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Abstract

We propose a new concept for the analysis of games, the TASP, which gives a precise prediction about
non-equilibrium play in games whose Nash equilibria are mixed and are unstable under fictitious play-like
learning. We show that, when players learn using weighted stochastic fictitious play and so place greater
weight on recent experience, the time average of play often converges in these “unstable” games, even while
mixed strategies and beliefs continue to cycle. This time average, the TASP, is related to the cycle identified
by Shapley [L.S. Shapley, Some topics in two person games, in: M. Dresher, et al. (Eds.), Advances in Game
Theory, Princeton University Press, Princeton, 1964]. The TASP can be close to or quite distinct from Nash
equilibrium.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

At the basis of the theory of learning in games is the question as to whether Nash equilibria
are stable or unstable. The hope is to predict play: if an equilibrium is an attractor for a plausible
learning dynamic, we think that it is a possible outcome for actual play. On the other hand,
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if a Nash equilibrium is unstable, we would expect actual players, for example, subjects in an
experiment, not to play that equilibrium or even to be close to it. Shapley [38] famously found
that there are games for which learning may not approach the only Nash equilibrium but rather
will continuously cycle. If we take this result seriously as an empirical prediction, then there are
games in which Nash equilibrium play will never emerge. Note that Shapley’s result implies that
even play averaged over time should not be close to an unstable equilibrium.

In this paper, we advance the novel hypothesis that even when learning diverges from equi-
librium, it is still possible to make a precise prediction about play. Surprisingly, in games with
a unique unstable mixed equilibrium the time average of play may converge even when play-
ers’ mixed strategies do not. If an equilibrium is unstable under stochastic fictitious play (SFP)
with the classical assumption that players place an equal weight on all past experience, then both
mixed strategies and time averages must diverge from equilibrium. But we find that if greater
weight is placed on more recent experience, as it is in “weighted” stochastic fictitious play, then
although the players’ mixed strategies will approach the cycle of the type found by Shapley,
the time average will converge. We show that, as the level of noise and the level of forgetting
approach zero, the time average of play approaches the TASP (Time Average of the Shapley
Polygon), that is, the time average of the Shapley cycle under the continuous time best response
dynamics. We find that in many cases the TASP is close to the Nash equilibrium. Since the time
average is much easier to observe than mixed strategies, it may well appear that play has con-
verged to the equilibrium. We can also identify games where the TASP and Nash equilibrium are
quite distinct, and so offer the possibility of a clearer empirical test between the two.

Specifically, we look at monocyclic games, a class of games that generalises Rock–Paper–
Scissors and that has only mixed equilibria. We provide a sufficient condition for the instability
of equilibrium in such games under both best response and perturbed best response dynamics in
continuous time and show that in this case there is a unique Shapley cycle which is an attractor
for the best response dynamics. We then show that this implies that the time average of play in the
discrete time weighted fictitious play process will approach the TASP as its step size approaches
zero. Furthermore, the time average of the smooth dynamics associated with stochastic fictitious
play will also approach the TASP when one simultaneously takes the step size and the level of
noise to zero. This is in contrast to the behaviour of the classical fictitious play process, under
which there is no convergence for these games even in time average.

These results are not of purely theoretical interest. They, in fact, arise in direct response to
recent experimental work on the economically important phenomenon of price dispersion. Cason
and Friedman [12] and Morgan, Orzen, and Sefton [37] report on experimental investigations of
the price dispersion models of Burdett and Judd [10] and Varian [40] respectively. Both studies
report aggregate data that is remarkably close to the price distribution that would be generated
if the subjects had been playing the mixed Nash equilibrium. This is surprising if one takes
learning theory seriously, as earlier results by Hopkins and Seymour [34] indicate that the mixed
equilibria of these models are unstable under most common learning processes. Cason, Friedman
and Wagener [13] reexamine the data from Cason and Friedman [12] and indeed find that play
is highly non-stationary and there are clear cycles present. They therefore reject the hypothesis
that subjects were in fact playing Nash equilibrium. This is also consistent with the earlier results
of [9]. They find, in an experimental study of a Bertrand–Edgeworth oligopoly market with no
pure equilibrium, that prices cycle but prices averaged across the whole session still approximate
the mixed equilibrium distribution. Our results explain the apparent empirical paradox. When
mixed equilibria are unstable under learning, we predict persistent cycles in play. Nonetheless, if



1696 M. Benaïm et al. / Journal of Economic Theory 144 (2009) 1694–1709
players learn placing more weight on recent experience, the time average of play should converge
to the TASP, which in these games is close to the Nash equilibrium.

It is true that there are existing results in learning theory that show convergence of time av-
erages without convergence to equilibrium. For example, the evolutionary replicator dynamics
cycle around mixed strategy equilibria of zero sum games, but the time average of the dynamics
nonetheless converge (see, for example, [30, pp. 79, 121, 130]). That is, convergence must be
to a Nash equilibrium and then only in a relatively small class of games. In contrast, we obtain
convergence in a wide class of games where there is no convergence of any sort under traditional
assumptions. Furthermore, we show convergence to the TASP which is distinct from both Nash
equilibrium and perturbed equilibrium concepts such as quantal response or logit equilibrium.
Alternatively, Hart and Mas-Colell [24] propose a learning model where the time average of play
always converges to the set of correlated equilibria. However, this set can be very large, whereas
the TASP is a single point.

