrderShort OrderLong
Sequence δ No.Rounds δ No. Rounds

1 0.33 1 0.67 4
2 0.7 4 0.33 1
3 0.1 1 0.4 2
4 0.67 2 0.25 1
5 0.4 3 0.7 3
6 0.7 2 0.33 2
7 0.25 1 0.7 5
8 0.33 2 0.4 1
9 0.67 4 0.67 2
10 0.4 1 0.1 1
11 0.1 1 0.25 1
12 0.25 2 0.1 1
13 0.1 1 0.25 2
14 0.25 1 0.1 1
15 0.1 1 0.4 1
16 0.67 2 0.67 4
17 0.4 1 0.33 2
18 0.7 5 0.25 1
19 0.33 2 0.7 2
20 0.7 3 0.4 3
21 0.25 1 0.67 2
22 0.4 2 0.1 1
23 0.33 1 0.7 4
24 0.67 4 0.33 1

Totals 48 48

Table A1: probabilities δ and the number of rounds played for each of the 24 sequences,
both treatment orders (one order is just the reverse of the other).

Delta Duration Duration (Rounds) Number of

δ Expected
(

1
1−δ

)
Realized (Ave.) 1 2 3 4 5 Supergames Choices

.1 1.11 1.00 4 0 0 0 0 4 4

.25 1.33 1.25 3 1 0 0 0 4 5

.33 1.49 1.50 2 2 0 0 0 4 6

.4 1.67 1.75 2 1 1 0 0 4 7

.67 3.03 3.00 0 2 0 2 0 4 12

.7 3.33 3.50 0 1 1 1 1 4 14
Total Supergames 11 7 2 3 1 24
Total Choices 24 13 6 4 1 48

Table A2: The distribution of the supergames, split by continuation probability δ. The average theoretical
and realized supergame durations are 1.99 rounds and 2 rounds, respectively.
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B Further Results

B.1 Order Effects

As was documented recently by Mengel et al. (2022) early exposure to relatively long se-
quences could affect subsequent behavior in the prisoner’s dilemma, potentially leading to
an order effect.

We start with the Lab subject pool. While the mean (st. dev.) first round per-subject
counts of cooperation in the reverse and long orders are 10.96 (6.48) and 12.10 (4.86), re-
spectively (out of 24), this difference is insignificant (t = 1.00, Kolmogorov-Smirnov one-
sided p = 0.278). The corresponding mean (st.dev.) overall counts are, respectively, 25.52
(9.29) and 22.66 (12.83) (out of 48), with the difference remaining insignificant (t = 1.28,
Kolmogorov-Smirnov one-sided p = 0.198).

As for the optimal choices, the first round counts are higher in the long treatment, with
mean (st. dev.) being, respectively, 16.2 (3.49) and 17.42 (3.91), but this difference is
only significant according to the Kolmogorov-Smirnov test (one-sided p = 0.034), and only
marginally according to t-test (t = 1.65, p = 0.051). The overall optimal choice counts are,
again, higher in the long order treatment (with mean (st. dev.) of 32.54 (8.16) in long
order, and 29.56 (7.76) in reverse), but this is marginally significant only according to t-test
(t = 1.87, p = 0.032), but not according to Kolmogorov-Smirnov test (one-sided p = 0.135).

We now turn to the AMT subject pool. While the mean (st. dev.) first round per-
subject counts of cooperation in the reverse and long orders are 11.96 (5.96) and 12.99 (6.16),
respectively (out of 24), this difference is insignificant (t = 1.03, Kolmogorov-Smirnov one-
sided p = 0.217). The corresponding mean (st.dev.) overall counts are, respectively, 25.96
(11.21) and 27.38 (11.97) (out of 48), with the difference remaining insignificant (t = 0.75,
Kolmogorov-Smirnov one-sided p = 0.410).

As for the optimal choices, the first round counts are actually lower in the long treatment,
with mean (st. dev.) being, respectively, 16.45 (4.45) and 14.53 (4.40), which is significant
(t = 2.68, p = 0.0042, Kolmogorov-Smirnov one-sided p = 0.011). The overall optimal choice
counts are, again, lower in the long order treatment (with mean (st.dev.) of 27.12 (9.03)
in long order, and 30.71 (9.21) in reverse), and this is significant (t = 2.40, p = 0.0089,
Kolmogorov-Smirnov one-sided p = 0.038.

