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Abstract
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1 Introduction

Recent work on learning is marked by the integration of theory and experimental in-
vestigation. There has been significant recent success in explaining observed laboratory
decision-making through the use of learning theories (for example, Camerer and Ho,
1999; Erev and Roth, 1998). This has spurred theorists to do new work that advances
in our understanding of how learning models work. This field in surveyed in Fudenberg
and Levine (1998). However, there have been fewer experiments designed explicitly to
test learning theory’s predictions.1

In this paper, we examine one particularly striking implication of learning theory:
there are games in which play should never converge. We investigate experimentally two
games that possess a unique Nash equilibrium in mixed strategies. In one game, learning
theory predicts convergence to the mixed strategy equilibrium. In the other game, theory
predicts that the equilibrium is unstable. That is, if the learning model we consider,
stochastic fictitious play, accurately predicts the behavior of experimental subjects, their
play should never settle down but rather should continue to cycle. We ran two treatments
for both games, one with high and one with low monetary payoffs. Theory suggests
that higher payoffs should increase divergence in the unstable game, but make play
closer to equilibrium in the stable game. Our experiments reveal limited support for
these hypotheses. In all treatments, average play seems to converge to close to Nash
equilibrium. However, strong cycles that follow simple best response patterns are always
detectable in the data. While the observed behaviour is not consistent with classical
fictitious play, it gives greater support for stochastic fictitious play with a relatively
short memory.

The first theoretical result of this type was due to Shapley (1964), who demonstrated
that there existed 3× 3 games in which fictitious play would not converge. Instead, the
empirical frequencies of the strategies played would continuously cycle. Shapley’s origi-
nal result has been extended and generalised over the years. In particular, Hofbauer and
Hopkins (2005) show that for fictitious play’s modern descendent, stochastic fictitious
play, most mixed strategy equilibria are unstable. Furthermore, under the traditional
assumption that players’ beliefs are based on average past behaviour by opponents, di-
vergence occurs both for marginal frequencies, that is players’ mixed strategies, and
for empirical frequencies. Thus, for many games with no pure strategy equilibria, one
should not expect Nash equilibrium play to emerge.

Benäım, Hofbauer and Hopkins (2005) recently have analyzed “weighted” stochastic
fictitious play where agents place greater weight on more recent experience. This new
research suggests the difference between divergence from and convergence to equilibrium
may not be as clear cut as with classical assumptions on players’ beliefs. Specifically, with

1Exceptions include Van Huyck et al. (1994), Huck, Normann and Oechssler (1999), Tang (2001),
Duffy and Hopkins (2005).
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weighted beliefs average behaviour always converges, even when the only equilibrium is
unstable. It is only players’ actual mixed strategies, which are not directly observable
in experiments, that are predicted to diverge in the unstable case.2 Thus, we should not
be too surprised if average behaviour is close to equilibrium in both stable and unstable
treatments. We will have to look more closely to distinguish differences between them.

What we find is that there are simple best response cycles clearly present in all
treatments. By this we mean that subjects seem often to play a best response to the
last choice of their opponent in that such choices are statistically significantly more
common than other patterns of play. This results in certain strategy profiles being
chosen far more often than if each player randomised independently of her opponent.
This correlation does seem to be stronger in the unstable treatments than in the low
payoff stable treatment, but correlation in the high payoff stable treatment on some
measures is higher than in the unstable treatments. Thus, while one would expect
cycling behaviour to be more prominent in the unstable games, even this has limited
support in the data. In summary, while the apparent convergence of average behaviour
seems to suggest equilibrium play, the high level of correlation in play argues against it.
Learning theory, which would predict continued correlation in the unstable treatments,
cannot easily explain the correlation present in the stable treatments. The observed
behaviour is not well captured by any theory.

The stability or instability of mixed equilibria is not of purely theoretical interest.
In fact, there are a number of important economic models where equilibria are mixed
and therefore the same issues arise. For example, while there are a number of competing
theoretical models that seek to explain price dispersion as an equilibrium phenomenon,
perhaps the most popular has been Varian (1980). In this model, there are only mixed
strategy equilibria.3 Price dispersion is therefore a consequence of sellers randomising
over prices. One conclusion of both theoretical and experimental work on learning is that
convergence to mixed strategy behavior is difficult. There is therefore reasonable doubt
whether actual price behaviour will be similar to the equilibrium behaviour predicted
by such models.

Testing these models with data has happened only recently. Cason and Friedman
(2003) and Morgan, Orzen, and Sefton (2006) provide important tests of comparative
static predictions in the experimental laboratory. The advantage to these studies is that
they are realistic; sellers have many prices from which to choose. The disadvantage
is that the multiplicity of choices makes individual decisions difficult to analyse. Our
project differs from the existing literature by, first, simplifying the framework by reducing
the size of the strategy set so that we can, second, formally test qualitative predictions of
learning theory as an explanation of behaviour that emerges. Thus, we study two-player
games with only three actions available to each player; for those familiar with economics

2This seems broadly consistent with the analysis of Cason, Friedman and Wagener (2005) of data
from experiments on a game with an equilibrium only in mixed strategies.

