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TWO COMPETING MODELS OF HOW PEOPLE
LEARN IN GAMES

By Ed Hopkins1

Reinforcement learning and stochastic fictitious play are apparent rivals as models of
human learning. They embody quite different assumptions about the processing of infor-
mation and optimization. This paper compares their properties and finds that they are far
more similar than were thought. In particular, the expected motion of stochastic fictitious
play and reinforcement learning with experimentation can both be written as a perturbed
form of the evolutionary replicator dynamics. Therefore they will in many cases have the
same asymptotic behavior. In particular, local stability of mixed equilibria under stochas-
tic fictitious play implies local stability under perturbed reinforcement learning. The main
identifiable difference between the two models is speed: stochastic fictitious play gives rise
to faster learning.

Keywords: Games, reinforcement learning, fictitious play.

1� introduction

What is the best way to model how people learn to play games? This question
has been studied intensively in recent years from an empirical standpoint. There
has been much progress in testing the predictions of learning models against data
on individual behavior in experiments. But there has been some disagreement
about what obtains the best fit: reinforcement learning, stochastic fictitious play,
or a model that encompasses or combines the two. See, for example, Erev and
Roth (1998), Camerer and Ho (1999), Sarin and Vahid (2001), Feltovich (2000),
Salmon (1999), Blume et al. (2000).
This paper takes a different approach. While remaining agnostic as to which

model or models best describe actual human learning behavior the theoretical
properties of reinforcement learning and stochastic fictitious play are compared.
The models differ on two levels, what information agents use and whether agents
optimize given that information. However, as will be seen, both models can be
considered as noisy versions of the evolutionary replicator dynamics. This means
that, first, the stationary points of a perturbed reinforcement learning model will
be identical to those of stochastic fictitious play if an appropriate functional form
for the perturbation is chosen. That is, if the two models do converge they will
converge to the same point. A second important result is on local stability of
these learning schemes. If any mixed equilibrium is locally stable (unstable) for
all forms of stochastic fictitious play, it is locally stable (unstable) for perturbed

1 This paper arose out of extensive discussions with Tilman Börgers. Much of it was written while
visiting the Economics Department at the University of Pittsburgh, which I thank for its hospitality.
I have also benefited from comments from Josef Hofbauer, John Duffy, Martin Posch, Al Roth,
Tatiana Kornienko, Peyton Young, three referees, and an editor. Errors remain my own.
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reinforcement learning. A general principle might be that if a game has sufficient
structure that we can be sure of the asymptotic behavior of fictitious play, then
reinforcement learning will exhibit the same behavior.
This paper is also able to resolve some apparently contradictory claims. For

example, Erev and Roth (1998) argue that the experimental data on play in 2×2
games with a unique mixed strategy equilibrium do not seem to support tradi-
tional equilibrium analysis. Simply put, the experimental subjects often did not
play the unique Nash equilibrium even in these simple games. However, they
find that the experimental data are well explained by a model of reinforcement
learning, the dynamics of which in the short run move away from the equilib-
rium. Even after a significant length of time, play is not near Nash equilibrium.
Indeed, it has been known for some time that the expected motion of reinforce-
ment learning is given by the evolutionary replicator dynamics; see, for example,
Börgers and Sarin (1997) and Posch (1997). The replicator dynamics do not con-
verge to the Nash equilibrium in this class of games,2 a result that Posch (1997)
uses to show that the basic model of reinforcement learning typically will not do
so either.
In contrast, Fudenberg and Kreps (1993) and Benaïm and Hirsch (1999) have

shown that stochastic fictitious play converges in these games. However, the
steady state to which it converges is not the Nash equilibrium. Indeed, the litera-
ture on quantal response equilibria following from McKelvey and Palfrey (1995)
has emphasized that once payoffs are perturbed, as they are in stochastic ficti-
tious play, the resultant equilibria are qualitatively different from Nash. Similarly,
it is shown here that, first, once experimentation is introduced to reinforcement
learning, its steady states are distinct from Nash equilibrium. Second, the intro-
duction of experimentation means that the asymptotic properties of the learn-
ing process are better explained by a perturbed form of the replicator dynamics
than by the standard version. For example, in 2×2 games with a unique mixed
Nash equilibrium, perturbed reinforcement learning converges in a similar man-
ner to stochastic fictitious play. But since the point to which learning converges
is not the Nash equilibrium, these convergence results are not in conflict with
the experimental data.
Reinforcement or stimulus-response learning is a very simple application of the

principle that actions that have led to good outcomes in the past are more likely
to be repeated in the future. Agents have a probability distribution over possible
actions. When an action is chosen, the probability of that action being taken again
rises in proportion to the realized payoff. The action has been “reinforced.” Note
the very low level of information or processing ability necessary to implement
such an algorithm. In the context of game-playing, an agent does not need to
know the structure of the game to calculate best responses or even to know that
a game is being played. In contrast, fictitious play assumes agents optimize given

2 Or to any other steady state. Confusingly, this result only holds for the standard but not the
“adjusted” version of the two-population replicator dynamics. However, the “adjusted” version is not
relevant in this context. See the discussion in Section 6 below.
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their beliefs about the play of their opponents, even if those beliefs are formed
adaptively.
The question is whether these differences in the models lead to qualita-

tively different predictions on the form that learning should take. As noted the
expected motion of stochastic fictitious play differs from that of reinforcement
learning by a positive factor. This factor is in fact given by the parameter that
determines the level of optimization in stochastic fictitious play. Thus, differences
in the level of optimization can have a direct effect on the speed of convergence.
In contrast, and rather surprisingly, the analysis finds no similar direct role for
the additional information used in fictitious play.
This paper is structured in the following way. Section 2 introduces and com-

pares reinforcement learning and fictitious play. Section 3 investigates the dynam-
ics of the two models and shows how the expected motion of stochastic ficti-
tious play can be expressed as a form of replicator dynamic. Section 4 analyses
the impact of noise on reinforcement learning. Section 5 outlines the basics of
stochastic approximation theory and its application to these two models of learn-
ing. Section 6 compares the perturbed equilibria of the two models and gives
some local and global stability results. Section 7 concludes.

2� two competing models of learning

This paper examines learning in the context of 2-person normal form games.
This section introduces two rival models, reinforcement learning and fictitious
play. There are two agents A and B who play a game repeatedly at discrete time
intervals, indexed by n. The first player, A, has N strategies; B has M . In period
n, A’s mixed strategy is written xn ∈ SN , and the strategy of B, yn ∈ SM , where
SN is the simplex �x = 	x1
 � � � 
 xN � ∈ �N 

∑
xi = 1
 xi ≥ 0
 for i = 1
 � � � 
N�.

Let A be the N ×M payoff matrix for the first player, with typical element aij ,
and B be the M ×N payoff matrix for the second player with typical element
bji. Expected payoffs for A will be x ·Ay, and for B, y ·Bx.
As Erev and Roth (1998) and Camerer and Ho (1999) observe, it is pos-

sible to compare fictitious play and reinforcement learning directly by work-
ing in terms of “attractions” or “propensities.” Here it is assumed that if A
has N strategies, then she has N propensities, which in period n will be given
by a vector qAn = 	qA1n
 � � � 
 qANn�. Then the state of the system can be written
qn = 	qAn 
qBn �. Fictitious play and reinforcement learning differ both in terms of
how these propensities determine choice probabilities and how these propensi-
ties are updated as a result of realized play.
First, consider what Roth and Erev (1995) and Erev and Roth (1998) call

the basic reinforcement learning model. The easiest way of describing how the
algorithm works is to imagine that an agent k in period n has an urn containing
a total of Qk

n balls of N different colors with qkin balls of the ith color. Each
period the agent draws one ball at random (with replacement) from the urn and
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takes the action corresponding to the color drawn. The probability of the player
A, respectively B, taking his ith action in period n is therefore

xin =
qAin∑N
j=1 q

A
jn

= qAin
QA
n


 yin =
qBin∑M
j=1 q

B
jn

= qBin
QB
n

�(1)