Importantly, for both subject pools, once one controls for subjects’ individual differences,
the order effect is not discernible in mixed effects panel regressions in Table 3.

Finding 10. There is no consistent order effect in either subject sample.
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B.2 Choices to Cooperate vs. Theoretically Optimal Choices

Given the parameters of our design, the theoretically optimal strategy involves choosing to
cooperate in all rounds of the 8 supergames where δ = {0.67, 0.7}, and to defect in all rounds
of the other 16 supergames. Thus, perfect theoretically optimal behavior involves exactly
8 counts of cooperation across all first rounds of 24 supergames, and exactly 18 counts of
cooperation in the subsequent 24 decisions, amounting to exactly 26 counts of cooperation
overall, out of 48 choices (see Figure 2, also Table A2). That is, by design, the theoretically
optimal choices should be skewed towards defection initially, since most δs are less than 0.5
and then skewed towards cooperation later on, as it is in the longer games where cooperation
is the optimal policy.

Following the previous literature, we look closely at what subjects do in the first round
of each supergame (before any knowledge of the opponent’s actual play). As Figure B1
shows, only a small fraction of subjects behave according to the equilibrium predictions in
the first rounds across all 24 supergames. Specifically, only 2 subjects out of 100 (2% of
subjects) in the Lab sample and only 5 subjects out of 149 (3.36% of subjects) in the AMT
sample behaved perfectly as predicted for round 1. Furthermore, in both subject pools, no
more than 17% of subjects made no more than 3 mistakes out of 24 first round choices
(i.e., at least 21 optimal choices out of 24, or 87.5% of choices). The Lab subjects behaved
significantly more optimally than the AMT subjects (Kolmogorov-Smirnov one-sided test
D = 0.2197, p = 0.003), yet this difference is less pronounced at the upper end of optimal
choices.

Figure B1: Left: Frequency and cumulative distributions of per-subject counts of optimal choices in first
round choices across all 24 supergames (24 decisions total): Lab (N=100) vs. AMT (N=149) subjects. Right:
Both cumulative distributions on the same graph.

For each subject pool, Figure B2 presents the frequency distributions of choices to co-
operate (bottom left panels) and of the interpretation of these choices in terms of whether
cooperation was the equilibrium response to the Grim Trigger strategy given the continu-
ation probability (top panels). The bottom right panels further provide two-dimensional
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distributions of the cooperative and optimal choices, where the possible choice combinations
are restricted to the polygons delineated by the dashed lines. As the histograms show, sub-
jects in both pools tend to excessively cooperate in the first round of each supergame, far
above the theoretical prediction of 8. The mean (st. dev.) count of cooperative choices is
11.53 (5.73) for Lab and 12.47 (6.06) for AMT (with no significant difference across the two
pools, see Table B3). As a result, the mean (st.dev.) count of theoretically optimal choices
per subject is 16.81 (3.74) for Lab, which is significantly higher than 15.50 (4.52) for AMT.
Both pools are prominently short of the theoretical prediction of 24.

Finding 11. For both subject pools, in the first rounds, subjects cooperate excessively – on
average by 44.1% by Lab and by 55.9% by AMT – compared to the theoretical optimum.

Turning to the overall choice counts, Figure B3 presents the two-dimensional distributions
of cooperative and optimal choices and the corresponding marginal distributions for all 48
choices in all 24 supergames. The mean (st. dev.) of the overall count of cooperative choices
is only 24.09 (11.24) for Lab, which is significantly lower than the theoretical prediction of
26 (one-sided t = 1.670, p = 0.046). Interestingly, AMT subjects’ choice to cooperate are
26.66 (11.58), and thus on average are not significantly different from the predicted value of
26 (two-sided t = 0.701, p = 0.4847). However, for both subject pools, cooperative choices
are often sub-optimal – as depicted by the two-dimensional distributions in the bottom right
panels for each subject pool in Figure B3. (The shapes of the polygons for the overall
choices in the bottom right panels are due to the possibility of dominated CaD choices,
described in Section 4.3.) Indeed, for both subject pools, the overall optimal choice counts
are significantly short of the theoretical prediction of 48, with a mean (st. dev.) of 31.05
(8.06) for Lab, which is marginally greater than 28.93 (9.27) for AMT (see Figure B3).