Fictitious play was introduced many years ago with the underlying principle that players play
a best response to their beliefs about opponents, beliefs that are constructed from the average past
play of opponents. This we refer to as players having “classical” beliefs. It was in this framework
that Shapley [38] obtained his famous result. However, even when fictitious play converges to
a mixed strategy equilibrium, it does so only in time average not in marginal frequencies. This
problem motivated the introduction of smooth or stochastic fictitious play (see [19] for a sur-
vey), which permits convergence in actual mixed strategies. This more recent work still employs
classical beliefs. However, experimental work has found greater success with generalisations of
fictitious play that allow for players constructing beliefs by placing greater weight on more re-
cent events (see [11,14] amongst many others). This is called forgetting or recency or weighted
fictitious play. Despite their empirical success, models with recency have not received much the-
oretical analysis, largely because they are more difficult to analyse than equivalent models with
classical beliefs. This paper represents one of the few attempts to do so.1

Many years ago, Edgeworth [15] predicted persistent cycles in a competitive situation where
the only Nash equilibrium is in mixed strategies. This view was for a long while superseded by
faith that rational agents would play Nash equilibrium, no matter how complicated the model or
market. In the case of mixed strategies, learning theory provides some support for Edgeworth,
persistent cycles are a possibility even when agents have memory of more than the one period
Edgeworth assumed (though in other games, learning will converge even to a mixed equilib-
rium). Furthermore, recent learning models that allow for stochastic choices do not imply the
naive, predictable cycles described by Edgeworth. Cycles may only be detectable by statistical
tests for non-stationarity (see [13]). In the absence of such sophisticated analysis, these perturbed
Edgeworth–Shapley cycles may to an outside observer look indistinguishable from mixed equi-
librium.

However, tests for cyclical play may not be sufficient to identify the TASP. Following [8],
strictly one should reject the hypothesis of Nash equilibrium play by experimental subjects if
one finds that their play is non-stationary. But the TASP is not the only alternative hypothesis.
For example, suppose subjects were learning and this was converging to a Nash equilibrium,
only asymptotically would play approach stationarity. In practice, to identify the TASP from
experimental data, one would have to make a detailed econometric investigation of the dynamics

1 Fictitious play with finite memory has been considered (see [42, Ch. 6]). Other learning models not based on fictitious
play where the speed of learning does not decrease over time include [6] and [29].
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to determine whether play was convergent. So, it would be convenient to have a simpler way of
separating the TASP and equilibrium play. We therefore give an example where the TASP and
Nash equilibrium are quite distinct. These should make possible a simple test simply based on
average play. We are therefore optimistic that the theoretical results of this paper can and will be
tested.

2. Shapley polygons and Edgeworth cycles

We start with a generalisation of the well-known Rock–Paper–Scissors game and two specific
examples,2

RPS =
0 −a2 b3

b1 0 −a3

−a1 b2 0

, A =
0 −1 3

2 0 −1

−1 3 0

, B =
0 −3 1

1 0 −2

−3 1 0

. (1)

Game A and game B both have a unique Nash equilibrium in mixed strategies, for A,
x∗ = (13,10,9)/32 = (0.40625,0.3125,0.28125) and, for B , x∗ = (9,10,13)/32 = (0.28125,

0.3125,0.40625). They appear to be very similar. Learning theory, however, says that they are
quite different. Specifically, if a single large population of players are repeatedly randomly
matched to play one of these games, most learning and/or evolutionary dynamics, such as fic-
titious play, the replicator dynamics, reinforcement learning or stochastic fictitious play, should
converge to (close to) the Nash equilibrium in game A, but should diverge from equilibrium in
game B .

Shapley [38] was the first to show that there are games in which a learning process does
not converge to a Nash equilibrium. Instead, the fictitious play process that he examined con-
verged to a cycle of increasing length. We can recreate Shapley’s result in the context of a single
large population who are repeatedly randomly matched in pairs to play a normal form game
such as A or B above. Fictitious play assumes that agents play a best response given their be-
liefs. The vector xt represents the belief at time t , with xit the probability given to an opponent
playing his ith strategy. That is, xt ∈ SN the simplex SN = {x = (x1, . . . , xN) ∈ RN :

∑
xi = 1,

xi � 0, for i = 1, . . . ,N}. An agent then chooses a pure strategy that is in the set of best re-
sponses to her current beliefs, or b(xt ).3 The dynamic equation for the fictitious play process in
a single population will be

xt+1 − xt ∈ γt

(
b(xt ) − xt

)
(2)

with γt being the step size. Classically, beliefs are assumed to be based on the average of past
play by their opponents, which implies that the step size will be equal to 1/(t +1). An alternative,
that is explored in this paper, is that players place a weight of one on last period’s observation, a
weight δ on the previous period, and δn−1 on their experience n periods ago, for some δ ∈ [0,1).
Then the step size γt will be 1 − δ, a constant.

Suppose that δ takes the extreme value of 0, “Cournot beliefs,” so that players play a best re-
sponse to the last choice of their opponent. In RPS, as Rock is the best response to Scissors which

2 We use the evolutionary game theory convention for symmetric games and only give the payoffs for the row player.
That is, for a payoff matrix with typical element aij , if the row player chooses strategy i, and the column player j , row
gets aij and column aji .