3This model has also been the basis of more recent work, for example, Baye and Morgan (2001).
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experiments and/or children’s games they are related to the game “rock-paper-scissors”.

In the experiments, subjects were randomly and anonymously matched to play one
game 100 times. The length of repetition is required to give every chance for learning
to converge. Each player always plays against the same opponent. This contrasts with
many other experiments in which a random matching protocol is implemented.4 We
chose constant pairing so as to be able to investigate individual learning. In a situation
where a group of players are repeatedly randomly matched, the behaviour of every
subject is linked to the behaviour of every other. In contrast, in constant pairing it is
possible to treat the behaviour of an individual pair as being independent of the actions
of other subjects.

The reason often advanced against common pairing is that, in such circumstances,
subjects will play repeated game strategies, not adjust myopically as learning theory
suggests. In some games, such as the prisoner’s dilemma, this has been documented to
occur, but how widespread is this phenomenon is unclear. In order to reduce collusion,
each subject was only informed of her own payoff matrix, but not that of her opponent.
Note that knowledge of others’ payoffs is not required by either of the two most popular
learning models, reinforcement learning and stochastic fictitious play. As we will see,
although these games were not zero sum and so there were potential gains to collusion
in all the games, learning theory describes play well. That is, constant pairing in itself
does not invalidate the use of adaptive learning theory.

In the first experimental treatment the game is a rescaled constant sum game. That
is, it is a linear transformation of a constant sum game. In this case stochastic fictitious
play predicts convergence to Nash equilibrium (i.e., the equilibrium is “stable”). This
means that subjects’ play should eventually cease to cycle. In the second treatment only
the game payoffs are altered so that the equilibrium is unstable under learning and cyclic
behaviour should be persistent. Thus the next action should become predictable from
one round to the next. The design includes two stable and two unstable experimental
manipulations. The two unstable games are essentially the same game, but with different
levels of monetary incentives. This is because, as we will see, theory predicts that
instability of Nash equilibrium under learning depends on the level of incentives in a
game. The two stable games also only differ in terms of incentives, with the aim of
examining the effect of incentives on the precision of equilibrium play.

2 RPS Games and Edgeworth Cycles

The children’s game of Rock-Paper-Scissors (RPS) is well known around the world. But
it is also an interesting metaphor for various price setting games (Hopkins and Seymour

4For example, Tang (2001), which otherwise is perhaps the closest study to our current one, uses
random matching.
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(2002); Cason, Friedman and Wagener (2005)). What they have in common with RPS
is that there is a cycle of best responses. In RPS, Rock beats Scissors which beats Paper
which beats Rock. In a number of different oligopoly games, the best response to a
high price is a medium price to which the best response is a low price to which the
best response is a high price, restarting the cycle. This phenomenon was first noted by
Edgeworth (1925), in the context of price-setting oligopolists under capacity constraints.
But the same best response cycle is present, as Hopkins and Seymour (2002) point out,
in a number of models of price dispersion, including that of Varian (1980). The fact
that there is a cycle of best responses indicates that there can be no equilibrium in pure
strategies, the only Nash equilibria that these games possess are mixed.

In this paper, we study a number of simple games that have these characteristics.
We chose two two player 3 × 3 games. The first game which we call AB is a game of
opposed interest. Player 1 would like to play along the diagonal, whereas Player 2 wants
to avoid the diagonal.

AB :

Left Centre Right
Up 323, 0 17, 432 153, 108

Middle 289, 108 323, 0 0, 405
Down 85, 324 187, 108 187, 0

(1)

This game’s unique Nash equilibrium consists of the first player placing the following
weights (17, 20, 24)/61 ≈ (0.279, 0.328, 0.393) on her three strategies and (63, 65, 116)/244 ≈
(0.258, 0.266, 0.475) being the corresponding probabilities for Player 2. Equilibrium pay-
offs are approximately 161 for Player 1 and 163 for Player 2. The second game BB is
constructed by giving the payoffs of Player 2 to both players.

BB :

Left Centre Right
Left 0, 0 108, 432 324, 108
Centre 432, 108 0, 0 108, 405
Right 108, 324 405, 108 0, 0

(2)

This has a unique mixed strategy equilibrium with relative probabilities (17, 20, 24)/61 ≈
(0.279, 0.328, 0.393), which gives an equilibrium payoff of approximately 163.

Shapley (1964) was the first to offer the example of games where learning failed to
converge. Those games were also 3× 3 games with a cycle of best responses. However,
what more recent research indicates (Ellison and Fudenberg (2000); Hofbauer and Hop-
kins (2005)) is that in some games of this class, the mixed equilibrium is unstable under
learning and in others, it is stable. Indeed, while the games given above might seem
quite similar, they have quite different theoretical properties. The equilibrium of the
first game AB is predicted to be stable under learning, the equilibrium of the second
BB is potentially unstable.

Whether it is actually unstable depends on whether incentives are sufficiently sharp
(we discuss this issue in detail in Section 4). With that question in mind, we introduce a
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new game based on BB, but with higher incentives. In fact, it is a simple multiple of this
game. The game B̂B̂ is BB multiplied by 16/9. Again the unique Nash equilibrium is
mixed with probabilities (17, 20, 24)/61 ≈ (0.279, 0.328, 0.393), with equilibrium payoff
now equal to approximately 290.