In other words, while subjects start by cooperating excessively in the first rounds, this
early excessive cooperation in the first rounds is followed by the subsequent defection. The
mean (st. dev.) of cooperation counts in the subsequent rounds (given by the difference in
the overall and first round cooperation counts) is only 12.56 (6.29) for Lab and 14.19 (6.58)
for AMT, both significantly lower than the theoretical prediction of 18 (p = 0.000). Note
that this is despite the excessive cooperation of 1.82 counts per Lab subject and 2.75 counts
per AMT subject on average due to strategic (CaD) errors.

Finding 12. For both subject pools, compared with the theoretical predictions, on average,
subjects cooperate too much at the beginning of supergames with δ < 0.5 and stop cooperating
too early in supergames with δ > 0.5, with only 64.69% for Lab and 60.27% for AMT of all
choices being theoretically optimal.

As Figures B2 and B3 show, there is a significant heterogeneity in subjects’ behavior
(particularly for AMT), without any clear “representative” pattern. The initial heterogeneity
of play in the first rounds in Figure B2 (bottom right panels for each subject pool) is further
amplified by the heterogeneous strategies employed by the subjects in the subsequent rounds,
depicted in the corresponding panels in Figure B3.
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Figure B2: Choices in the first rounds each supergame: Lab (N=100) vs. AMT (N=149) subjects.
Two-dimensional distributions of per-subject counts of cooperation and of optimal choices across all 24
supergames, together for the frequency distributions of cooperative (bottom left) and optimal (top right)
choices. Bubble size is proportional to the share of subjects.
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Figure B3: Choices in all rounds: Lab (N=100) vs. AMT (N=149) subjects. Two-dimensional distribu-
tions of per-subject counts of cooperation and of optimal choices across all 24 supergames, together for the
frequency distributions of cooperative (bottom left) and optimal (top right) choices. Bubble size is propor-
tional to the share of subjects.
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As the bottom right bottom panels of Figure B3 for each subject pool show, there are
three similarly sized clusters (about 3-7% of each subject pool) at each of the three corners
of the polygon. One can see that there are only two (out of 100) and one (out of 149)
subjects who made perfect theoretically optimal choices, located in the far right corners of
the polygons for Lab and AMT pools, respectively. There are further only three and five
such subjects, respectively, who made up to three suboptimal choices.

In the top corner, there are two subjects in Lab and eight subjects in AMT who always
cooperated, and two further subjects in each pool who defected up to three times. In the
bottom corner, there is a single subject in each pool who always defected, and further four
subjects in each pool who cooperated up to three times. The presence of strategic CaD errors
complicates the interpretation of the remaining subjects, most of whom are located away from
the boundaries, in the center of the figures. Many of those observations represent the overall
early excessive cooperation in the first rounds followed by the subsequent defection within
a supergame, possibly due to some form of previously under-reported “sniping” strategies
(see Section 4.5).

Finding 13. In both subject pools, perfect and near-perfect theoretically optimal behavior is
rare, with only 5% of Lab and 4.69% of AMT subject making no more than 3 theoretically
sub-optimal choices. These shares are of similar order of magnitude as the shares of subjects
who defected no more than 3 times in both pools (4% Lab and 6.71% AMT), and the share
of subjects who cooperated no more than 3 times in both pools (5% Lab and 3.36% AMT).

B.3 Learning

In Figure B4, one can observe an increase in the “sniping” activities in the both subject pools
by comparing those in the first few supergames to that in the last few (further supported
by the tests in Table 1). As this same Figure reveals, while the incidence of dominated
CaD errors decline over time, they do not disappear entirely. Figure B5 further presents the
patterns of intra-supergame play across all 24 sequences, split by the sequence order.