Strategies with higher propensities are played with higher probability. It is always
assumed that all initial propensities are strictly positive, so at all times, there will
be a positive probability of a strategy being picked.
To specify a learning model, one also needs an updating rule. For the basic

reinforcement model, one can imagine after each period of play that the agent
adds to the urn a number of balls equal to the payoff received of the color
corresponding to the action taken. If player A takes action i, and player B chooses
j in period n, refer to this as the event ij , and the propensities are updated thus:

qAin+1 = qAin+aij 
(2)

qAkn+1 = qAkn for all k �= i�
That is, only the ith propensity is changed. The justification is that since the actions
other than i were not chosen, the payoff they would have earned is not observed.
In this basic reinforcement model if realized payoffs are negative, then this

may lead to one of the propensities becoming negative and the probabilities x
y
will no longer be defined. To cure this technical problem it is necessary (and in
this paper, it is assumed) that all payoffs are strictly positive. Responses to this
problem vary. Rustichini (1999) simply states that it is without any loss of gener-
ality to assume all payoffs positive. However, Börgers and Sarin (1997) argue that
in this context payoffs should not be interpreted as von Neumann-Morgenstern
utilities; rather they should instead be considered as “parameterizations of play-
ers’ responses to experiences.” Erev and Roth (1998) take a slightly different
approach. The actual payoffs players receive may be positive or negative but it
is assumed that players update their propensities with reinforcements, which are
always positive. Reinforcements differ from payoffs only by the addition of a
constant.
The updating rule for fictitious play is quite different and is based on the

following argument. If one’s own payoff matrix is known and the action of one’s
opponent is observable, a player could calculate what he would have received
had he chosen some other action. In particular, if player A were to observe that B
is playing her jth strategy, describe this as the event j . Then define the function
fj as the event operator associated with the event j . Under fictitious play, in
response to the event j , all propensities are updated thus:

qAn+1 = fj	qAn �= qAn + 	a1j 
 a2j 
 � � � 
 aNj��(3)

That is, A reasons that if he had chosen action k, given B’s choice of j , he would
have received akj and he updates his kth propensity appropriately. This has been
called “hypothetical reinforcement.”
Fictitious play is often presented slightly differently with players holding beliefs

about opponents’ play based on the frequency of opponents’ past choices. Let
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un ∈ SN be the vector of relative frequencies of the actions of the first player
up to period n. More formally, define uin = 	

∑n
j=1 �

A
j 	i�+kui0�/	n+k� where

�An 	i� is the indicator function taking the value 1 if player A takes his ith action
in period n and is zero otherwise. The weight given to the initial belief u0 is
k > 0. Let vn ∈ SM be the vector of the relative frequencies of the choices of the
second player. Note that given (3), and if we equalize the initial conditions so
that qAi0 = 	Av0�i, then qAin = 	n+k�	Avn�i.3 That is, both qAin/	n+k� and 	Avn�i
give an estimated return to strategy i based on the opponent’s past play.
Note that in fictitious play, whether in terms of beliefs or propensities, updat-

ing by A is independent of the choices made by A. In contrast, the reinforcement
learning rule (2) exhibits what Erev and Roth call “force of habit.” The actions
that are chosen more frequently are reinforced more frequently. Force of habit
is important in what it indicates about agents’ processing of information. When
information is available about choices of opponents, the standard reinforcement
updating rule (2) throws this information away. The evidence from experiments
as to what people actually do is mixed. Erev and Roth’s (1998) detection of
force of habit in the learning behavior exhibited in their data is matched by Van
Huyck, Battalio, and Rankin (1997), who find that force of habit is statistically
insignificant in data from their experiments. Camerer and Ho (1999) claim the
data supports an intermediate case. Furthermore, the differences between the
two learning models in their treatment of information is in practice blurred. In
fact, both updating rules have been used in the reinforcement learning literature
(see Vriend (1997)) and there has been more than one attempt to specify a ficti-
tious play-like learning process for use when opponents’ actions are unobservable
(see Fudenberg and Levine (1998, Ch. 4), Sarin and Vahid (2001)).
We turn now to the choice rule employed in stochastic or smooth fictitious

play. This is where the standard fictitious play updating rule is used but the
deterministic choice of a best response is replaced by a stochastic choice rule.4

The standard fictitious play rule picks out the strategy with the highest expected
payoff, which is equivalent to choosing x to maximize x ·Avn, where Avn is
the vector that describes A’s historical payoffs given B’s past choices vn. As set
out in Fudenberg and Levine (1998, Ch. 4.7), it is possible to reconsider the
maximization problem when the player’s payoffs are subject to noise, so that
instead A chooses x to maximize

x ·Avn+��	x�

where � is a scaling factor for the perturbation �	x�.

3 However, this relationship does not hold if the reinforcement learning updating rule (2) is used.
This emphasizes that it is difficult to express reinforcement learning in terms of beliefs.

4 Stochastic fictitious play is preferable in an empirical context to classical fictitious play whose
deterministic structure does not fit the behavior of experimental subjects well, for example. The ver-
sion stochastic fictitious play employs a deterministic perturbation of payoffs, rather than a stochastic
perturbation used in the original model due to Fudenberg and Kreps (1993). However, Hofbauer and
Sandholm (2000) have recently shown that any choice rule derived from a stochastic perturbation
can be derived from a deterministic optimization problem of the type considered here.
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(i) �	x� is strictly concave and �′′, the matrix of second derivatives of � with
respect to x, is negative definite.
(ii) As x approaches the boundary of the simplex, the gradient becomes arbi-

trarily large, i.e. 	�′	x�	 →�.
Then it is certain there exists a unique solution to the following first order

conditions for a maximum,

x = 	�′�−1
(
− 1
�
Avn

)
= BR	vn��(4)

BR is thus a perturbed best response function, with � as a noise parameter. As
it drops to zero, the above rule approaches the standard fictitious play rule and
will pick out the strategy with the highest expected return with probability one.
However, high values of �, that is, lots of noise, will mean the probability of a
best response will be much decreased.
The most commonly used procedure is to set �	x� = −∑

xi logxi and conse-
quently the deterministic choice of strategy for player A is replaced by

xin =
exp!	Avn�i∑N
j=1 exp!	Avn�j

= BRei 	vn�
(5)

where the “e” superscript is for exponential, and I have written ! = 1/� for
concision.5

3� expected-value dynamics of the two models

Each of the two models has been introduced in terms of a choice rule and an
updating rule. The two rules together define a discrete time stochastic process.
In investigating these dynamics, it turns out that continuous time deterministic
dynamics will be a useful tool. The link, which will become apparent in Section 5,
is the theory of stochastic approximation. In particular, it will be useful to employ
as a benchmark the evolutionary replicator dynamics. These are defined as,6 in
vector form,

ẋ =R	x�Ay
 ẏ =R	y�Bx
(6)

where again x ∈ SN 
y ∈ SM . R	x� is a matrix with the ith diagonal element being
xi	1− xi� and the jth element of the ith row equal to −xixj . Hence, R	·� is a
symmetric positive semi-definite matrix which we can refer to as the replicator
operator. The link between these dynamics and reinforcement learning is well
known and has been explored in Börgers and Sarin (1997), Posch (1997), and
Rustichini (1999).

5 The other particular functional form that has been popular in the literature is xin =
	Avn�

!
i /	

∑N
j=1	Avn�

!
j �. If != 1, then this rule is similar to the reinforcement learning choice rule. It

is possible to fit this form to experimental data and use estimates of ! to test between reinforcement
learning and stochastic fictitious play. There is the problem, however, that this rule could not arise
as the result of the maximization of a perturbed payoff function as considered here. See Hofbauer
and Sandholm (2000).

6 This is the standard version. There is also an “adjusted” version, discussed in Section 6.
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3�1� Reinforcement Learning

The basic reinforcement learning model is defined by the choice rule (1) and
the updating rule (2). However, the real interest is in the evolution of 	xn
 yn�,
that is, the players’ mixed strategies.

Lemma 1: The expected change in 	xn
 yn� under the basic reinforcement model
is

E$xn+1	qn%−xn =
R	xn�Ayn
QA
n

+O
(

1
	QA

n �
2

)

(7)

E$yn+1	qn%−yn =
R	yn�Bxn
QB
n

+O
(

1
	QB

n �
2

)



where R	·� is the replicator operator.

Proof: Now, if in period n event ij occurs, then the change in xi will be

xin+1−xin =
qAin+aij
QA
n +aij

− qAin
QA
n

= 	1−xin�aij
QA
n +aij

= 	1−xin�aij
QA
n

+O
(

1
	QA

n �
2

)
�

But if the event kj occurs for k �= i, the change in xi will be

xin+1−xin =
qAin

QA
n +akj

− qAin
QA
n

= −xinakj
QA
n +akj

= −xinakj
QA
n

+O
(

1
	QA

n �
2

)
�

Given that event ij occurs with probability xinyjn and event kj with probability
xknyjn, one can calculate

E$xin+1	qn%−xin =
1
QA
n

	−x1nxin
 � � � 
 xin	1−xin�
 � � � 
−xNnxin�

·Ayn+O
(

1
	QA

n �
2

)
�

But given the definition of the replicator operator R	·�, we have arrived
at (7). Q.E.D.