B̂B̂ :

Left Centre Right
Left 0, 0 192, 768 576, 192
Centre 768, 192 0, 0 192, 720
Right 192, 576 720, 192 0, 0

(3)

Similarly we can construct ÂB̂ by taking the second player’s payoffs from B̂B̂ and
multiplying the Amatrix by a suitable constant. The following game has the same mixed
strategy equilibrium as AB but equilibrium payoffs of approximately 284 for player 1
and 290 for player 2.

ÂB̂ :

Left Centre Right
Up 570, 0 30, 768 270, 192

Middle 510, 192 570, 0 0, 720
Down 150, 576 330, 192 330, 0

(4)

All these games have cycles of best responses and no equilibrium in pure strategies.
Edgeworth (1925) was the first to notice that the Cournot adjustment process could lead
to cycles in behaviour. For the games we consider here also, if each player simply plays
the best response to the previous choice of her opponent then we would have perpetual
cycles. For the game AB there are six strategy profiles where only one player has an
incentive to deviate and they are joined by the following cycle (where the symbol Á
indicates a return to the first state of the cycle):

UL→ UC →MC →MR→ DR→ DL Á (5)

In the three remaining profiles, both players have an incentive to deviate and the profiles
are connected by this cycle:

UR→ DC →ML Á (6)

For the game BB, there are equivalent asymmetric,

LC → RC → RL→ CL→ CR→ LR Á (7)

and symmetric cycles,
LL→ CC → RR Á (8)

As we will see, there is some evidence for these cycles being apparent in experimental
play.
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3 Convergence to Mixed Strategy Equilibrium

In both the existing empirical and theoretical literature on mixed strategy equilibria,
there are two principal criteria for determining whether players do actually play a mixed
strategy equilibrium. For example, Foster and Young (2003) make the distinction be-
tween what they call convergence in time average and convergence in behaviour. In the
experimental literature, this form of distinction was first raised by Brown and Rosenthal
(1990).

Take the game BB of the previous section. Suppose indeed that the players play
a simple best response to the play of their opponent in the previous period. Play will
then follow one of the cycles identified above. After many periods, the time average
of play, simply the number of times each action is chosen divided by the total number
of decisions, for each player will be close to (1/3, 1/3, 1/3). This approximates the
actual mixed strategy equilibrium. Thus, one could say that play had converged in time
average to (close to) the Nash equilibrium.

However, there are at least two ways that play has not converged in behaviour. First,
if a player was choosing at random each period using the equilibrium probabilities,
then the previous period’s choice would have no effect on choice this period. Yet, if
players are following a simple Edgeworth cycle, then their choices would in fact follow
a deterministic cycle (in the asymmetric cycle, C is followed by L which is followed by
R). There would be high serial dependence, rather than serial independence. Second,
notice that in the asymmetric cycle of BB, players never choose to play any of diagonal
cells, LL, CC or RR. If players randomised independently of each other, this would not
be possible. Instead, the best response cycle induces a high degree of correlation in play
across opponents.

Since the influential work of Brown and Rosenthal (1990), most researchers would
only accept that play had converged in behaviour to mixed Nash equilibrium if there was
neither serial correlation in individual play, nor correlation across the play of opponents.
Obtaining such results experimentally has been difficult. Brown and Rosenthal examined
data from experiments by O’Neill (1987) and found that although there was evidence of
convergence in time average, there was also considerable evidence of correlation. Walker
and Wooders (2001) report more positive results from field data on professional tennis
players, a context where play was for extremely high stakes. This motivates the idea
that play by subjects should be less correlated when the monetary payoffs are higher.

4 Theoretical Predictions

In this section we introduce our learning model. Stochastic fictitious play was introduced
by Fudenberg and Kreps (1993) and is further analysed in Benäım and Hirsch (1999) and
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Ellison and Fudenberg (2000). It has been applied to experimental data by Cheung and
Friedman (1997) and Battalio et al. (2001) among others. We will see that under the
classical case of fictitious play beliefs, where every observation is given an equal weight,
that stochastic fictitious play gives clear predictions. Specifically, some mixed equilibria
are stable, others unstable and the behaviour of learning in the two different cases is
quite different. Recently, variants and generalisations of stochastic fictitious play, such
as the EWA learning of Camerer and Ho (1999), have been introduced. We go some
of the way to accommodate this by also considering weighted stochastic fictitious play,
which assumes that players place greater weight on more recent events. In this case,
the difference between the stable and unstable cases is significantly weakened, with very
little difference in terms of average play. We further consider other learning models in
Section 4.4.