B.4 Comparison of Lab and AMT

Table B3 compares the two subject pools, Lab and AMT. Table B4 compares the two subject
pools, Lab and AMT, split according to the median CRT7.

B.5 Rational Inattention: Further Results

Figure B6 presents the distributions of the two key variables for the inattention model, CRT7
and Prediction variable. As Table B3 shows, the means of these two variables are not sta-
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Figure B4: Subject behavior over the sequence of 24 supergames, by subject pool. Both supergame
sequence orders are pooled together so a supergame with a given number could involve different continuation
probabilities δ and corresponding optimal actions, depending on the sequence order.

Figure B5: Subject behavior over the sequence of 24 supergames, by sequence order and subject pool.
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Lab vs. AMT
Lab (N=100) AMT (N=149)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.52 0.50 0.50 0.50 0.31 247 0.76
Age* 21.49 2.46 39.74 10.49 -20.42 171.45 0.00***†
CRT7 3.78 2.26 3.58 2.17 0.71 247 0.48
Risk 6.28 1.87 5.15 2.69 3.64 247 0.00***†
Patience 7.72 1.97 7.62 1.84 0.42 247 0.67
Punishment 4.84 2.51 4.07 2.97 2.14 247 0.03**
Altruism 7.10 2.26 7.44 2.50 -1.08 247 0.28
Reciprocity 9.08 1.23 8.38 1.93 3.20 247 0.00***
Retribution 3.42 2.32 3.15 2.99 0.77 247 0.44
Trust 4.48 2.22 5.73 2.58 -3.97 247 0.00***†
Prediction 60.96 29.57 66.64 27.04 -1.56 247 0.12
Quiz Errors* 1.40 3.38 2.69 7.34 -1.86 222.91 0.06*
Points Total 3835.10 203.40 3766.20 240.60 2.35 247 0.02**
Round 1: Cooperate 11.53 5.73 12.47 6.06 -1.23 247 0.22
Round 1: Optimal 16.81 3.74 15.50 4.52 2.40 247 0.02**
Total: Cooperate 24.09 11.24 26.66 11.58 -1.74 247 0.08*
Total: Optimal 31.05 8.06 28.93 9.27 1.87 247 0.06*
Total: CaD 1.82 2.56 2.75 4.09 -2.03 247 0.04**
Supergames: Optimal 14.44 3.92 13.07 4.88 2.34 247 0.02**
Supergames: Optimal All-D 10.31 3.96 8.95 4.67 2.40 247 0.02**
Supergames: Optimal All-C 4.13 2.83 4.13 2.96 0.01 247 0.99
Supergames: Suboptimal All-D 1.14 2.18 1.02 1.85 0.47 247 0.64
Supergames: Suboptimal All-C 4.09 3.59 5.52 4.58 -2.63 247 0.01*
Supergames: CaD 1.50 2.05 2.05 2.82 -1.66 247 0.10*
Supergames: DaC (Snipe) 2.83 2.37 2.34 2.26 1.66 247 0.10*

Table B3: For each subject pool: Means and standard deviations of key variables, and t-tests of differences
between the means for two pools (all equal variance tests except for Age and Quiz Errors). df stands for
degrees of freedom or Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz
Errors, pvalue stands for Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)

tistically different between the two subject pools. Table B5 presents the odds corresponding
to the regressions of Table 3.