Note first that the rate of change of xi is decreasing in the sum of the propen-
sities, QA

n , and that QA
n increases each period by a stochastic increment equal to

the realized payoff. As this is strictly positive by assumption, both QA
n and QB

n

are strictly increasing with order n. We refer to 1/Qk
n as the step size of player

k’s learning process. Second, if the two step sizes were identical, the expected
motion of x would form a discrete time version of the evolutionary replicator
dynamics (6). The effects arising from having two differing step sizes are sub-
stantial and are investigated later in this paper (see, in particular, Proposition 5).
It is worth remarking that there exist other forms of reinforcement learning.

For example, Börgers and Sarin (1997) employ the Cross model. Both models
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have an expected motion close to that of the replicator dynamics, but they dif-
fer in terms of their step size. Here, as noted, there is no unique step size to
the learning process; rather each player has her own, 1/QA

n and 1/QB
n respec-

tively, which are both decreasing over time. In the Cross model the step size is
exogenous and fixed at a constant level, say '. Börgers and Sarin (1997) show
that in the limit as ' is exogenously reduced to zero the Cross learning process
approaches the replicator dynamics (6). Here, our dual step sizes reduce to zero
endogenously as time elapses.

3�2� Stochastic Fictitious Play

The choice rule given by the perturbed best response function (4) combined
with the updating rule (3) define a stochastic learning process. Rather than
looking at the evolution of the choice probabilities 	xn
 yn�, it is more usual to
work with the historical frequencies of choices. More specifically, as for example,
Benaïm and Hirsch (1999) calculate,

E$un+1	un
vn%−un=
BR	vn�−un

n+k 
 E$vn+1	un
vn%−vn=
BR	un�−vn

n+k �(8)

The step size here is 1/	n+k�, which reflects the fact that 	un
 vn� are weighted
averages of initial beliefs and past play.7

In order to compare stochastic fictitious play and reinforcement learning
directly, it is convenient to adopt the novel approach of looking at current mixed
strategies rather than the historical frequencies used in (8) above. For example,
it is possible to obtain the expected change in the probability A places on her
ith strategy by summing over the j possible actions of her opponent (remember
updating in fictitious play is independent of one’s own choice):

E$xin+1	xn
 yn%−xin =
M∑
j=1
yjn	BRi	fj	Avn��−BRi	Avn���(9)

Note that from (8) above the step size of the change in v is of order 1/n. Hence,
it is possible to apply the following approximation:

E$xin+1	xn
 yn%−xin =
M∑
j=1
yjn

(
(BRi
(Avn

· 	fj	Avn�−Avn�
)
+O

( 1
n2

)

(10)

which in turn leads to the following result.

Proposition 2: Stochastic fictitious play with updating rule (3) and choice rule
(4) defines a stochastic process for the choice probabilities 	xn
 yn� of the two players

7 If the original fictitious play choice rule were employed instead, BR	·� would be replaced in (8)
by BR	·�, the original best response correspondence. See, for example, Fudenberg and Levine (1998,
Ch. 2).
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with expected motion

E$xn+1	xn
 yn%−xn =
!

n+kP	xn�	Ayn+��
′	xn��+O

( 1
n2

)

(11)

E$yn+1	xn
 yn%−yn =
!

n+kP	yn�	Bxn+��
′	yn��+O

( 1
n2

)



where != 1/� and P	·�=BR′
	·�=−	�′′�−1	·� is a symmetric positive semi-definite

matrix function. In the particular case of the exponential choice version of fictitious
play 	5�, P	·�= BRe′	·�=R	·�, the replicator operator.

Proof: In the Appendix.

What is the advantage of this approach? First, it is worth remarking that it
makes little difference whether one analyzes stochastic fictitious play in terms
of marginal or historical frequencies. Fudenberg and Kreps (1993) and Benaïm
and Hirsch (1999) have already shown that convergence of the process in histor-
ical frequencies to a rest point implies convergence of the marginal frequencies
	x
 y�. But equally if the process in current choice frequencies converges to any
point, then, by the law of large numbers, the time average of play must converge
to that point also.
Second, this result shows that expected motion of the stochastic process (11) is

actually a noisy version of the replicator dynamics produced by the “dumb” rein-
forcement model. This is most obvious with the exponential version of stochastic
fictitious play, because then P	·�= R	·�, the replicator operator. So, for � close
to zero, the expected motion of stochastic fictitious play in current choice proba-
bilities (11) given the exponential choice rule will be close to a positive multiple,
!, of that of reinforcement learning.8 However, even with other choice rules, the
positive definiteness of P ensures that the expected motion of learning proceeds
in a similar direction, towards a best reply to one’s opponent’s current strategy.
To see this note that a best reply for A is the x that maximizes x ·Ay and as �
approaches zero 	E$xn+1−xn%� ·Ayn approaches Ayn ·P	xn�Ayn ≥ 0. This in turn
implies that dynamics based on an arbitrary positive semi-definite matrix P	·�
will have many of the same local stability properties as the replicator dynamics
(Hopkins (1999a, b)).
Furthermore, the fact that the deterministic part of (11) is multiplied by the

factor != 1/� implies that the closer to optimization agents are, the faster they
learn. The other major difference between (11) above and the equivalent expres-
sion for reinforcement learning (7) is the additional term ��′	·�, which is best
interpreted as a noise term. First, this is simply because its magnitude is directly
proportional to the parameter �. Second, because of the assumption (ii) on �,
it prevents any choice probability falling to zero. If the expected motion of rein-
forcement learning and stochastic fictitious play differ only in terms of noise, it

8 A relationship between the exponential choice rule and the replicator dynamics is also found in
Rustichini (1999).
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suggests that a suitable perturbed version of reinforcement learning would gen-
erate the same expected motion as that of stochastic fictitious play. It will be
seen that this is the case.

4� perturbed reinforcement learning

We have seen how in fact with the introduction of noise, the expected motion
of fictitious play becomes a form of noisy replicator dynamic. The introduction of
noise to reinforcement learning, as we will now see, has a similar result. Erev and
Roth (1998) introduce what they call experimentation to the basic reinforcement
learning model by assuming there is some reinforcement for all propensities, not
just for the one corresponding to the action taken. That is, when player A takes
action i, and B takes j , for some small � > 0, updating rule (2) is replaced by

qAin+1 = qAin+ 	1−��aij 
(12)

qAkn+1 = qAkn+
1

N −1
�aij for all k �= i�

This specification might capture the idea of experimentation in that, even though
a strategy is currently performing poorly, it still receives some reinforcement and
will not be entirely forgotten. In any case, if all payoffs are positive, this noise
and/or experimentation will prevent the probability of taking any action, even if
dominated, from falling to zero.
Given that our knowledge as to which learning model best describes human

behavior is limited, the question as to what form noise should take is even more
murky. As the specification chosen by Erev and Roth depends on the payoff
earned, its expected motion will be a function of both x and y. This makes it
difficult to analyze for games larger than 2×2. The following simpler alternative
to (12) is rather more tractable and no less plausible:

qAin+1 = qAin+aij +�
(13)

qAkn+1 = qAkn+�
 for all k �= i�
That is, all propensities are reinforced by a small amount.
Finally, as will be seen, much the same effect can be obtained from the fol-

lowing formulation; when player A takes action i for some small � > 0, the ith
propensity alone is updated thus:

qAin+1 = qAin+aij +��′
i	xn�
(14)

qAkn+1 = qAkn
 for all k �= i�
Here again �	x� is a perturbation function satisfying the properties outlined in
the context of stochastic fictitious play in Section 2. Under this rule, and given
property (ii) of �	x�, if the probability of taking an action is low, then that action
is strongly reinforced when taken.
The effect of the different specifications is easiest to see if we look at the

effect on the rate of change of x and y. The following Lemma corresponds to
Lemma 1 for the unperturbed model.
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Lemma 3: Consider the perturbed reinforcement learning process defined by
choice rule (1); and any of the three updating rules (12), (13), or (14). For each of
the three updating rules, there are corresponding vectors gA	xn
 yn� and gB	xn
 yn�
such that the expected change in 	xn
 yn� is

E$xn+1	qn%−xn =
1
QA
n

	R	xn�Ayn+�gA	xn
 yn��+O
(

1
	QA

n �
2

)

(15)

E$yn+1	qn%−yn =
1
QB
n

	R	yn�Bxn+�gB	xn
 yn��+O
(

1
	QB

n �
2

)
�

Proof: In the Appendix.