Stochastic fictitious play embodies the idea that players play, with high probability,
a best response to their beliefs about opponents’ actions. Imagine that one of the 3× 3
games introduced in the previous section was played repeatedly by the same pair of
players at discrete time intervals n = 1, 2, 3, .... Let the payoff matrix for player i be Ai.
We suppose that both players have beliefs about the probability of different strategies
being chosen by their opponent. We write the beliefs about player i as (bi1n, b

i
2n, b

i
3n),

where in this context bi1n is j’s subjective probability in period n that her opponent i
will play his first strategy in that period. That is, bin ∈ S3 where SN is the simplex
{x = (x1, ..., xN) ∈ IRN : Σxi = 1, xi ≥ 0, for i = 1, ..., N}. This implies that the vector
of expected payoffs of the different strategies of player i, given her beliefs about j, will
be uin = Aibjn where Ai is player i’s payoff matrix. We will write bn = (b1n, b

2
n) as a

summary of the two players’ beliefs.

We assume that each period, each player chooses one of her actions, randomly and
independently. Each period, each player receives an independent random shock to her
payoffs, and chooses the action with the highest perturbed payoff. We have

ũin = uin + �in/β = Aibjn + �in/β (9)

where uikn is Player i’s expected payoff to strategy k given the beliefs over her oppo-
nent’s actions in period n. The parameter β is a precision parameter, which scales the
noise. Importantly, we assume that �in is a vector of random variables, identically and
independently distributed. Let the probability that agent i plays strategy k in period n
be pikn. If each �ikn is distributed according to the double exponential or extreme value
distribution, it is well known that the probability of taking each action will be given by
the exponential or logit rule,

pikn =
expβuiknP3

m=1 expβu
i
mn

= φ(bjn). (10)

Note that for the logit rule, if β is large, the strategy with highest expected payoff is
chosen with probability close to one. If β is (close to) zero, then each strategy is chosen
with probability (close to) one third, irrespective of the relative expected payoffs.
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As is now well known, the limit points of stochastic fictitious play are not the Nash
equilibria of the underlying game. Rather, they are perturbed equilibria known as quan-
tal response equilibria (QRE) or logit equilibria. Specifically, a perturbed equilibrium p̂
satisfies

p̂i = φ(p̂j), p̂j = φ(p̂i) (11)

When the parameter β in (10) is large, the set of QRE, will be close to that of Nash
equilibria (see McKelvey and Palfrey (1995)). In the class of games we look at which
have a unique mixed strategy equilibrium p∗, we would expect a QRE that was a close
approximation to p∗ when β is large. But note if the logit choice rule (10) is an accurate
reflection of subject behaviour, then multiplying all payoffs by a constant should have
exactly the same effect as a similar increase in β. Hence, this theory suggests that
average play should be closer to Nash equilibrium when payoffs are large.

One problem in experimental work is that we cannot directly observe either players’
beliefs bn or their intended mixed strategies pn. One thing that can be observed is which
choices are actually made. We will therefore find it useful to consider the actual play,
defined as

Xi
n = (I

i
1n, I

i
2n, I

i
3n) (12)

where Iimn = 1 if player i plays strategy m at time n, else Imn = 0. That is, the vector
X i

n simply records the choice of player i in period n. We will also consider the historical
or time average of past play which evolves according to

himn+1 = himn +
I imn − himn

n
, for m = 1, ..., 3 (13)

where again Iimn = 1 if player i plays strategy m at time n, else Imn = 0. Of course, in
the first period we have no history, so hi1 = X i

1 for i =1,2.

Thus, to summarise, we have bin, player j’s beliefs about what i will do in period
n. We have pin, which is i’s actual mixed strategy in period n. The vector X i

n gives i’s
choice in period n, and hin the history of play prior to the period.

4.1 Classical Fictitious Play Beliefs

One possible method of forming beliefs is the fictitious play assumption that beliefs are
based on the average of past play. That is, suppose a player observes his opponent i
plays action k in period n. Then,

bimn+1 = bimn +
I imn − bimn

n+ t
, for m = 1, ..., 3 (14)

where I imn = 1 if m = k, else I imn = 0. The expression for beliefs allows for an initial
belief bi1 which is non-zero and has weight t ≥ 0. Note, consequently, there is a difference
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between bin and hin: beliefs are based on past play but they are not identical. Subjects
may come to an experiment with priors over their opponent’s play. That is, specifically

bimn+1 =
Iimn + Iimn−1 + .....+ Iim1 + tbim1

n+ t
.

Of course, however, these beliefs are what has been called in the literature “asymp-
totically empirical”, or in other words, asymptotically any priors are washed out by
experience and so, if limn→∞ bin exists then limn→∞ hin exists and is equal.

We now give two simple results due to Ellison and Fudenberg (2000) and Hofbauer
and Hopkins (2005), whose predictions we test experimentally. We are interested in
the class of games that possess a fully-mixed equilibrium p∗ = (p1∗, p2∗). For the first
result, we need to introduce the concept of a rescaled zero sum game. A two player
zero sum game is one where A1 = −(A2)T . A rescaled zero sum game (Hofbauer and
Sigmund (1998, 11.2)) is a game that can be made into a zero sum game by a linear
transformation, that is, multiplying the payoff matrices by positive constants and/or
adding constants to each column. The game AB is an example of such a game. Here,
the learning process converges to the perturbed equilibria with probability one (omitted
proofs are in the Appendix) in both time average and in behaviour.