Figure B6: Frequency distributions of CRT7 scores and subjects’ proxy for understanding the structure of
the game.
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Lab vs. AMT: CRT7 > 4
Lab (N=44) AMT (N=55)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.41 0.50 0.46 0.50 -0.54 97 0.59
Age* 21.45 2.39 39.95 10.09 -13.14 61.45 0.00***†
CRT7 5.96 0.78 5.95 0.80 0.06 97 0.95
Risk 6.39 2.08 4.42 2.08 4.68 97 0.00***†
Patience 8.02 1.52 7.67 1.53 1.14 97 0.26
Punishment 5.11 2.54 3.71 2.39 2.83 97 0.01***
Altruism 6.55 2.54 7.42 2.23 -1.82 97 0.07*
Reciprocity 9.09 1.07 8.60 1.54 1.80 97 0.08*
Retribution 3.55 2.05 2.75 2.17 1.87 97 0.06*
Trust 4.16 1.88 5.42 2.28 -2.95 97 0.00***
Prediction 59.52 31.98 70.35 26.41 -1.84 97 0.07*
Quiz Errors 0.66 1.45 0.51 1.03 0.60 97 0.55
Points Total 3898.00 176.80 3917.50 183.80 -0.53 97 0.59
Round 1: Cooperate 12.32 5.26 13.02 5.34 -0.65 97 0.52
Round 1: Optimal 17.41 3.49 17.56 4.52 -0.19 97 0.85
Total: Cooperate 25.32 10.29 29.09 10.03 -1.84 97 0.07*
Total: Optimal 33.50 7.17 34.87 7.81 -0.90 97 0.37
Total: CaD 0.86 1.50 0.98 1.80 -0.35 97 0.73
Supergames: Optimal 15.16 3.95 15.51 4.55 -0.40 97 0.69
Supergames: Optimal All-D 10.43 3.88 9.98 4.54 0.52 97 0.60
Supergames: Optimal All-C 4.73 2.52 5.53 2.62 -1.54 97 0.13
Supergames: Suboptimal All-D 0.86 2.16 0.42 1.29 1.27 97 0.21
Supergames: Suboptimal All-C 4.05 3.29 4.84 4.52 -0.97 97 0.33
Supergames: CaD 0.71 1.23 0.82 1.44 -0.42 97 0.68
Supergames: DaC (Snipe) 3.23 2.61 2.42 2.37 1.62 97 0.11

Lab vs. AMT: CRT7 ≤ 4
Lab (N=56) AMT (N=94)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.61 0.49 0.52 0.50 1.02 148 0.31
Age* 21.52 2.53 39.63 10.77 -15.59 109.43 0.00***†
CRT7 2.07 1.40 2.19 1.35 -0.52 148 0.60
Risk 6.20 1.69 5.59 2.91 1.43 148 0.15
Patience 7.48 2.24 7.59 2.00 -0.29 148 0.77
Punishment 4.63 2.50 4.28 3.25 0.69 148 0.49
Altruism 7.54 1.94 7.45 2.65 0.22 148 0.83
Reciprocity 9.07 1.35 8.26 2.13 2.58 148 0.01**
Retribution 3.32 2.52 3.38 3.37 -0.12 148 0.91
Trust 4.73 2.44 5.92 2.74 -2.66 148 0.01
Prediction 62.09 27.77 64.47 27.30 -0.51 148 0.61
Quiz Errors* 1.98 4.25 3.96 8.98 -1.82 142.15 0.07*
Points Total 3785.60 210.70 3677.70 225.90 2.90 148 0.00***
Round 1: Cooperate 10.91 6.05 12.15 6.45 -1.16 148 0.25
Round 1: Optimal 16.34 3.89 14.30 4.07 3.02 148 0.00***
Total: Cooperate 23.13 11.93 25.24 12.22 -1.04 148 0.30
Total: Optimal 29.13 8.26 25.45 8.26 2.64 148 0.01***
Total: CaD 2.57 2.95 3.79 4.66 -1.75 148 0.08*
Supergames: Optimal 13.88 3.83 11.65 4.51 3.09 148 0.00***
Supergames: Optimal All-D 10.21 4.05 8.34 4.66 2.50 148 0.01**
Supergames: Optimal All-C 3.66 2.99 3.31 2.85 0.72 148 0.47
Supergames: Suboptimal All-D 1.36 2.19 1.37 2.04 -0.04 148 0.97
Supergames: Suboptimal All-C 4.13 3.83 5.93 4.59 -2.47 148 0.01**
Supergames: CaD 2.13 2.34 2.77 3.17 -1.31 148 0.19
Supergames: DaC (Snipe) 2.52 2.13 2.29 2.20 0.63 148 0.53

Table B4: For each subject pool: Means and standard deviations of key variables, and t-tests of differences
between the means for two pools (all equal variance tests except for Age and Quiz Errors). df stands for
degrees of freedom or Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz
Errors, pvalue stands for Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)
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Cooperate All CRT7 ≤ 4 CRT7 > 4
(Odds) (1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT
δ=0.25 0.90***† 0.31***† 0.89***† 0.31***† 0.92***† 0.28*** 0.87***† 0.43**