The expected motion of the stochastic process is still close to the replicator
dynamics, but each equation now has an additional noise term depending on �.
The exact functional form of gA
gB will depend on which of the three forms of
noise is adopted. Given (12), it can be calculated that

	N1� gAi 	xn
 yn�=
xn ·Ayn−Nxin	Ayn�i

N −1



gBj 	xn
 yn�=
yn ·Bxn−Myjn	Bxn�j

M −1
�

As for (13), it gives rise to

	N2� gAi 	xn�= 1−Nxin
 gBj 	yn�= 1−Myjn�
This specification of noise has been used in Gale, Binmore, and Samuelson
(1995). Finally, (14) leads to

	N3� gA	xn�=R	xn��′	xn�
 gB	yn�=R	yn��′	yn�


where R	·� is the replicator operator introduced in Section 3. What all these
specifications have in common is that noise directs the system inward away from
the boundary of SN ×SM . Thus, for example, with specification (N1) if xin = 0,
then the expected change in xin will be �xn ·Ayn/	N − 1� > 0. We have seen
that under stochastic fictitious play, the perturbed best response function BR	·�
takes only interior values, so that a player’s strategy is always fully mixed. It can
be shown that perturbed reinforcement learning has a similar property under
an additional technical condition that the functions x ·�′	x� and y ·�′	y� are
bounded. Note that this property is satisfied by the most commonly used form
of perturbation function �	x�=−∑

xi logxi, which gives rise to the exponential
choice rule.

Proposition 4: Under the perturbed reinforcement learning process defined by
choice rule (1) and updating rules (12), (13) or (14), if x ·�′	x� and y ·�′	y� are
bounded on SN ×SM and qAi0 > 0 for all i and qBj0 > 0 for all j, then Pr	limn→� xin =
0�= 0 for all i, and Pr	limn→� yjn = 0�= 0 for all j .

Proof: In the Appendix.
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5� stochastic approximation

The principal means of analysis of stochastic models of learning in the recent
literature has been by exploring the behavior of associated deterministic systems,
most often by employing the theory of stochastic approximation. The standard
exposition of this theory (for example, Benveniste, Métivier, and Priouret (1990))
assumes a discrete time stochastic process of the form

+n = +n−1+'nH	+n−1
Xn�+'2n.	+n−1
Xn��(16)

The evolution of the parameter vector + is determined by H and ., an error
term. Xn is a sequence of random vectors. The step size of the stochastic process
is determined by 	'n�n≥0 a sequence of “small” scalar gains, with 'n ≥ 0, and∑
n 'n =�. If

∑
n

'/n <� for some / > 1


then we describe the algorithm as having decreasing gain. One obvious example
of this is where 'n = 1/n, and this is the most commonly analyzed case. The fol-
lowing is referred to the mean or averaged ordinary differential equation (ODE)
associated with (16):

+̇ = h	+�
(17)

where

h	+�= lim
n→�E$H	+
Xn�%�

This is important in that recent results in the theory of stochastic approximation
have shown that the behavior of this ODE (17) and of the stochastic process
(16) are very closely linked. And indeed in this paper, the results obtained on the
learning process will largely be obtained by analysis of the appropriate averaged
ODE.
Given the expected motion of the reinforcement learning process (15), one

might guess that the associated ODE would be the perturbed replicator dynamics,

ẋ =R	x�Ay+�gA	x
y�
 ẏ =R	y�Bx+�gB	x
y��(18)

Equally one might hope that in the absence of experimentation, the basic rein-
forcement learning model could be analyzed using the replicator dynamics (6).
Unfortunately, the situation considered here is rather more complex as the Erev-
Roth model of reinforcement learning differs from the paradigm (16) above in
two important respects. Firstly, the step size is endogenous, being determined by
the accumulation of payoffs. Second, it is not scalar. There are two step sizes,
1/QA

n and 1/QB
n , one for each player. It turns out that another variable, here

denoted 2 = QA/QB, is needed to take into account the relative speed of the
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learning of the two players.9 What the following result establishes is that changes
in relative speed do not change the steady states of the model, nor the behavior
of the model in the neighborhood of those equilibria, the latter provided that
the equilibrium value of 2 is sufficiently close to unity. That is, in equilibrium
the two players must earn similar payoffs. The reason for this is that in these
perturbed models, stability properties of equilibria are often determined by the
relative size of payoffs and the perturbation. And if one player has much higher
payoffs and therefore higher incentives, it is as though she has a lower value of
the noise parameter �. This in turn can affect the local stability of equilibria.

Proposition 5: The ODE’s associated with the reinforcement learning process
generated by choice rule (1) and updating rules (12), (13), or (14) with expected
motion (15) will be the following system:

ẋ =R	x�Ay+�gA	x
y�
(19)

ẏ = 2	R	y�Bx+�gB	x
y��

2̇= 2	x ·Ay−2y ·Bx��

If 	x̂
 ŷ� is a rest point for (18), then 	x̂
 ŷ
 2̂�, with 2̂= x̂ ·Aŷ/ŷ ·Bx̂, is a rest point
for (19). If such a rest point is (un)stable for (18) then, for 2̂ sufficiently close to
1, it is (un)stable for (19).

Proof: In the Appendix.

These are results on the local stability of deterministic ODE’s. However, they
are relevant to the stochastic learning processes we consider because of two
types of results. Suppose that the linearization of the ODE at a rest point has
at least one positive eigenvalue and so the equilibrium is unstable; the stochastic
process converges to that point with probability zero (for details of such a result
see, for example, Benaïm and Hirsch (1999, Theorem 5.1)). Second, suppose
that the ODE has one or more asymptotically stable fixed points; then there is
a positive probability of convergence of the stochastic learning process to any of
these equilibria (see Benaïm (1999, Theorem 7.3) for a result of this type).
In the case of stochastic fictitious play, it is rather easier to examine the discrete

time stochastic process (8) in terms of an associated ODE. This is because for
stochastic fictitious play the step size is exactly 1/	n+k� for both players. The
associated ODE’s are

u̇= BR	v�−u
 v̇ = BR	u�−v
(20)

to which I will refer as the perturbed best response dynamics. These dynamics
are also analyzed in Benaïm and Hirsch (1999), Ellison and Fudenberg (2000),
Hopkins (1999b), Hofbauer (2000), and Hofbauer and Hopkins (2000).

9 Both Laslier, Topol, and Walliser (2001) and Ianni (2000) independently adopt different methods
to overcome these problems. However, they only consider unperturbed reinforcement learning.
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However, given Proposition 2, it is also clearly possible to find on the interior
of SN ×SM an ODE associated with the stochastic fictitious play process (11) that
can be written

ẋ = !P	x�	Ay+��′	x��
 ẏ = !P	y�	Bx+��′	y���(21)

As was noted in Section 3, this equation can be thought of as a noisy form of
the replicator dynamics, multiplied by the factor !, which increases the speed of
learning. It is also possible to show that despite the apparent difference in form
of these noisy replicator dynamics from the perturbed best response dynamics,
they have many of the same properties.10

Proposition 6: On the interior of SN ×SM , the ODE’s associated with stochas-
tic fictitious play in historic frequencies, that is, the perturbed best response dynamics
(20), and the ODE’s associated with stochastic fictitious play in current frequencies,
that is, the noisy replicator dynamics (21), given the same perturbation function
�	·�, have the same fixed points, which share the same stability properties.

Proof: In the Appendix.

That is, many results obtained in terms of the process in historic frequencies
can be carried over to the process in current choice frequencies. Furthermore, a
link can be forged between stochastic fictitious play and reinforcement learning.
For the exponential choice rule (5) where �	x�=−∑

xi logxi, one can calculate
that in fact P	·� is identical to the replicator operator R	·� so that the appropriate
ODE’s will be

ẋ = !R	x�	Ay−� logx�
 ẏ = !R	y�	Bx−� logx��(22)

This, together with Propositions 2 and 6, opens the intriguing prospect of ana-
lyzing the behavior of exponential fictitious play using the many existing results
on the replicator dynamics. Clearly also, there is a similarity between (22) and
the ODE’s arising from perturbed reinforcement learning. This relationship will
be explored in the next section.