Proposition 1 Suppose the game is a rescaled zero sum game. Then, there is a unique
perturbed equilibrium point p̂ satisfying the equilibrium conditions (11). And, for sto-
chastic fictitious play (choice rule (10) and updating rule (14)), we have

Pr( lim
n→∞

bn = p̂) = Pr( lim
n→∞

pn = p̂) = Pr( lim
n→∞

hn = p̂) = 1.

Given the influential critique of Brown and Rosenthal (1990), it is important to be
clear about the nature of this convergence. As they pointed out, for play to be close on
average to equilibrium is necessary but not sufficient for true convergence to equilibrium.
Here, however, not only does average play, hn in current notation, converge to equilib-
rium, but the actual mixed strategies of both players pn do so as well. Furthermore,
the beliefs of each player, which under fictitious play assumptions are just past average
play, must also converge to that point. Finally, Brown and Rosenthal argued that if
experimental subjects were truly playing a mixed equilibrium there should be no serial
correlation in play. Here, since the choice probabilities converge to a constant and as
the random shocks assumed in (9) are iid, so must be each player’s choices. That is, we
have the following corollary which implies in rescaled zero sum games, under stochastic
fictitious play, there is convergence to a mixed strategy equilibrium that satisfies even
the strict criteria of Brown and Rosenthal (1990).

Corollory 1 Asymptotically, in a rescaled zero sum game, play X i
n for each player will

be an iid sequence.

9



We have a corresponding result on instability.

Proposition 2 Suppose the game is not a rescaled zero sum game and is symmetric so
that A1 = A2. Let x̂ be a perturbed equilibrium point corresponding to a completely mixed
Nash equilibrium. Then, for stochastic fictitious play (choice rule (10) and updating rule
(14)), there is a β̂ > 0 such that for all β > β̂,

Pr( lim
n→∞

bn = p̂) = Pr( lim
n→∞

pn = p̂) = Pr( lim
n→∞

hn = p̂) = 0.

That is, in symmetric games mixed strategy equilibria are unstable. This implies
that, as the games BB and B̂B̂ are symmetric and only have equilibria in mixed strate-
gies, learning should not converge at all in these games. Notice that this applies both to
mixed strategies and to beliefs or equivalently, average play. That is, the time average
of play should also diverge from the perturbed equilibrium. In this class of games, we
have behaviour which is the diametric opposite to the previous case.

There is one caveat, however. This latter result requires that the parameter β be
sufficiently large. Note that if β were zero, the exponential choice rule in effect requires
players to choose entirely at random. Hence, if β is very small, then the perturbed
equilibrium will be at approximately (1/3, 1/3, 1/3) irrespective of the game payoff
matrix and this equilibrium will be asymptotically stable, as noise swamps the payoffs.
One important consideration, however, is that given the way the perturbed best response
choice rule is constructed, a proportional increase in all payoffs is equivalent to an
increase in β. In particular, given the exponential choice rule (10), if all expected payoffs
uin were doubled, this would have exactly the same effect on the choice probabilities and
the stability properties of an equilibrium as doubling β (note that adding a constant to
all payoffs, in contrast, has no effect at all). Thus, a way of translating Proposition 2
into an empirical hypothesis is that the mixed equilibrium of a symmetric game will be
unstable, provided incentives are high enough.

4.2 Weighted Stochastic Fictitious Play

Up to now, it has been assumed that all observations are given equal weight. This has the
effect that as the number of periods progresses, the marginal impact of new experiences
upon behaviour decreases, asymptotically approaching zero. As we have seen this has a
certain mathematical convenience. However, both Erev and Roth (1998) and Camerer
and Ho (1999) find that experimental data seems to support the hypothesis that agents
discount previous experience, which implies that learning will not come to a complete
halt even asymptotically (as Cheung and Friedman (1997) point out, disaggregated
data indicates that the level of discounting varies enormously between individuals). It
has been hypothesised that this form of learning would be useful in non-stationary
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environments but this claim has received little analysis. In any case, learning with this
type of belief formation is now often referred to as weighted fictitious play.

Again, suppose a player observes that his opponent i plays action k in period n. But
now

bimn+1 = bimn + (1− δ)(Iimn − bimn) = (1− δ)
¡
I imn + δI imn−1 + ...+ δn−1Iim1

¢
+ bim1 (15)

for m=1,...,3, where again I imn = 1 ifm = k and zero otherwise. The parameter δ ∈ [0, 1)
is a recency parameter. More recent experiences are given greater weight. In the extreme
case of δ = 0, only the last experience matters (“Cournot beliefs”). In contrast, as δ
approaches 1, beliefs approach the previous classical case, where all experience is given
equal weight.

We are able to show the following. Take any 2 player game. Then, stochastic fictitious
play, with memory parameter δ strictly less than 1, is ergodic. That is, irrespective of
the game being played, the time average of play must converge. This is in contrast to
the classical results with fictitious play beliefs, where in some games, the time average
of play does not converge.

Proposition 3 The Markov process defined by weighted stochastic fictitious play is er-
godic, with an invariant distribution νδ(b) on SN × SM . This implies that

Pr( lim
n→∞

hn = p̃) = 1

where p̃ ∈ SN × SM =
R
p(b) dνδ(b).