(0.14) (0.08) (0.13) (0.08) (0.17) (0.10) (0.23) (0.18)
δ=0.33 1.23***† 0.68***† 1.22***† 0.68***† 1.17***† 0.50***† 1.36***† 1.21***†

(0.15) (0.10) (0.15) (0.10) (0.20) (0.11) (0.25) (0.20)
δ=0.4 1.88***† 1.04***† 1.87***† 1.04***† 1.67***† 0.73***† 2.22***† 1.86***†

(0.17) (0.12) (0.17) (0.12) (0.20) (0.13) (0.33) (0.24)
δ=0.67 2.65***† 1.56***† 2.65***† 1.56***† 2.30***† 1.00***† 3.29***† 3.03***†

(0.21) (0.15) (0.21) (0.15) (0.25) (0.16) (0.40) (0.29)
δ=0.7 2.76***† 1.70***† 2.76***† 1.70***† 2.32***† 1.15***† 3.53***† 3.15***†

(0.22) (0.15) (0.22) (0.15) (0.26) (0.16) (0.44) (0.33)
Round 2 -0.14 0.10 -0.14 0.09 -0.02 0.09 -0.43** -0.10

(0.10) (0.08) (0.10) (0.08) (0.12) (0.10) (0.20) (0.15)
Round 3 -0.47***† 0.15 -0.47***† 0.15 -0.22 0.23* -0.98***† -0.29

(0.14) (0.10) (0.14) (0.10) (0.17) (0.12) (0.26) (0.18)
Round 4 -0.74***† -0.06 -0.75***† -0.07 -0.39* 0.14 -1.37***† -0.83***†

(0.17) (0.12) (0.17) (0.12) (0.21) (0.13) (0.30) (0.23)
Round 5 -0.69*** -0.48*** -0.70*** -0.49*** -0.48* -0.35* -1.09*** -1.14***†

(0.22) (0.16) (0.22) (0.16) (0.28) (0.20) (0.40) (0.33)
Supergame -0.01*** -0.01*** -0.01*** -0.01*** -0.01*** -0.01 -0.01 -0.02***†

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
Order Long 0.18 0.12 0.22 0.14 0.26 0.22 0.22 0.19

(0.17) (0.14) (0.16) (0.16) (0.21) (0.21) (0.23) (0.31)
Prior Defect -0.81***† -0.86***† -0.80***† -0.85***† -0.64***† -0.65***† -1.13***† -1.13***†

(0.12) (0.11) (0.12) (0.11) (0.14) (0.14) (0.22) (0.18)
CRT7 -0.00 0.03

(0.04) (0.03)
Prediction 0.10*** 0.07*** 0.07 0.03 0.11*** 0.12**

(0.04) (0.02) (0.05) (0.03) (0.04) (0.05)
Female -0.33* -0.31** -0.32 -0.39** -0.35 -0.25

(0.17) (0.15) (0.22) (0.19) (0.28) (0.25)
Age -0.03 -0.01 -0.03 -0.01 -0.05 0.01

(0.02) (0.01) (0.04) (0.01) (0.04) (0.02)
Risk -0.01 -0.05 -0.03 -0.09* 0.02 -0.02

(0.06) (0.04) (0.08) (0.05) (0.09) (0.08)
Patience 0.07 0.03 0.14*** 0.11* -0.09 -0.04

(0.04) (0.05) (0.04) (0.07) (0.09) (0.10)
Punishment 0.01 -0.02 0.03 0.02 -0.03 -0.11*

(0.05) (0.04) (0.07) (0.04) (0.06) (0.06)
Altruism -0.06 -0.02 -0.09 -0.04 -0.09 -0.01

(0.05) (0.03) (0.06) (0.04) (0.08) (0.07)
Reciprocity 0.07 -0.04 0.04 -0.06 0.26 0.02

(0.07) (0.03) (0.08) (0.05) (0.18) (0.06)
Retribution -0.04 0.05 0.01 0.04 -0.10* 0.06