6� existence and stability of perturbed equilibria

In this section, the qualitative behavior of the two models of learning are com-
pared, together with some evidence from experiments. First, it is established that
the stationary states of the perturbed forms of fictitious play and reinforcement
learning can be identical. Second, these rest points are close to but not identical
to Nash equilibria. Furthermore, this difference helps to explain some experi-
mental data, where there is no apparent convergence to Nash equilibrium even
when unique.

10 Gaunersdorfer and Hofbauer (1995) obtain results in the converse direction, showing a link
between a best response dynamic in historical frequencies similar to (20) and the time averages of
the replicator dynamics.
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Figure 1.—Perturbed equilibria and learning dynamics.

For illustrative purposes, it will be useful to examine the class of 2×2 games
that have a unique mixed strategy equilibrium. These games have attracted par-
ticular interest (Erev and Roth (1998), Posch (1997), Benaïm and Hirsch (1999),
Fudenberg and Kreps (1993)). Because we can replace x2 by 1− x1 for player
A, and similarly for B, the state of the system can be summarized by the vector
	x1
 y1�. In other words, the learning dynamics will take place on the unit square.
Without loss of generality, we can write the payoff matrices for the two players as

A=
(
1−a+c c

c a+c
)

 B =

(
c b+c

1−b+c c

)

(23)

where 1> a
 b > 0, and c > 0. The latter constant ensures all payoffs are strictly
positive. There is a unique mixed strategy equilibrium where 	x∗
 y∗� = 	b
a�.
Take one game investigated by Ochs (1995), which provides one of the data
sets analyzed by Erev and Roth. In this game, the Nash equilibrium was +∗ =
	x∗1
 y

∗
1�= 	0�5
0�1�. This is illustrated in Figure 1. The arrows represent expected

motion of learning and are generated under the simple assumption that a strat-
egy whose expected return exceeds the other will grow in frequency. This is a
property of many learning models, including the basic reinforcement model con-
sidered here, that is, without experimentation.
However, the corresponding rest point of the perturbed replicator dynamics,

either (18) or (19), is not in general at 	x∗
 y∗�. In fact, for all the different
specifications of noise introduced in Section 4, only when a= b = 1

2 , that is when
the mixed equilibrium is exactly in the middle of the unit square, is the rest
point of the perturbed dynamic 	x̂
 ŷ� equal to the Nash equilibrium 	x∗
 y∗�. For
example, in their first paper Roth and Erev (1995) used a value of � of 0�05. In
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Erev and Roth (1998), the best fit of the data is obtained with a value of � equal
to 0�2. Given (N1) and a value of � = 0�05, the fixed point of the ODE (18),
solving these cubic equations numerically, will be +̂1 = 	0�6405
0�1063�. With a
value of �= 0�2, +̂ moves to +̂2 = 	0�7428
0�2673�, though, as � increases and the
noise dominates, the fixed point will move toward 	0�5
0�5�. Points �1
2
3
4�
represent aggregate data in blocks of 16 periods from the experiments run by
Ochs (1995) as reported in McKelvey and Palfrey (1995).
Hence, if this model of reinforcement learning accurately describes subjects’

learning behavior, then Nash equilibrium is not to be expected. Even if in the
long run the learning process converges, it will be to the fixed point 	x̂
 ŷ� of the
perturbed dynamics. Note that the motion “away” from Nash equilibrium that
Roth and Erev find in their data is toward this perturbed fixed point. However, this
model is not unique in possessing a stationary state that is not identical to Nash.
This is also a characteristic of the stochastic version of fictitious play. A rest

point for these dynamics, like for the perturbed replicator dynamics, can be some
distance away from the Nash equilibrium of the underlying game, the distance
depending on the value of the noise parameter � (see, for example, Fudenberg
and Levine (1998, pp. 108–109)). The following result shows that the resemblance
is not coincidental: a fixed point for perturbed reinforcement learning is a fixed
point for stochastic fictitious play and vice versa.11

Proposition 7: A point 	x̂
 ŷ� is a rest point for the perturbed best response
dynamics (20) for some perturbation function �	·�, if and only if 	x̂
 ŷ
 2̂� is a
rest point for the perturbed replicator dynamics (19) with noise (N3) and the same
perturbation function. Let 	x̂
 ŷ
 2̂� be a rest point for (19) with noise specification
(N2). Then, there exists a perturbation function �	·� satisfying conditions (i) and
(ii) of Section 2 such that 	x̂
 ŷ� is a rest point for (20).

Proof: In the Appendix.

Equally McKelvey and Palfrey (1995) propose a new equilibrium concept,
“quantal response equilibrium” or QRE, which is based on perturbation of play-
ers’ payoffs. For the game considered here any QRE would, like 	x̂
 ŷ�, be up
and right of the Nash equilibrium. McKelvey and Palfrey in fact estimate the
QRE from Ochs’ experimental data at 	0�649
0�254�, which is roughly intermedi-
ate between +̂1 and +̂2. Indeed, any QRE is an equilibrium point of the stochastic
fictitious play process (20) above. At the basis of the concept of QRE (McKelvey
and Palfrey (1995)) is the construction of perturbed best response functions in
the same manner as they are in stochastic fictitious play, that is, as the solution
of a perturbed maximization problem. Indeed the most commonly used form of
perturbed best response function is the same in both cases: the exponential or

11 Roth and Erev’s actual specification of noise, because there gA
gB depend on both x and y,
does not fit this pattern, though as we have seen the perturbed equilibria it produces are qualitatively
similar.
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logistic form (5). A QRE is a point at which every player plays a perturbed best
response to the play of other players. Such a point is clearly a fixed point also
of the dynamics (20) given the same perturbed best response function is used in
both cases.
Returning to the relationship between reinforcement learning and stochastic

fictitious play, we have seen that the two models share rest points. But it is
also possible to establish that these equilibria have similar stability properties
under the two different learning processes. The statement of the result below
is different for stability and instability. This is because for � large enough, any
mixed equilibrium will be stable under perturbed dynamics as the noise swamps
all other factors. Second, there is no result here for pure equilibria. As noted,
perturbed equilibria are not identical to Nash. In fact, Nash equilibria on the
boundary of the simplex may have no corresponding perturbed equilibrium at all
(see, for example, Binmore and Samuelson (1999)). Consequently, it is difficult
to establish any general result stronger than perturbed equilibria corresponding
to strict Nash equilibria are asymptotically stable for small enough �.

Proposition 8: If a rest point corresponding to a completely mixed equilibrium
is asymptotically stable for all perturbed best response dynamics (20), then it is
asymptotically stable for the noisy replicator dynamics (19) specification (N2) or
(N3). If, for � sufficiently small, such a rest point is unstable for all perturbed best
response dynamics (20), then there is a � > 0 such that it is unstable for the noisy
replicator dynamics (19) specification (N2) or (N3).

Proof: In the Appendix.

The essence of the proof of the above proposition is that the linearizations of
both the exponential version of the perturbed best response dynamics and the
noisy replicator dynamics can be written as a replicator dynamics plus a noise
term, which has negative eigenvalues, but is proportional to �.12 Thus, if the
replicator part of the linearization has positive eigenvalues, so, for small enough
�, will the perturbed linearization. Hofbauer and Hopkins (2000) show that the
only mixed equilibria that are stable for all perturbed best response dynamics are
those of zero sum games and games that are linear transformations of zero sum
games. The equilibria of such games give rise to linearizations that have purely
imaginary eigenvalues under the replicator dynamics. The combined linearization
will thus have negative eigenvalues.
In the special case of 2×2 games with a unique mixed equilibrium, it is possi-

ble to go further and consider global convergence. This is important in that Erev
and Roth (1998) use data from experimental play of this class of games to test

12 This also shows the possibility of the following limited converse to the above result. (In)stability
of an equilibrium under perturbed reinforcement learning implies (in)stability under exponential
stochastic fictitious play. But there will be other forms of stochastic fictitious play for which
P	·� �=R	·�, where stability properties are hence potentially different.
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between reinforcement learning and stochastic fictitious play. However, it is pos-
sible to show that a noisy reinforcement learning model converges to a perturbed
equilibrium, just as Fudenberg and Kreps (1993) and Benaïm and Hirsch (1999)
have shown for stochastic fictitious play. That is, the two rival models have the
same long run properties. It is first useful to establish a preliminary result.