That is, for a given game, whatever the initial conditions, the time average will
always converge to the same point p̃. The weakness of this result is that it does not
say anything about p̃, the point to which the time average converges. However, in some
cases it is possible to characterise some aspects of the invariant distribution νδ(b).

The first conclusion we can draw from the theory of stochastic approximation is that
in the stable case the limit distribution will be in the following sense clustered around
the perturbed equilibrium p̂. The second is that when the equilibrium is unstable, the
distribution places no weight near the equilibrium.

Proposition 4 Let ν1 = limδ→1 νδ and p̂ be a perturbed equilibrium satisfying (11).
Then for any rescaled zero sum game p̂ is unique and

ν1(p̂) = 1;

What this implies is that for the games AB or ÂB̂, for values of δ close to one,
marginal frequencies pn and the long term time average hn will be close to p̂. However,
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even in this stable case, play will not satisfy the strict conditions of Brown and Rosenthal
(1990), in that it will not be iid. Specifically, the probability each period that a player
plays a particular action will be an independent draw, but from a changing distribution.

Proposition 5 At any time under weighted stochastic fictitious play with δ ∈ [0, 1),
play Xn is not independent of play in the previous period Xn−1.

For the games BB and B̂B̂, given our earlier negative result (Proposition 2), one
might expect to be able to provide a similar result on instability under weighted sto-
chastic fictitious play. However, unfortunately this is not the case, as existing technical
results in stochastic approximation theory are weaker in this case.5 However, the nu-
merical analysis in the next section demonstrates that for a sufficiently high precision
parameter β, the mixed equilibrium of BB is indeed unstable.

4.3 Numerical Analysis of the Games in the Experiments

In this section we try to apply the above theoretical results more closely to the actual
payoff matrices used experimentally. We have seen that while the stability of the equi-
librium of the game AB is independent of the level of incentives, the equilibrium of the
games BB and B̂B̂ will be unstable only if the parameter β is higher than some critical
level β̂. This threshold level β̂ depends critically on the level of incentives. As B̂B̂ offers
higher incentives than BB, the critical level β̂ will be lower in B̂B̂ than in BB.

Note that it is possible to calculate the critical β̂ numerically, and in the the case of
the game BB, we find that β̂ ≈ 0.0125.6 As payoffs in B̂B̂ are 16/9 those in BB, β̂ for
B̂B̂ will be approximately 0.007 (0.0125×9/16 ≈ 0.007). Battalio et al. (2001) estimate
the current model of stochastic fictitious play from experimental data and find values
of β (λ in their notation) from 0.14 to 0.3, when payoffs are in cents per game. To be
directly comparable, we have to divide their estimates by 10, as in our experiments only
one out of 10 games were paid. Furthermore, the subjects in our experiments were paid
in Canadian dollars. There are arguments that the real exchange rate is much closer to
1:1, but using the nominal exchange rate (about 1:1.4 at the time the experiments were
carried out), converting their estimates to our scale, they range from 0.01 to 0.021.

5Mixed equilibria of games such as BB are saddlepoints under stochastic fictitious play. Recent
results on unstable equilibria under stochastic processes with a constant step due to Benäım (1998) and
Fort and Pages (1999) only apply to saddlepoints under special conditions.

6We first find an analytic expression for the linearisation of the dynamics (17) given in the Appen-
dix. We fix a certain value for β, we solve numerically the equations (11) to calculate the perturbed
equilibrium p̂ corresponding to that level of β, substitute these values into the linearisation, and then
calculate the eigenvalues numerically. If all eigenvalues are negative, which they will be for low values
of β, we raise the value of β and repeat.
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This highlights an important issue. The level of incentives commonly used in exper-
iments may not in fact be adequate to generate unstable behaviour. Specifically, the
game BB, given the parameter estimates of Battalio et al. (2001), may not generate un-
stable behaviour, even if subjects play according to stochastic fictitious play. However,
our approximate calculations indicate the game B̂B̂ should provide adequate incentives.

When beliefs exhibit recency, that is, δ < 1, we know that the learning process is
ergodic, and that its time average exists. Hence, we know also that the time average
of any simulation will converge to that time average. We conclude this section with
some numerical simulations of stochastic fictitious play. The following table gives time
averages of the first player’s choices (h11n, h

1
2n) where n is sufficiently large for convergence

to 3 decimal places (between 500 and 100,000 periods for different parameter values) for
the game AB (the frequency of the third strategy is omitted for reasons of space but
can be easily calculated by subtracting the sum of the figures given from 1). The final
column gives the quantal response equilibrium (QRE) for the corresponding value of the
precision parameter β. This is calculated independently by numerical solution to the
equilibrium equations (11).