3 As b(·) is not in general single valued, the dynamics arising from fictitious play present certain mathematical diffi-
culties. See [4] for a full treatment.
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Fig. 1. The Shapley triangle for game B with the TASP (T) and the Nash equilibrium (N).

is the best response to Paper, we would see a cycle of the form P,S,R,P,S,R,P,S,R, . . . .
This is a very simple example of an “Edgeworth cycle” of best responses. Clearly, if players
follow this cycle the time average of their play will converge to (1/3,1/3,1/3). Of course, for
some RPS games, this will be equal to or be close to the mixed Nash equilibrium. However, one
would not describe this type of behaviour as equilibrium play, as it involves predictable cycles
rather than randomisation. Or, more formally, there is only convergence of the time average, but
not marginal frequencies.

Under classical beliefs, change will be more gradual. For example, in the case of game B if
beliefs are at a point to the right of A1 in Fig. 1, where x1 is relatively high, the best response will
be the second strategy, or b(xt ) = e2 = (0,1,0). Agents in the population play the second strategy
and beliefs about the likelihood of seeing strategy 2 increase. Beliefs move in the direction of the
vertex where x2 = 1, until they approach near A2, and strategy 3 becomes a best response. Then,
beliefs will move toward the vertex e3 = (0,0,1) until strategy 1 becomes the best response.
That is, there will be cyclical motion about the Nash equilibrium. In game A, it can be shown
that over time the cycles converge on the Nash equilibrium, but in game B beliefs converge to
the triangle A1A2A3 illustrated in Fig. 1 and the cycles are persistent.

The easiest way to prove such convergence results is to use the continuous time best response
(BR) dynamics, defined as

ẋ ∈ b(x) − x. (3)

For a class of games including the game B given in (1), Gaunersdorfer and Hofbauer [22] show
that the best response dynamics converge to the “Shapley polygon” (Gilboa and Matsui [23] use
the term “cyclically stable set”). In game B this is the triangle A1A2A3 illustrated in Fig. 1, but
we can give a more general definition.

Definition 1. A Shapley polygon is a polygon in SN with M vertices A1, . . . ,AM which is a
closed orbit for the best response dynamics (3).

We can then define the TASP as follows.
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Definition 2. The TASP (time average of the Shapley Polygon) is

x̃ = 1

T

T∫
0

b
(
x(t)

)
dt = 1

T

T∫
0

x(t) dt (4)

where x(0) = x(T ).4 That is, it is the time average of the best response dynamics (3) over one
complete circuit of a Shapley polygon.

In the standard case where the best replies along the cycle are pure strategies, it is possible to
be more specific. We label an edge the ith edge if on that edge the ith strategy is being played.
That is, on that edge, b(x) = ei , that is the vector with 1 at position i and zero elsewhere. Suppose
that at some time t0, the dynamics (3) are at vertex Ai−1. Denote the coordinates of the ith vertex
as xAi . Then, because between Ai−1 and Ai the best response b(x) is ei , the BR dynamics imply
the linear differential equation ẋi = 1 − xi with initial condition xi(t0) = x

Ai−1
i . Thus, we have

on that edge xi(t0 + t) = 1+ exp(−t)(x
Ai−1
i −1). Let Ti be the total time spent by the continuous

time BR dynamics on the ith edge. Or, let Ti solve x
Ai

i = 1 + exp(−Ti)(x
Ai−1
i − 1). Then, over

one complete circuit of the Shapley polygon, x̃i is the proportion of time spent on side i, or,

x̃i = Ti∑M
j=1 Tj

. (5)

Now, Shapley polygons do not exist for every game. For example, in game A in (1) the Nash
equilibrium is a global attractor for the best response dynamics and there is no Shapley polygon.
But for the game B , there is a Shapley triangle (which is unique and asymptotically stable) and,
following [22], we can calculate that A1 = (6,1,3)/10, A2 = (2,6,1)/9, and A3 = (1,3,9)/13
as shown in Fig. 1. The TASP can be computed numerically as x̃ ≈ (0.29,0.34,0.37), marked
as “T” in Fig. 1.

Benaïm, Hofbauer and Sorin [4] recently have extended the theory of stochastic approxima-
tion to set valued dynamics. Their results imply that for the game B under classical fictitious
play beliefs the discrete time dynamic (2) will approach the Shapley polygon. That is, there
will be persistent cycles in beliefs, not convergence to equilibrium. Now, under such classical
beliefs, the speed of learning declines each period with accumulated experience. So, move-
ment around the cycle is slower and slower. Observed play might look like this P,S,R,P,P,

S,S,R,R,P,P,P,S,S,S,R,R,R, . . . . Consequently, the time average of play does not con-
verge, see Monderer and Shapley [36, Lemma 1] for a general proof.

But what if players place greater weight on more recent experience, with δ not at the extreme
value of 0? We show in the current paper that, like for classical fictitious play, beliefs will cycle
around the Shapley polygon (or close to it), but at constant speed. Consequently, we can show
that, like for the simple Edgeworth cycles, average play will converge, and for δ close to one this
time average will be close to the TASP.