Proposition 9: For the game (23), the fixed point 	x̂
 ŷ� of the perturbed repli-
cator dynamics (18) is globally asymptotically stable, for noise specification (N1),
(N2), and (N3).

Proof: If the divergence, defined as
∑
i	(ẋi/(xi�+

∑
j 	(ẏj/(yj�, is negative,

this is sufficient in a two-dimensional system to rule out cycles or other exotic
behavior. The replicator dynamics (6) have zero divergence on S2×S2 (Hofbauer
and Sigmund (1998, pp. 132–133)). To see this, consider the modification of (6)
ẋ/V 
 ẏ/V where V 	x
y� = x1x2y1y2. Note that a positive transformation, such
as division by V , only changes the velocity, not the orbits of a dynamical system.
Thus, as the modified system has zero divergence, so does (6). It can be calculated
that for noise of form (N1), (N2), and (N3) in the 2×2 case, 	(	gA1 /V �/(x1� < 0
and 	(	gB1 /V �/(y1� < 0. This implies that the divergence is negative. Hence, as
the perturbed replicator dynamics (18) are simply (6) plus a term with negative
divergence, (18) will have negative divergence. Thus, the flow of the perturbed
dynamics (18) must be volume contracting on the whole of S2×S2 and converge
to the unique equilibrium point. Q.E.D.

Note that unfortunately this result does not imply that perturbed equilibrium is
a global attractor for the more complex system (19). More specifically, because of
the extra equation in (19), the system is no longer two-dimensional and negative
divergence is no longer sufficient for global convergence to a stationary point.
Global stability results are in general very difficult to obtain for systems of greater
than two dimensions.13 Hence, the only way to obtain an analytic result is to
modify the learning model to make it more tractable. This is the methodology
adopted in Arthur (1993) and Posch (1997).

Assumption A—Normalization: At each period, for each player k after propen-
sities are updated by the addition of payoffs according to any reinforcement updating
rule, every propensity is multiplied by an appropriate factor so that Qk

n =Q0+nC,
for some constant C > 0, for k =A
B, but leaving xn
 yn unchanged.

The normalized process has a unique deterministic step size of order 1/n. This
allows easy application of existing results in the theory of stochastic approxima-
tion. For example, one can show the following.

13 Hofbauer and Hopkins (2000), however, give some results on global convergence for stochastic
fictitious play for games larger than 2× 2. Duffy and Hopkins (2000) show global convergence of
reinforcement learning in one class of games.
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Proposition 10: The ODE’s associated with the perturbed reinforcement learn-
ing process with noise specification (N1) or (N2) or (N3), and under Assumption A,
will be the noisy replicator dynamics (18). Hence, in game (23), all of these stochas-
tic learning processes converge with probability one to a perturbed equilibrium 	x̂
 ŷ�.

Proof: In the Appendix.

This result shows that while normalization permits additional formal results, it
leaves much unchanged. Proposition 10 together with Proposition 5 establishes
that the imposition of Assumption A does not change the rest points of the learn-
ing process and in many cases does not change their local stability properties. It
may also make some difference in learning behavior away from equilibrium but
it is difficult to assess the significance of this.14 One other consequence of the
imposition of Assumption A is that the expected motion of reinforcement learn-
ing can be expressed as a simple multiple of that of stochastic fictitious play.

Corollary 11: The ODE’s (18) associated with the perturbed reinforcement
learning process with noise specification (N3) and �	x� = −∑

xi logxi, under
Assumption A, are identical to a positive factor with the ODE’s (22) associated with
exponential fictitious play.

This follows from inspection of (22), (18), and (N3). The intuition is simply
that as the ODE associated with stochastic fictitious play can be written as a form
of perturbed replicator dynamic, to match reinforcement learning with stochastic
fictitious play, one merely needs to find the right noise function.
Finally, I address a possible misunderstanding. There are two forms of the

two-population replicator dynamics, the standard version given in equation (6)
and an adjusted version with the velocity multiplied by the inverse of average
payoffs. That is, R	x� is replaced with R	x�/	x ·Ay� and R	y� with R	y�/	y ·Bx�.
It is known that, in 2× 2 games with a unique mixed strategy equilibrium, the
mixed equilibrium is neutrally stable under (6) but asymptotically stable under
the adjusted version.15 It might be thought that there is a connection between the
adjusted replicator dynamics and reinforcement learning, because the expected
motion of the latter depends on the two step sizes 1/QA

n and 1/QB
n , which in turn

are related to average payoffs. This turns out not to be the case.
First, what Proposition 5 establishes is that the ODE’s associated with rein-

forcement learning are those given in (19), not the adjusted replicator dynamics.
Second, note that the linearizations of both forms of the unperturbed replicator
dynamic at a mixed equilibrium of a game such as (23) have eigenvalues with
zero real part (the equilibrium is asymptotically stable under the adjusted version
due to higher order terms not captured in the linearization). The linearization

14 For example, simulation suggests that even without normalization the perturbed equilibrium in
games of type (23) is still a global attractor for perturbed reinforcement learning, but it has not been
possible to establish a proof.

15 See Weibull (1995, pp. 171–178), who introduces the terminology “standard” and “adjusted.”
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of the perturbed replicator dynamics (19) as established in Proposition 8 on the
other hand has negative eigenvalues. Finally, if the stability of the mixed equilib-
rium depended on the presence of two differing step sizes, then results such as
Proposition 10 would not be possible.

7� conclusions

This paper investigates models of reinforcement learning that discard useful
information and employ no optimization. It is shown that they can generate
exactly the same asymptotic results as stochastic fictitious play. The link between
the two models is even stronger if attention is confined to local stability. How-
ever, it remains clear that the two models are not identical. Both Erev and Roth
(1998) and Camerer and Ho (1999) have used experimental data to test between
stochastic fictitious play and reinforcement learning. What the analysis presented
here suggests is that the only way that learning behavior generated by the two
models may differ is in speed of passage along similar paths. This difference in
speed may, however, be significant. Indeed, depending on the degree of opti-
mization present, here captured by the parameter !, stochastic fictitious play can
be arbitrarily faster than reinforcement learning. These differences may well be
important relative to the timescale of experiments and therefore be identifiable
econometrically.
Reinforcement learning and stochastic fictitious play differ along two axes, use

of information and optimization. The role of optimization is clearly identifiable:
Corallary 11 identifies conditions under which the expected motion of stochas-
tic fictitious play is exactly ! times faster than that of reinforcement learning.
However, that leaves the puzzle that there is no apparent equivalent role for
hypothetical reinforcement. Cheung and Friedman (1997) fit a stochastic ficti-
tious play model to data from experiments where the information given to par-
ticipants varied. Their estimates of !, which indicates the level of optimization,
were higher in the full information treatments, perhaps reflecting the subjects’
greater confidence in these environments. So, there is evidence that in practice
empirical estimates of the parameter ! capture both factors.
The results presented here are in the context of strategic form games. So

one might hypothesize that in games with a nontrivial extensive form and hence
where the manipulation of information and the forming of hypotheticals are
more important, the two models of learning might lead to quite different out-
comes. This is the rationale for the experiments reported in Feltovich (2000) on a
constant sum game with asymmetric information. However, he reports that even
here the “two models yield qualitatively similar patterns of behavior,” which is,
of course, very much in concordance with the results in this paper. This seems
to imply somewhat surprisingly that the possession of or the lack of information
about opponents’ actions, and the degree of players’ sophistication, may have no
effect on the asymptotic outcome of learning.
However, this paper does not claim that any and all information that agents

might receive is irrelevant. Rather, it is possible that the debate over fictitious
play and reinforcement learning about whether or not agents use hypothetical
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reinforcement has been a debate about the wrong type of information. For exam-
ple, there is some experimental evidence that giving information about an oppo-
nent’s payoffs, as opposed to her moves, can have quite a substantial impact.
This is because it allows players to identify what is a dominated strategy for
their opponents (see, for example, Cooper, Garvin, and Kagel (1997) and Dekel,
Fudenberg, and Levine (1999)). However, this is a form of game theoretic rea-
soning not captured by either model considered here.16 Second, the two models
considered here are concerned with pairs of agents playing in isolation. In con-
trast, there have been experiments (for example, Huck, Normann, and Oechssler
(1999) and Duffy and Feltovich (1999)) where some subjects are informed about
the behavior of other subjects in a way that permits learning by imitation. Here,
it seems that whether this information is provided or withheld can have signifi-
cant effects on play.
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APPENDIX

Proof of Proposition 2: Starting with the expression for the expected motion of stochas-
tic fictitious play (10), the next step is to differentiate the first order conditions (4). From
this one can obtain dBR	v�/dAv = −	�′′�−1	·�A/�, which can be written more compactly as
!P	x�A. In the particular case of the exponential choice rule, (BR

e

i /(	Avn�i = !xi	1− xi� and
(BR

e

i /(	Avn�j =−!xixj , so that P	·�=R	·�, the replicator operator. As Hopkins (1999b) notes, P	x�
is a symmetric matrix, which is positive definite with respect to �N0 , where �N0 = �x ∈ �N 

∑
x = 0�.