β δ = 0 δ = 0.5 δ = 0.85 δ = 0.999 p̂
0.001 (0.334, 0.341) (0.330, 0.346) (0.331, 0.342) (0.330, 0.341) (0.330, 0.343)
0.0125 (0.314, 0.400) (0.295, 0.398) (0.293, 0.389) (0.294, 0.383) (0.294, 0.384)
0.1 (0.330, 0.341) (0.328, 0.342) (0.273, 0.381) (0.278, 0.340) (0.278, 0.339)
0.5 (0.333, 0.333) (0.333, 0.333) (0.266, 0.387) (0.278, 0.330) (0.278, 0.330)

Similarly, for Player 2 in game AB we have:

β δ = 0 δ = 0.5 δ = 0.85 δ = 0.999 p̂
0.001 (0.328, 0.336) (0.330, 0.335) (0.325, 0.339) (0.324, 0.338) (0.326, 0.338)
0.0125 (0.276, 0.326) (0.250, 0.329) (0.255, 0.317) (0.256, 0.314) (0.256, 0.313)
0.1 (0.329, 0.331) (0.327, 0.327) (0.255, 0.280) (0.248, 0.274) (0.250, 0.273)
0.5 (0.333, 0.333) (0.333, 0.333) (0.261, 0.266) (0.255, 0.269) (0.256, 0.268)

The numerical simulations conform with the theoretical predictions. See that, for
very short memory and for β reasonably large, the time average is effectively at the
centre of the simplex, that is (1/3,1/3) which is what would be produces by a simple
Edgeworth cycle. However, for δ close to 1, the time average of play is extremely close
to the perturbed equilibrium, given in the final column. And, consequently, for the
precision parameter β high, the time average is close to the Nash equilibrium.

We then repeat the exercise for the game BB.
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β δ = 0 δ = 0.5 δ = 0.85 δ = 0.999 p̂
0.001 (0.325, 0.340) (0.327, 0.337) (0.326, 0.337) (0.328, 0.338) (0.327, 0.338)
0.0125 (0.322, 0.338) (0.300, 0.344) (0.295, 0.342) (0.295, 0.344) (0.295, 0.343)
0.1 (0.333, 0.333) (0.308, 0.328) (0.299, 0.343) (0.296, 0.344) (0.281, 0.332)
0.5 (0.333, 0.333) (0.333, 0.333) (0.297, 0.338) (0.296, 0.344) (0.277, 0.329)

Notice the difference here. For β ≤ β̂ ≈ 0.0125 and when δ is close to one, the time
average is close to the QRE, p̂. However, this is no longer true when β > β̂, as then
this equilibrium is unstable. Benäım, Hofbauer and Hopkins (2005) have recently found
that, when a mixed strategy is unstable, the time average can still converge to a point
that is close but not identical to the QRE (compare for β ≤ β̂ and δ close to 1 where
the time average hits the perturbed equilibrium exactly). This point, which they call
the TASP, can be calculated for the game BB to be (0.295, 0.344, 0.361). One can see
that the simulations show the time average of play to be closer to the TASP than the
QRE for β large and δ close to one.

4.4 Alternative Learning Models

Stochastic fictitious play is obviously not the only learning model. We briefly outline
here some alternatives and whether they offer qualitatively different predictions for the
games we consider.

First, there has been one other stochastic learning model that has been popular in
the recent literature. The use of reinforcement learning in explaining experimental data
has been advocated by Erev and Roth (1998). It can be shown that mixed equilibria of
symmetric games are also repulsive for reinforcement learning (Hopkins (2002), Hofbauer
and Hopkins (2005)), and that mixed equilibria of rescaled zero sum games are locally
attractive for a perturbed form of reinforcement learning (Hopkins (2002)). That is,
reinforcement learning makes qualitatively similar predictions to stochastic fictitious
play for the games that we test experimentally.

Second, there are two learning models that have different convergence properties from
stochastic fictitious play. One is due to Hart and Mas Colell (2000). In their model,
the time average of play always converges to a correlated equilibrium of the game in
question. There are no firm predictions about marginal frequencies. What does this
imply for the games analysed here? The only correlated equilibrium for AB is the Nash
equilibrium. In contrast, BB has many correlated equilibria and so the prediction of
this model is not precise. However, one correlated equilibrium of BB is one that has the
same frequencies as the asymmetric Edgeworth cycle, that is, equal probabilities on the
states LC,RC,RL,CL,CR,LR. So, the model of Hart and Mas Colell is not necessarily
in conflict with the weighted version of stochastic fictitious play. However, in predicting
that the time average of play will converge in BB, it differs from fictitious play under
classical beliefs.
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Finally, Foster and Young (2003) introduce a learning model that always converges
to Nash equilibrium. More precisely, there are parameter values of the model, such
that players’ mixed strategies will be close to Nash equilibrium for most of the time.
It thus offers a different prediction from stochastic fictitious play, whether beliefs are
weighted or classical, which predicts that players’ mixed strategies should diverge from
equilibrium in game BB.

4.5 Summary of Predictions from Theoretical Findings

Under fictitious play beliefs, where agents place an equal weight on all previous obser-
vations, the main predictions from stochastic fictitious play for the games conducted
experimentally are the following.

1. (a) In games AB and ÂB̂, mixed strategies and the time average of play should
converge to the perturbed equilibrium. The perturbed equilibrium will be
closer to Nash equilibrium in game ÂB̂ then in game AB. Any serial depen-
dance should disappear with time.

(b) Theory predicts that for high enough incentives, in games of type BB, and
B̂B̂, the equilibrium is unstable. Since incentives are higher in B̂B̂ than in
BB, the dispersion of mixed strategies and the time average of play away
from the mixed equilibrium and the presence of best response cycles should
be no smaller in B̂B̂ than in BB than in AB or in ÂB̂. There should be
growing cycles in the time average of play.