Now, as we see in Fig. 1, the TASP is close to the Nash equilibrium of the game B . So, if the
population of players do in fact learn according to weighted fictitious play, then average play will
be close to the Nash equilibrium because average play will be close to the TASP. However, beliefs

4 The equality of these two time averages follows by integrating Eq. (3) along the periodic solution x(t) over one
period [0, T ] such that x(0) = x(T ).
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will continue to cycle. In contrast, in game A both beliefs and average play will converge to the
Nash equilibrium. The problem is that beliefs are not directly observable, whereas average play
which can be seen, can be misleading. It would be very easy for an experimenter to conclude in
the case of game B that play had converged to the Nash equilibrium, when in reality only average
play had converged, and to the TASP and not to the Nash equilibrium.

Talk of convergence to point close to but not identical to Nash may well remind readers of
quantal response (QRE) or logit equilibria. The literature on these perturbed equilibria is now
extensive and there has been considerable success in explaining empirical phenomena. See, for
example, [35] or [1]. While they are certainly a competing explanation for non-Nash play, there
are important differences. The most important is that QRE is an equilibrium concept and assumes
stable play. It is, therefore, not consistent with the cycles described above or the non-stationary
behaviour present in much experimental data.

Furthermore, there are games in which the TASP and any Nash or quantal response equi-
librium are quite different. For example, consider a RPS game with the addition of another
strategy D (for “Dumb” as for c > 0 and d < 1 it is not a best response to any pure strategy).

RPSD =
0 −3 1 c

1 0 −3 c

−3 1 0 c

d d d 0

. (6)

When c > 0, then this game has no pure strategy equilibrium. For example if c = 1/10 and d =
−1/10, the unique Nash equilibrium is fully mixed and equal to (1,1,1,17)/20. It is possible to
calculate that, under the BR dynamics, the Nash equilibrium is a saddle with the stable manifold
being the line satisfying x1 = x2 = x3. Thus for almost all initial conditions, the BR dynamics
diverge. When the weights on the first three strategies are no longer equal, the fourth strategy is
not a best reply, so that any weight on x4 tends to die out as play diverges from equilibrium. But
on the face where x4 = 0, we have the original RPS game, and with the above parameter values,
there will be a Shapley polygon on the face. Indeed, it is easy to calculate the TASP in this case as
(1/3,1/3,1/3,0). That is, the Nash equilibrium places a weight of 17/20 on the fourth strategy
and the TASP places no weight on it whatsoever. For this game, the Nash equilibrium and the
TASP are quite distinct.

3. The model

Stochastic fictitious play (SFP) was introduced by Fudenberg and Kreps [18] and is further
analysed in [2,16,26–28,32,33]. Models of this kind have been applied to experimental data by
Cheung and Friedman [14], Camerer and Ho [11] among others.

Stochastic fictitious play embodies the idea that players play, with high probability, a best
response to their beliefs about opponents’ actions. With classical fictitious play beliefs, beliefs are
constructed from opponents’ past play with every observation is given an equal weight. However,
the experimental studies cited above all find that players seem to place greater weight on more
recent events than is suggested by the classical model. We will consider both cases.

Here, we concentrate on the case where a large population of players are repeatedly randomly
matched in pairs to play a two player matrix game with N strategies and payoff matrix A. That is,
for those familiar with evolutionary game theory, we analyse a single population learning model,
rather than the two population asymmetric case (see [3] for some discussion of the asymmetric
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case). Time is discrete and indexed by t = 1,2, . . . . We write the beliefs of a player as xt =
(x1t , x2t , . . . , xNt ), where in this context x1t is the subjective probability in period t that the next
opponent will play his first strategy in that period. That is, xt ∈ SN . This implies that the vector
of expected payoffs of the different strategies for any player, given her beliefs, will be Axt . We
write the interior of the simplex, that is where all strategies have positive representation, as intSN

and its complement, the boundary of the simplex as ∂SN . We also make use of the tangent space
of SN , which we denote RN

0 = {ξ ∈ RN :
∑

ξi = 0}.
Given fictitious play beliefs, if a player were to adopt a strategy p ∈ SN , she would expect

payoffs of p · Ax. Following Fudenberg and Levine [19, p. 118 ff], we suppose payoffs are
perturbed such that payoffs are in fact given by

π(p,x) = p · Ax + λv(p) (7)

where λ > 0 scales the size of the perturbation. One possible interpretation is that the player
has a control cost to implementing a mixed strategy with the cost becoming larger nearer the
boundary. In any case, given appropriate conditions on the perturbation function v(·) (again
see Fudenberg and Levine), for each fixed x ∈ SN there is a unique p = p(x) ∈ intSN which
maximises the perturbed payoff π(p,x) for the player. Note that the original formulation of SFP
due to Fudenberg and Kreps [18], see also [19, p. 105 ff], involved a truly stochastic perturbation
of payoffs. As Hofbauer and Sandholm [28] show, the truly stochastic formulation is a special
case of the deterministic approach. In either case, the solution to the perturbed maximisation
problem is a smooth function p(x) which approximates the best reply correspondence. The best-
known special case is the exponential or logit rule.