That is, z ·P	x�z > 0 for all z ∈ �N0 . If one in addition notes that the expected change in vn is equal
to 	BR	un�−vn�/	n+k�= 	yn−vn�/	n+k�, it is possible to see that in vector form,

E$xn+1	xn
 yn%−xn =
!

n+kP	xn�	Ayn−Avn�+O
(
1
n2

)
�

The final step is to write the expected motion entirely in terms of current choice probabilities. Note
that from the first order conditions (4), one can substitute −Avn = ��′	xn�. Q.E.D.

Proof of Lemma 3: I show the calculations that generate the expected motion of the reinforce-
ment learning process given the updating rule (13). They are easily extended to the other rules (12)
and (14). If in period n event ij occurs, then the change in xi will be

xin+1−xin =
qAin+aij +�
QA
n +aij +N�

− qAin
QA
n

= 	1−xin�aij +�	1−Nxin�
QA
n +aij +N�

�

But if the event kj occurs for k �= i, the change in xi will be

xin+1−xin =
qAin+�

QA
n +akj +N�

− qAin
QA
n

= −xinakj +�	1−Nxin�
QA
n +akj +N�

�

16 However, clearly belief-based models such as fictitious play are more easily modifiable to take
such reasoning into account. One can impose the refinement that agents’ prior beliefs must place
zero weight on strategies that are dominated for their opponents. Again, see Cooper, Garvin, and
Kagel (1997) and Dekel, Fudenberg, and Levine (1999).
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Given that event ij occurs with probability xinyjn and event kj with probability xknyjn, one can calcu-
late

E$xin+1	qn%−xin =
1
QA
n

	R	xn�Ayn+�	1−Nxin��+O
(

1
	QA

n �
2

)



and one has obtained (15) with in this case gAi 	xn�= 1−Nxin. Q.E.D.

Proof of Proposition 4: In the case of the first two updating rules, this result is straight-
forward. In the case of updating rule (14), a proof can be adapted from Theorem 2 of Posch
(1997), which concerns the asymptotic properties of reinforcement learning without perturbation but
with normalization (the equivalent of Assumption A in Section 6 of this paper). The proof is by
contradiction. Suppose that in fact Pr	limn→� xin = 0� > 0 for some i. Let 8Ain ≥ 0 be the random
variable equal to qAin+1 − qAin and let 9An > 0 be the random variable defined as QA

n+1 −QA
n . Define

h	xn
 yn�=Ayn+��′	xn�. This is the vector of expected perturbed payoffs for player A under updat-
ing rule (14). That is, E$9An 	qn%= xn ·h	xn
 yn� and E$8Ain 	qn%= xinhi	xn
 yn�.

If xin approaches zero, then �′
i	xn� approaches infinity, but by assumption xn ·�′	xn�, and hence

xn ·h	xn
 yn�, are bounded. Fix some small b > 0. Then one can find a positive constant c such that
if xi < c, then hi	x
 y�− x ·h	x
y� ≥ b. Let U be the subset of SN × SM where xi < c. Given the
assumption that Pr	limn→� xin = 0� > 0, one can choose an N > 0 such that

Pr
({

lim
n→�

xin = 0
}
∩�xil ∈ U
 ∀ l > N�

)
> 0�(24)

We have

E

[
1
xin+1

− 1
xin

∣∣∣∣qn
]
= E

[
QA
n +9An
qAin+8Ain

− QA
n

qAin

∣∣∣∣qn
]
= E

[
9An −8Ain/xin
qAin+8Ain

∣∣∣∣qn
]
�

And we have

E

[
9An −8Ain/xin
qAin+8Ain

∣∣∣∣qn
]
= xn ·h	xn
 yn�−hi	xn
 yn�

qAin
+O

(
1

	qAin�
2

)
�(25)

Note that, due to our assumption that qAi0 > 0,

xin =
qAin
QA
n

≥ qAi0
QA
n

≥ qAi0
	nā+QA

0 �
> 0


where ā is the largest possible payoff to player A. Since, clearly,
∑�
n=0 q

A
i0/	nā+QA

0 �=�, we also have∑�
n=0 xin =�. Hence, by the Borel-Cantelli lemma, action i is chosen an infinite number of times and,

consequently, Pr	limn→� q
A
in =��= 1. This in turn implies that we can find an N ′ ≥N such that any

expression of O	1/	qAin�
2� will be less than b > 0. But since for 	xn
 yn� ∈U
hi	xn
 yn�−x ·h	xn
 yn�≥

b > 0, the expression (25) will be negative for all 	xn
 yn� ∈ U for n ≥ N ′. Thus, 1/xin
n ≥ N ′, is a
nonnegative supermartingale on U . Hence, limn→� 1/xin <� with probability one if xil ∈U
 ∀ l >N .
But this is a contradiction to (24). Q.E.D.

Proof of Proposition 5: First, set the step size for the overall stochastic learning process to
be equal to the step size of the first player, that is, 'n = 1/QA

n . Note that if all payoffs are bounded and
strictly positive, with probability one, limn→� 'n = 0


∑
n 'n =�, and

∑
n '

2
n <�. Then, a new variable

is introduced to take into account the relative speed of player B’s learning. Define 2n = QA
n /Q

B
n .

Again if all payoffs are bounded and strictly positive, 2n is also bounded and strictly positive even as
n goes to infinity. We can write the stochastic process as

xn+1−xn =
1
QA
n

(
R	xn�Ayn+�gA	xn
 yn�+<A	Xn�

)+O
(

1
	QA

n �
2

)

(26)

yn+1−yn =
1
QA
n

2n
(
R	yn�Bxn+�gB	xn
 yn�+<B	Xn�

)+O
(

1
	QB

n �
2

)



2n+1−2n =
1
QA
n

2n
(
xn ·Ayn−2nyn ·Bxn+<2	Xn�

)+O
(

1
	QB

n �
2

)
�
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The variables <k for k = A
B
2, each have expectation zero. Note that here Xn is simply the
indicator function giving the outcome (out of the N ×M possible outcomes) of the two player’s
randomizations in period n. To construct the ODE’s (17) associated with this system, one takes the
average over the possible realizations to obtain (19).

The resultant dynamics (19) are on SN ×SM ×�+. If 	x̂
 ŷ� is an equilibrium for (18), I hope it is
clear that 	x̂
 ŷ
 x̂ ·Aŷ/ŷ ·Bx̂� is an equilibrium for (19).17 Taking the linearization at such a perturbed
equilibrium point 	x̂
 ŷ
 2̂�, one obtains

K =

 J 	 0

- - - - - - - - - - - - 	 - - - - - -
2	Ay−2yB� 2	xA−2Bx� 	 −x ·Ay


 


where J is the Jacobian matrix of the simpler system, ẋ = R	x�Ay+ �gA	x
y�
 ẏ = 2	R	y�Bx+
�gB	x
y��. If 2̂ is equal to one, J will be identical to the linearization of the dynamics (18) taken at
	x̂
 ŷ�. Because of the perturbation the linearization of (19) is (generically) hyperbolic, and hence, by
continuity J and the linearization of (18) will have the same sign pattern of eigenvalues for 2̂ close to
one. We now turn to K as a whole. Note that, writing z= 	z1
 z2� with z1 ∈ �N+M and z2 scalar, the
eigenvalue equation for the above matrix, that is, Kz=?z, for some eigenvalue ? , can be decomposed
into two separate equations, Jz1 = ?z1, and 	2	Ay−2yB�
2	xA−2Bx�� ·z1−x ·Ayz2 = ?z2. Hence
N +M of the eigenvalues of K are the eigenvalues of the matrix J . The remaining eigenvalue is
therefore −x ·Ay. In conclusion, at an equilibrium 	x̂
 ŷ
 2̂� of the system (19) there is an additional
negative eigenvalue relative to the linearization J at an equilibrium 	x̂
 ŷ�. If J has any positive
eigenvalues, K has too, and the perturbed equilibrium is unstable. If J has all negative eigenvalues,
so does K. Q.E.D.