(0.04) (0.03) (0.06) (0.05) (0.05) (0.07)
Trust 0.01 0.02 -0.03 0.00 0.09 0.02

(0.03) (0.03) (0.04) (0.04) (0.05) (0.05)
Constant -1.61***† -0.73***† -2.05*** -0.68 -1.67 0.11 -2.31 -1.85*

(0.19) (0.13) (0.78) (0.51) (1.07) (0.55) (1.80) (1.11)

chi2 266.09 203.19 406.22 231.92 227.73 110.77 200.85 218.72
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 7152 4800 7152 2688 4512 2112 2640

Table B5: Choices to cooperate: mixed-effects probit regressions, odds, robust errors in parentheses.
(See Table 3 for the corresponding marginals.) “Supergame” is the supergame number in the sequence of
supergames, “Order Long” is a dummy variable for whether the first supergame in the sequence had δ = 0.67,
“Prior Defection” is a dummy variable for whether the subject defected in prior rounds of a given supergame,
“Prediction” is the subjects’ predictions of the share of their own cooperative choices in Round 1 across all
24 supergames (scaled down by 10). (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)
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C Appendix: Experimental Design

Personality Questions

Subjects were asked to complete the following “questionnaire” by clicking on radio buttons
from 0,1,2,..10 to report their answers to each question.23

Questionnaire

We now ask for your willingness to act in a certain way in 2 different areas. Please indicate
your answer on a scale from 0 to 10, where 0 means you are “completely unwilling to do so”
and a 10 means you are “very willing to do so”. You can also use any numbers between 0
and 10 to indicate where you fall on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

1. In general, how willing are you to take risks?

2. How willing are you to give up something that is beneficial for you today in order to
benefit more from that in the future?

3. How willing are you to punish someone who treats you unfairly, even if there may be
costs for you?

4. How willing are you to give to good causes without expecting anything in return?

How well do the following statements describe you as a person? Please indicate your answer
on a scale from 0 to 10. A 0 means “does not describe me at all” and a 10 means “describes
me perfectly”. You can also use any numbers between 0 and 10 to indicate where you fall
on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

5. When someone does me a favor I am willing to return it.

6. If I am treated very unjustly, I will take revenge at the first occasion, even if there is
a cost to do so.

7. I assume that people have only the best intentions.

CRT questions

Subjects were asked to provide numerical answers to the following cognitive reflection test
(CRT) questions.24

23Taken from Falk et al. (2018).
24Based on Toplak et al. (2014) and Ackerman (2014).
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1. The ages of Anna and Barbara add up to 30 years. Anna is 20 years older than Barbara.
How old is Barbara?

2. If it takes 2 nurses 2 minutes to check 2 patients, how many minutes does it take 40
nurses to check 40 patients?

3. On a loaf of bread, there is a patch of mold. Every day, the patch doubles in size. If
it takes 24 days for the patch to cover the entire loaf of bread, how many days would
it take for the patch to cover half of the loaf of bread?

4. If John can drink one barrel of water in 6 days, and Mary can drink one barrel of water
in 12 days, how many days would it take them to drink one barrel of water together?

5. A man buys a pig for $60, sells it for $70, buys it back for $80, and sells it finally for
$90. How much profit has he made, in dollars?

6. Jerry received both the 15th highest and the 15th lowest mark in the class. How many
students are in the class?

7. A turtle starts crawling up a 6-yard-high rock wall in the morning. During each day it
crawls 3 yards and during the night it slips back 2 yards. How many days will it take
the turtle to reach the top of the wall?

Repeated PD Game Instructions

You will participate in 24 sequences. Each sequence consists of one or more rounds.

In each round, you play a game.

Specifically, you will have to choose between action X or action Y. Your opponent also
chooses between action X or action Y.

The combination of your action choice and that of your opponent results in one of the four
cells shown in the payoff table below (which will be the same table in each round).

X Y
X 75, 75 15,120
Y 120, 15 30, 30

In this table, the rows refer to your action and the columns refer to your opponent’s actions.
The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is your opponent’s payoff in points. Thus for example, if you choose X
and your opponent chooses Y, then you earn 15 points and your opponent earns 120 points.