We now turn to the dynamic process by which beliefs are updated. We look at a large popu-
lation: each period the whole population is randomly matched in pairs to play. After each round
the vector Xt ∈ SN of actions chosen by those who play is publicly announced. The law of
large numbers ensures that, given current beliefs xt , realised play is Xt = p(xt ). For example,
in [14], a finite of number of subjects were repeatedly randomly matched in pairs. In the “histo-
ry” treatment, after each choice they are then informed of the play of all subjects. This treatment,
in which all agents play every period and all see the same information is similar to the formal
model described above.5

In either case, each individual then updates her belief according to the rule,

xt+1 = (1 − γt )xt + γtXt . (8)

The step-size γt will play an important role in our analysis. Under classical fictitious play one
sets γt = 1/(t + 1). That is

xt+1 = Xt + Xt−1 + · · · + X1 + x1

t + 1
,

or all observations and initial beliefs x1 are given equal weight.6 Here, we explore the impli-
cations if players place an exponentially declining weight on past experience with δ being the
forgetting factor. This implies that γt = 1 − δ, a constant, as

xt+1 = δxt + (1 − δ)Xt = (1 − δ)
(
Xt + δXt−1 + · · · + δt−1X1

) + δtx1.

5 Note that a full treatment of actual experimental protocols would allow for finite numbers, subject heterogeneity in
initial beliefs and each player making different observations. The only papers that tackle these problems analytically
rather than by simulation are [31] and, more recently, [20].

6 One can give a different weight to initial beliefs and more generally still one can simply say the step size is of
order 1/t .



1702 M. Benaïm et al. / Journal of Economic Theory 144 (2009) 1694–1709
Setting δ = 0 induces “Cournot” beliefs, only the last period matters, while as δ approaches 1,
the updating of beliefs approaches that of classical fictitious play.

If we assume that all agents have the same initial belief and use the same updating rule then,
in the large population case, the beliefs in the population will evolve according to

xt+1 − xt = γt

(
p(xt ) − xt

)
(9)

where γt is the step size. We will also need the continuous time equivalent to the above discrete
dynamic. We have already seen the BR dynamics (3) which corresponds to (2). For the perturbed
process (9), we clearly have

ẋ = p(x) − x, (10)

which we can call the perturbed best response (PBR) dynamics.
As is now well known, the steady states of SFP and, equally, the PBR dynamics are not Nash

equilibria. Rather, they are perturbed equilibria known as quantal response equilibria (QRE) or
logit equilibria. Specifically, a perturbed equilibrium x̂λ satisfies

x̂λ = p(x̂λ). (11)

Of course, what this equilibrium relationship implies is that beliefs must be accurate or equilib-
rium beliefs x̂λ are equal to the equilibrium mixed strategy p(x̂λ). However, how close a resulting
equilibrium will be to Nash depends on the parameter λ, with the set of perturbed equilibria ap-
proaching the set of Nash equilibria as λ approaches zero. See [35] or [1] for further details.

4. Results

In this section we analyse the behaviour of SFP in games with unstable equilibria. We first
examine the behaviour of weighted SFP and then contrast our results with the very different
behaviour that occurs under classical beliefs. The learning processes that we analyse unfold in
discrete time. However, to understand their asymptotic behaviour, it will be crucial to look at
some associated continuous time dynamics, the BR (3) and PBR (10) dynamics. Clearly, these
are the continuous time analogues of (2) and (9) respectively.

We consider a class of games that Hofbauer [25] calls monocyclic (see also, [30, Chap-
ter 14.5]) that generalises the RPS game given in (1). They are two player normal form games
with a payoff matrix A that has the following properties:

1. aii = 0.
2. aij > 0 for i ≡ j + 1 (mod N ) and aij < 0 else.

The first condition is only a convenient normalisation. Clearly, the strategic properties of these
games would not be altered by the addition of a constant to a column. The second condition is
much stronger and it ensures that, as the name suggests, monocyclic games have a unique cycle of
best responses. Monocylic games do not have equilibria in pure strategies, only mixed equilibria.
However, the equilibria of monocyclic games are not necessarily unique and do not have to be
fully mixed.

Equilibria of monocyclic games can be stable or unstable under learning. For example, un-
der the continuous time BR dynamics, there is a knife-edge. In particular, if x∗ is a completely
mixed Nash equilibrium, so that x∗ · Ax∗ is the equilibrium payoff, then if x∗ · Ax∗ < 0, the
equilibrium is unstable, but if x∗ · Ax∗ � 0, then the equilibrium x∗ is globally asymptotically
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stable (see [25]). For the particular case of 3×3 monocyclic games with an unstable mixed equi-
librium, Gaunersdorfer and Hofbauer [22] show that the best response dynamics converge to the
“Shapley triangle” introduced in Section 2. The essence of the proof is that it establishes that
the best response dynamics in monocyclic games move toward the set defined by max(Ax)i = 0.
That is, the set where the best payoff against the current population state is zero. In games where
equilibrium payoffs are negative, this set is distinct from the Nash equilibrium and so the dynam-
ics must diverge from equilibrium. In contrast, the Shapley polygon is contained in this set.7 In
fact, in the 3 × 3 case the Shapley triangle and the set max(Ax)i = 0 are identical. Proofs are in
Appendix A.