Proof of Proposition 6: A fixed point of the dynamics (20) in historical frequencies is where
the first order conditions (4) are simultaneously satisfied for both players, that is,

Ay+��′	x�= 0
 Bx+��′	y�= 0�(27)

It is clear that every point that satisfies (27) is a fixed point for the ODE’s in choice probabilities
(21). Furthermore, given the positive definiteness of P	x� and P	y�, established in Proposition 2,
these are the only fixed points of the ODE’s on the interior of SN ×SM .

Turning now to stability properties, the first step is to construct the linearization of the dynamics.
In the case of the noisy replicator dynamics (21) associated with the stochastic fictitious play process
in current choice probabilities, differentiate at a perturbed equilibrium point +̂ = 	x̂
 ŷ� to obtain

dẋ

dx
= !	P ′	Ay+��′	x��+P��′′�=−I

given that P	x�=−	�′′�−1. Equally,

dẋ

dy
= !P	x�A�

Thus the linearization can be written

!

(
P	x� 0
0 P	y�

)(
0 A
B 0

)
− I = !P	+̂�C− I�(28)

Now, to construct the equivalent linearization for the dynamics in historical frequencies, it is enough
to look at the proof of Proposition 2 to see that, for example, dBR	v�/dv can be written as !P	x�A
and hence the linearizations are identical. Looking at the linearization (28), it is clear that its eigen-
values will be of the form !?−1 where ? is some eigenvalue of the matrix PC. Hence, for generic
values of the parameter !, all perturbed equilibria will be hyperbolic. Hence, their local stability
properties will be entirely determined by the appropriate linearization. Q.E.D.

17 It is true that there is another equilibrium at 	x̂
 ŷ
0�. But it is easy to establish using the
arguments in this proof that such an equilibrium will always be unstable.
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Proof of Proposition 7: From Proposition 5, it is possible to work with the simpler system
(18) as it has the same equilibria as the ODE’s (19) associated with perturbed reinforcement learning.
Given (N3), the perturbed replicator dynamics (18) can be rewritten as

ẋ =R	x�	Ay+��′	x��
 ẏ =R	y�	Bx+��′	y���(29)

These equations clearly have fixed points that satisfy the conditions (27) and given the positive defi-
niteness of R	·� these are the only class of fixed points. But these are exactly the first order conditions
that define a fixed point for the perturbed best response dynamics. So for an identical perturbation
function �	x�, a point 	x̂
 ŷ� is an equilibrium for (20) if and only if it is an equilibrium for (18).

In the case of noise (N2), note that the perturbed replicator dynamics can be written

ẋ =R	x�Ay+�	u−Nx�
 ẏ =R	y�Bx+�	u−My�
(30)

where u is a vector of ones, and R	x� and R	y� are replicator operators. The functions �	x� =∑N
i=1 logxi
�	y�=

∑M
i=1 logyi satisfy the two conditions set out in Section 2 to act as suitable pertur-

bations to construct a perturbed best response function. Second, note that

�′	x� ·R	x�= u−Nx�

Combining this with (30), we again obtain (29), but this time with �	x� = ∑
logxi and �′	x� =

	1/x1
 � � � 
1/xN �. Given that R	x� and R	y� are positive definite, the fixed points of the dynamic
again must satisfy the simultaneous equations (27) above. Q.E.D.

Proof of Proposition 8: The method of proof will be to show that the result holds for the
simpler system (18) and then extend the results to (19).

It was shown in the proof of Proposition 7 that the perturbed replicator dynamics for both (N2)
and (N3) could be written in the form (29). At a perturbed equilibrium +̂ = 	x̂
 ŷ� satisfying the
conditions (27), the linearization of these dynamics can be written

J =R	+̂�C+�R	+̂�A	+̂�=
(

0 R	x̂�A
R	ŷ�B 0

)
+�

(
R	x̂��′′	x̂� 0

0 R	ŷ��′′	ŷ�

)
�(31)

Now when �	x�=−∑
xi logxi as it does for the exponential version of fictitious play (5), then first,

P	·�=R	·�, and, second, R	x��′′	x�=−I and similarly R	y��′′	y�=−I . Hence (31) gives the same
linearization (to the positive factor !) as in (28) above.

For more general perturbation functions �	·�, the aim is to show that the eigenvalues of J , the
linearization of the perturbed replicator dynamics, have the same sign pattern at any perturbed
equilibrium as the eigenvalues of the linearization of the perturbed best response dynamics, given
in (28) above. If P	+̂�C has at least one positive eigenvalue for all suitable P , then the perturbed
equilibrium +̂ will be unstable under all perturbed best response dynamics for sufficiently small �.
Hence R	+̂�C has at least one positive eigenvalue and so does J for small enough �. Because PC has
a zero trace, it has either both positive and negative eigenvalues or all with zero real part. Hence, an
equilibrium can only be asymptotically stable for all perturbed best response dynamics if P	+̂�C has
all eigenvalues with real part zero. Now, PC has all eigenvalues with zero real part for all suitable P ,
and nonzero C, if and only if 	A
B� is a rescaled zero sum game (Hofbauer and Hopkins (2000)).
Then B ·A<+ c< ·BB = 0 for some c > 0 and for any B ∈ �N0 and < ∈ �M0 (Hofbauer and Sigmund
(1998, pp. 128–129)). Note that if we multiply B and �′′	y� by the appropriate positive constant, c,
and divide R	y� by c
 J is unchanged. However, now after this rescaling C+CT = 0. Note that as
�′′	·� is negative definite by property (i) in Section 2, so is A. Hence, C+�A is negative definite and
consequently (see, e.g., Hopkins (1999a, Lemma 2)) R	C +�A� has all eigenvalues with real part
negative.

We now extend this result to (19). As was established in the proof of Proposition 5, the stability of
(19) around an equilibrium point will be entirely determined by the first two equations of the system
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(19) and not the third. Hence, it is sufficient to examine the Jacobian matrix derived above (31) but
with the change that R	ŷ� is everywhere replaced by 2̂R	ŷ� for an arbitrary 2̂ > 0. Now, it can be
established (Hofbauer and Hopkins (2000, Lemma 4.4)) that the eigenvalues of R	+̂�C will be equal
to the square roots of the eigenvalues of the matrix R	x̂�AR	ŷ�B. Hence, multiplication of R	ŷ� by
the positive scalar 2̂ will not change the signs of the eigenvalues of R	+̂�C, though it will change their
magnitude by a factor

√
2̂. Thus, if the perturbed equilibrium is unstable under the simpler system

(18) for some � > 0, then one can find a positive �, the critical value depending on 2̂, such that it
is unstable under (19). Second, it is easy to verify that, even if R	ŷ� is replaced by 2̂R	ŷ�, R is still
symmetric positive definite and hence if 	A
B� is a rescaled zero sum game and therefore C+�A
is negative definite, R	C+�A� still has all eigenvalues with real part negative. Q.E.D.

Proof of Proposition 10: Let 9kn = qkn+1 − qkn , that is, the increment to a player’s propen-
sities. For example, under updating rule (13), given the event ij , then 9Ain = aij + �. Then, nor-
malization involves that after updating every propensity of player k is multiplied by a factor
	Q0+nC+C�/	Qk

n+
∑
i 9

k
in�. One can check that 	xn
 yn� are unchanged under this transformation,

but that each Qk
n+1 is renormalized to Q0 +nC+C. There is therefore a unique step size equal to

1/	Q0+nC�. The additional factor 2 is now constant and equal to one. Thus we can discard the third
equation from (26). Take what is left, average over all possible events ij , and one now obtains (18).
The global stability of 	x̂
 ŷ� under (18) was established in Proposition 9. This is sufficient to prove
convergence with probability one of the associated stochastic process given a step size of O	1/n�.
See, for example, Benveniste, Métivier, and Priouret (1990, p. 46 Corollary 6) or Benaïm and Hirsch
(1999, Theorem 3.3). Q.E.D.
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