In all 24 sequences, you will play this game against the computer. That is, your opponent
is a computer program.
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The rule the computer follows in choosing between action X or Y is this:

• In the first round of each sequence the computer will always choose X.

• Starting from the second round of each sequence, the computer’s choice will be com-
pletely determined by your previous choices in that sequence:

– If you have ever chosen Y in previous round(s) of the current sequence, the com-
puter will choose Y in all remaining rounds of the current sequence.

– Otherwise, the computer will choose X.

There is no randomness in the computer’s choice, and its choice does not depend on your
choices in any sequences other than the current one.

After choices are made by you and the computer, you learn the results of the round, specif-
ically, your point earnings and those earned by the computer. A random number generator
is used to determine whether the current sequence continues on with another round, or if
the current round is the last round of the sequence.

Whether the sequence continues with another round or not depends on the probability (or
chance) of continuation for the sequence. This continuation probability for a sequence is
prominently displayed on your decision screen and remains constant for all rounds of a
given sequence. However, this continuation probability can change at the start of each
new sequence, so please pay careful attention to announcements about the continuation
probability for each new sequence. Whether a sequence continues depends on whether at
the end of a round the random number generator drew a number in the interval [1,100] that
is less than or equal to the continuation probability (in percent).

For example, if the continuation probability in a sequence is 40%, then, after round 1 of
the sequence, which is always played, there is a 40% chance that the sequence continues
on to round 2 and a 60% chance that round 1 is the last round of the sequence. Whether
continuation occurs depends on whether the random number generator drew a number from
1 to 100 that is less than or equal to 40. If it did, then the sequence continues on to round
2. If it did not, then round 1 is the final round of the sequence. If the sequence continues on
to round 2, then after that round is played, there is again a 40% chance that the sequence
continues on to round 3 and a 60% chance that round 2 is the last round of the sequence,
again determined by the random number generator for that round. And so on.

Thus, the higher is the continuation probability (chance), the more rounds you should expect
to play in the sequence. But since the continuation probability is always less than 100%,
there is no guarantee that any sequence continues beyond round 1.

At the end of the experiment, you will be paid your point earnings from six sequences,
randomly selected so that each selected sequence has a different continuation probability.
Each point you earn over all rounds in each of the 6 randomly selected sequences is worth
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$0.01 in US dollars, that is, the greater are your point earnings, the greater are your money
earnings.

Comprehension quiz

Now that you have read the instructions, before proceeding, we ask that you answer the
following comprehension questions. For your convenience, we repeat the payoff table below,
which you will need to answer some of these questions. In this table, the rows indicate your
choice and the columns indicate the computer’s choices.

X Y
X 75, 75 15,120
Y 120, 15 30, 30

The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is the computer’s payoff in points.

Questions

1. If, in a round, you chose X and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoff?

2. If, in a round, you chose Y and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoff?

3. If, in a round, you chose Y and the computer program chose Y, what is your payoff in
points for the round? What is the computer program’s payoff?

4. If you have chosen Y in any prior round of the current sequence, what will the computer
program choose in the current round of the sequence? Choose: X or Y

5. True or false: At the start of each sequence, you will know exactly how many rounds
will be played in the sequence. Choose: True or False

6. True or false: If, in a sequence, the continuation probability is 75%, then you can
expect that there will be more rounds in that sequence, on average, than in a sequence
with a continuation probability of 25%. Choose True or False

Repeated PD Games

After a subject had successfully completed all quiz questions, the experiment proceeded on to
the first indefinitely repeated PD game. For each such game, subjects were instructed clearly
about the continuation probability for that repeated game. For instance, show illustrative
screenshots from the first indefinitely repeated game of the “orderlong” treatment.
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Figure C7: (Top) Start screen for a new sequence. (Middle) Main decision screen for a period
in the sequence. (Bottom) Results screen for a period in the sequence.
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Figure C8: (Top) Decision screen for a continuation period in the sequence, noting what the
robot player will do, based on the history of play. (Bottom) Screen for the final period of a
sequence noting that based on the random drawn, the sequence has ended.
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