Proposition 1. Suppose the game A is monocyclic, has a fully mixed Nash equilibrium x∗ and
x∗ · Ax∗ < 0. Then the mixed Nash equilibrium x∗ is unstable under the best response dynam-
ics (3). Furthermore, there is a Shapley polygon, and from an open, dense and full measure set of
initial conditions, the best response dynamics converge to this Shapley polygon. The time average
from these initial conditions converge to the TASP x̃. That is,

lim
T →∞

1

T

T∫
0

x(t) dt = x̃.

For more than 3 strategies, there are games that have cycles of best responses but which are
not monocyclic. The problem is that in such games there may be multiple Shapley polygons.
Even worse, the best response dynamics may not converge to either to a Nash equilibrium or
a Shapley polygon and instead follow a chaotic orbit. This is why results for N × N games on
convergence to equilibria are rare and to periodic orbits rarer still. Thus, what is remarkable about
Proposition 1 is not that it employs restrictive assumptions, it is that there are any such results
at all. Note that the above proposition does not claim that there is convergence to the Shapley
polygon from all initial conditions. For example, there may be mixed strategy equilibria that are
saddle points, and thus attract some initial conditions.8

We now consider what the above results on continuous time systems imply for the underlying
discrete time learning process. Consider a monocyclic game, with a mixed equilibrium unstable
under the best response dynamics. Clearly, we would expect beliefs for the discrete time best
response dynamics (2) to diverge as well. However, what happens to the time average of play
and of beliefs? Remember that under fictitious play xt the state variable represents beliefs. The
pure strategy that is actually played is given by b(xt ). Let wt be the time average of play, and ŵt

the time average of beliefs, under this process. That is,

wt = 1

t

t∑
s=1

b(xs), ŵt = 1

t

t∑
s=1

xs.

For the perturbed process (9) corresponding to SFP, we can examine similar averages. We can
write them as, respectively,

7 This relies on the assumption that A is normalised so that aii = 0 for all i.
8 See [3] for some examples of monocyclic games with mixed equilibria that are saddle points and of games that are

not monocyclic.
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zt = 1

t

t∑
s=1

p(xs), ẑt = 1

t

t∑
s=1

xs.

Remember that in weighted (stochastic) fictitious play the step size of learning γt is equal to
a constant, 1 − δ, where δ is the recency parameter (in contrast to the classical case where γt is
decreasing). We examine what happens to the time averages of play as δ approaches 1 and thus
γ approaches zero.

Proposition 2. Suppose the game A is monocyclic, has a fully mixed Nash equilibrium x∗ and
x∗ · Ax∗ < 0. Assume the step size γt = γ , a constant. Then, for the discrete time best response
dynamics (2), for almost all initial conditions x

lim
γ→0

lim
t→∞wt = lim

γ→0
lim

t→∞ ŵt = x̃.

Now the upper-semicontinuity result in the proof covers also the discretisation (9) since all
limit points of p(y) as y → x and λ → 0 are contained in b(x). Therefore, we obtain a similar
result for SFP.

Proposition 3. Suppose the game A is monocyclic, has a fully mixed Nash equilibrium x∗ and
x∗ · Ax∗ < 0. Assume the step size γt = γ , a constant. Then, for the discrete time perturbed best
response dynamics (9) from almost all initial conditions x

lim
λ→0,γ→0

lim
t→∞ zt = lim

λ→0,γ→0
lim

t→∞ ẑt = x̃.

The importance of this result is that the time average of play in the large population model of
weighted SFP converges to the TASP.

Corollary 1. Suppose the game A is monocyclic, has a fully mixed Nash equilibrium x∗ and
x∗ · Ax∗ < 0. Then, in the large population model of weighted SFP, for any ε > 0, for all values
of λ sufficiently small, t sufficiently large and δ sufficiently close to one, the time average of
play zt and the TASP x̃ satisfy ‖zt − x̃‖ < ε.

Furthermore, cyclic play actually leads to higher payoffs than playing the Nash equilibrium.
Specifically, in monocyclic games, the condition for the Nash equilibrium to be unstable is that
the equilibrium payoff is strictly negative. Under weighted SFP, for λ small, beliefs xt will be
close to the Shapley polygon. Thus, the average payoff p(xt ) · Ap(xt ) in the unstable case will
much of the time be close to b(xt ) · Ab(xt ) (which is zero due to the normalisation of diagonal
payoffs to zero) and hence higher than in equilibrium.

We can compare the result of fictitious play under recency with what happens to fictitious play
under classical beliefs, where every observation is given an equal weight and so the step size γt is
not constant but decreases. Under classical beliefs, the time average of play wt and beliefs ŵt are
asymptotically identical. When a mixed equilibrium is unstable, typically neither will converge.
That is, the limits, rather than being equal to the Nash equilibrium or to the TASP, simply do not
exist.

This follows as Proposition 1 establishes that in a class of monocyclic games mixed equilibria
are unstable under the BR dynamics (3), and by the stochastic approximation results of [4],
beliefs under fictitious play should also diverge from these equilibria. Since by definition classical
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beliefs are formed from the time average of play, the time average, as for the BR dynamics, for
most initial conditions should approach the Shapley polygon. That is, there will be persistent
cycles in the time average of play and not convergence.

In contrast, in stable games, like example A in (1), there is relatively little difference in be-
haviour under classical and weighted SFP. The game A is included in the class of games for
which Hofbauer and Sandholm [28] show that the (perturbed) mixed equilibrium will be a global
attractor for the perturbed dynamics (10). Thus, play will converge to equilibrium under classi-
cal SFP. While this is not the case for weighted SFP for all values of the recency parameter δ,
standard results from the theory of stochastic approximation (for example, Theorem 3, p. 44, [7])
imply that asymptotic play will approach the perturbed equilibrium, as one takes the limit δ → 1.

5. Conclusions

Much of the recent work on learning in games has been concerned with selection between dif-
ferent Nash equilibria, or with providing an adaptive basis for equilibrium play. In this paper, we
take a completely different approach. We found that in some games learning under stochastic fic-
titious play has a non-equilibrium outcome, which nevertheless gives a precise prediction about
play. We introduced the TASP (time average of the Shapley polygon), building on earlier results
by Shapley [38] and Gaunersdorfer and Hofbauer [22], as an outcome for the time average of
play. This we suggest could be useful in understanding behaviour in a number of economically
interesting models, including the Varian [40] model of price dispersion and Bertrand–Edgeworth
competition.

This also represents one of the few attempts at analysis of learning in games when players
place greater weight on more recent experience. Most previous work on stochastic fictitious play
and reinforcement learning has examined models with learning that slows over time. This is
despite the fact that most empirical work fitting learning models to experimental data has found
that weighting recent experience more highly gives a better fit. The two types of models do
give similar predictions when considering games that have Nash equilibria that are stable under
learning. The finding here, however, is that they give radically different results when considering
equilibria that are unstable.

However, there are other learning models besides fictitious play (see [42] for a recent survey)
which do not predict divergence. One is due to Hart and Mas-Colell [24]. In their model, the time
average of play converges to the set of correlated equilibria of the game in question. In the RPS
games the only correlated equilibrium is the Nash equilibrium (see [41]) and so the Hart–Mas-
Colell model predicts learning should always converge in this class of games, something that is
in distinct contrast with the learning models considered here.9 Equally, Foster and Young [17]
introduce a learning model where each player forms hypotheses about the strategies of her op-
ponents and plays (almost always) a best response given her beliefs. When her observations of
her opponents’ play are sufficient to reject her current hypothesis, she forms a new hypothesis.
Foster and Young show that there are parameter values of the model such that players’ mixed
strategies will be close to some Nash equilibrium for most of the time in any game. It thus offers

9 In contrast, Shapley’s original game is an example of a game with a unique Nash equilibrium but where the set
of correlated equilibria is much larger. In such games, divergence from Nash equilibrium under weighted SFP might be
difficult to distinguish empirically from learning according to the model of Hart and Mas-Colell. But this only emphasises
that the TASP, being a single point, offers greater precision as a prediction.



1706 M. Benaïm et al. / Journal of Economic Theory 144 (2009) 1694–1709
a different prediction from stochastic fictitious play, which predicts that players’ mixed strategies
should diverge from equilibrium in some games.

In this paper, we have obtained a series of theoretical results on learning. These are asymptotic
results that also depend on taking limiting values of two key parameters that determine the level
of noise and recency respectively. This may generate some skepticism about the results’ empirical
relevance, firstly because real phenomena occur in finite time, and second, because estimates of
these parameters from experimental data are not close to these limit values. However, if the TASP
is to be dismissed on this basis, so should Nash equilibrium. If one takes stochastic fictitious
play or its variants such as EWA learning [11] seriously as models of human behaviour, Nash
equilibrium play only occurs as the asymptotic limit of learning behaviour, and then only if the
appropriate parameters are at their limit values. Indeed, recent research has found that perturbed
equilibria, such as quantal response equilibria [35], that allow the noise parameter not to be at its
limit, often fit experimental data better.

The point is that the TASP, like Nash equilibrium, offers a qualitative prediction about be-
haviour in games that can be made without any parameter estimation. Thus, these concepts can
still be empirically useful as an initial hypothesis. One can then go on to make their predictions
more precise by using richer models that employ more parameters. In the case of the TASP, it can
be generalised by looking at the time average of stochastic fictitious play for which there are two
parameters, noise and recency, that can affect the long run outcome. However, these parameters
have been jointly estimated in existing attempts to fit stochastic fictitious play to experimental
data (see [11,14] among others). Thus, there is no fundamental barrier to taking the TASP to the
data.

Appendix A

Proof of Proposition 1. Let Bi be set of points x ∈ SN with i being the unique best reply, and
Bij be set of points x ∈ SN with precisely two pure best replies i and j . The union of all Bi

is open, dense and has full (N − 1)-dimensional Lebesgue measure in SN . Let B = ⋃N
i=1 Bi ∪⋃N

i=1 Bi−1,i . We will show that B is strongly forward invariant under the best response dynamics
and all orbits there approach a unique Shapley polygon contained in B .

Suppose x ∈ B1, i.e., (Ax)1 > (Ax)j for all j 
= 1. Then x(t) = e−t x + (1 − e−t )e1 and
(Ax(t))1 = e−t (Ax)1 and for j 
= 1,2,(

Ax(t)
)
j

= e−t (Ax)j + (
1 − e−t

)
aj1 < e−t (Ax)j < e−t (Ax)1 = (

Ax(t)
)

1. (1)

So along the ray from x to e1, the best response can only switch from 1 to 2 which indeed must
happen for some t > 0, since a21 > 0.

Hence the orbit hits B12. The only way to continue is towards e2. Repeating the above argu-
ment shows that orbits in B12 move into B23, etc., and finally from BN1 back into B12. This
defines a continuous return map f :BN1 → BN1. f is single-valued as solutions starting in B

are unique. f is a composition of projective maps and hence a projective map itself. Being
uniformly continuous, it can be extended to the closure BN1 of the convex polyhedron BN1.
A fixed point of f in BN1 generates a closed orbit under the best response dynamics, an invari-
ant N -gon, i.e., a Shapley polygon. However, since BN1 contains the interior equilibrium x∗
we cannot directly apply a fixed point theorem to prove the existence of the Shapley poly-
gon.

Define V (x) = maxi (Ax)i . As shown above for x ∈ B1, along any solution x(t) ∈ B ,
V (x(t)) = e−tV (x). Hence V (x(t)) → 0, as t → ∞.
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The set B0 = B ∩ {x ∈ SN : V (x) = 0} is forward invariant and its closure contains no equi-
librium, since V (x̂) = x̂ · Ax̂ < 0 holds for each equilibrium x̂ (by assumption for the interior
equilibrium x∗, and automatically for each boundary equilibrium of a monocyclic game). Since
V (x∗) < 0 and V (ei) = ai+1,i > 0, each ray from x∗ to a point x near ei hits the set {V = 0}
in a unique point which is thus contained in Bi+1

0 = Bi+1 ∩ {x ∈ SN : (Ax)i+1 = 0}, a convex

(N − 2)-dimensional set. The sets B
i,i+1
0 are therefore (N − 3)-dimensional. The closure BN1

0 is
a closed and convex polyhedron, mapped by f into itself. So by Brouwer’s fixed point theorem,
it contains a fixed point (which cannot be an equilibrium). Its orbit is a Shapley polygon Γ .

To prove uniqueness and stability of this Shapley polygon, we use the projective metric d , as
in [22]. The distance between two points x, y ∈ intBN1

0 (the relative interior10 of BN1
0 ) is given

by the logarithm of the double ratio

d(x, y) =
∣∣∣∣log

(
xp

xq
: yp

yq

)∣∣∣∣
with p,q being the intersection points of the line through x, y with the relative boundary of BN1

0 .

Since f (BN1
0 ) ⊆ BN1

0 , we have d(f (x), f (y)) � d(x, y) for x, y ∈ intBN1
0 . Now (1) holds for

j 
= 1,2 with a strict inequality even under the weaker assumption (Ax)1 � (Ax)j for all j and
(Ax)1 > (Ax)2. This shows that for x ∈ bdBN1

0 (with at least a third best reply j besides N

and 1), f (x) ∈ intBN1
0 = BN1

0 ∩ intSN . Hence f (BN1
0 ) ⊆ intBN1

0 , and hence d(f (x), f (y)) <

d(x, y) for x, y ∈ intBN1
0 with x 
= y. Hence, by a variant of Banach’s fixed point theorem, the

fixed point of f is unique and attracts all orbits in BN1
0 .

Hence all orbits in B approach the Shapley polygon Γ , and Γ is Lyapunov stable. �
Remark. The complement of B consists of all points with at least two non-successive pure
best replies (or more than two best replies). The behaviour of orbits starting outside B depends
in an intricate way on the payoff matrix. Typically, solutions starting in x /∈ B are not unique.
From every x /∈ B (except possibly x∗) there exists at least one solution that enters B and hence
converges to Γ . The solutions staying in SN \ B can converge to a Nash equilibrium or, for
N � 5, to an unstable Shapley polygon contained in SN \ B .

Proof of Proposition 2. The Shapley polygon Γ with corners A1, . . . ,AN is an attractor
(= asymptotically invariant set) for (3) whose basin of attraction B is open and dense in SN ,
and the complement SN \ B has zero Lebesgue measure. For small γ > 0, the map (2) has an at-
tractor nearby with basin of attraction exhausting B as γ → 0.11 The time average ŵt converges
to a space average over the attractor of the map (2) with respect to some invariant measure,
which tends to the unique measure invariant under the BR dynamics concentrated on the Shapley
polygon in the limit as γ goes to zero.12 The space average with respect to this unique invariant

10 The relative interior intC of a convex set C ⊆ RN is the interior of C within the affine space spanned by it. The
relative boundary of C is then given by bdC = C̄ \ intC.
11 This is well known for discretisations of differential equations, see e.g. [39] or [21]. The corresponding result for
differential inclusions needed here for the BR dynamics follows readily by combining their results and methods of proof
with those in [4]. See [5] for details.
12 Again, this is well known for differential equations. For differential inclusions, the corresponding result is shown
in [5].
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measure equals the time average given by the expression (5). The other limit follows from the
relation

wt − ŵt = 1

t

t∑
s=1

(
b(xs) − xs

) = 1

t

1

γ
(xt+1 − x1) → 0,

as t approaches infinity. �
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