Under beliefs with recency where agents place a greater weight on more recent ob-
servations, the main predictions from stochastic fictitious play for the games conducted
experimentally are the following.

2. (a) In games AB and ÂB̂, historical frequencies should converge to a point close
to the perturbed equilibrium. Mixed strategies do not converge to a point but
remain close to the perturbed equilibrium. Serial dependence is decreasing
over time but persistent.

(b) Theory predicts that for high enough incentives, in games of type BB and
B̂B̂, the equilibrium is unstable. Since incentives are higher in B̂B̂ than in
BB, the dispersion of mixed strategies away from the mixed equilibrium and
the presence of best response cycles should be no smaller in B̂B̂ than in BB
than in AB or in ÂB̂. However, in both games the time average of play
converges to a point, close to but not identical to the perturbed equilibrium.

Finally, allowing for the possibility that the theory does not predict behaviour, we
put forward two alternative hypotheses. The first is simply that subjects will play
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equilibrium in all the games considered. Second, there is a weaker hypothesis which
assumes that subjects cannot be expected to play mixed Nash equilibrium precisely. For
example, the learning theory of Hart and Mas-Colell (2000) concerns convergence of time
average alone but is silent about convergence in behaviour. This allows for the correlation
effects discovered by Brown and Rosenthal (1990) and/or time averages different from
Nash equilibrium as implied by QRE theory (McKelvey and Palfrey (1995)). If either
hypothesis is correct, it would imply that the learning theory we consider does not help
to explain the data.

3. (a) Play converges to equilibrium in both AB and BB treatments independent
of the level of incentives.

(b) Play converges approximately to equilibrium both in time average but not
in behaviour in all treatments. Hence, there are no substantial differences
between the AB and BB treatments.

5 Experimental Design and Procedures

We ran four different experimental treatments labelled BB, B̂B̂, AB and ÂB̂. We often
refer to BB and B̂B as the low payoff and high payoff unstable treatments, and AB
and ÂB̂ as the low payoff and high payoff treatments respectively. Thirty-four subjects
(i.e., seventeen subject pairs) participated in each of BB and B̂B̂, and thirty subjects
(i.e., fifteen subject pairs) participated in each of AB and ÂB̂. No subject participated
in more than one session.

All the rules of the game were common knowledge and subjects were given complete
information regarding their opponent’s behavior. In the upper-right corner of their
computer screen the subjects were presented with a 3 × 3 payoff matrix called the
earnings table. At the left side of the screen they could scroll through the entire history
of their and their opponent’s decisions. At the bottom of the screen they were shown
their and their opponent’s past frequency and proportion of play of each of the three
stage-game strategies. We included these summaries of play to minimize forgetting, or
discounting, past play. The history information was updated after each period.

The computer interface presented payoff information to all subjects as if they were
the row player, and the screen revealed only the subject’s, and not the opponent’s,
payoff in each cell. We hid the opponent’s payoffs to suppress the possibility of collusive
behavior, for which there is a mountain of experimental evidence. Note that most
theories of learning, including those considered here, do not assume any knowledge of
opponents’ payoffs.

We presented the “earnings table” in the instructions in symbolic form, using the
letters A through I to represent payoffs. Thus the only difference between experimental
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treatments was the numbers presented to the subjects in the earnings table on the
computer screen. Identical instruction sheets were used for all treatments. In fact, in
principle it would have been possible to run multiple treatments in a session, but we did
not do so.

Subjects were told that they would make one-hundred decisions, and that the partic-
ipant with whom they were randomly paired would stay the same throughout the entire
session. They were informed that they would be paid for a randomly-chosen ten periods
of play to be determined by the computer (to control for wealth effects). The subjects
had to correctly answer questions on a quiz indicating that they understood how to read
the earnings table, and that they understood that they did not know the content of their
opponent’s earnings table. Subjects were then randomly assigned to the role of player
1 or player 2 (for example, to have the row payoffs or the column payoffs in game AB),
though as noted above it was always presented to them that they were the row player.
The sessions never lasted more than an hour and a half.

A total of 128 subjects, who were English-speaking university students in Montreal,
participated in the four experimental treatments. The experiment was programmed and
conducted with the software z-Tree (Fischbacher 1999). The experiments were run in
May and June, 2004 at the Bell Experimental Laboratory for Commerce and Economics
at the Centre for Research and Analysis on Organizations (CIRANO). Subjects earned
CAD $10.00 for showing up on time and participating fully (our show-up fee must
take into account the fact that the laboratory is not on campus), and an average of
$23.90 for the results of their decisions and the decisions of their opponent. Alternative
opportunities for pay in Montreal for our subjects is considered to be approximately
$8.00 per hour.

6 Experimental Results

6.1 Data and Data Analysis

6.1.1 Aggregate Statistics

Tables 1 and 2 present the basic summary statistics from BB and AB treatments, where
Table 2a presents results for B players and Table 2b for A players. The three main
sections of the table, which are divided into rows, show the proportion of times subjects
played each strategy in the first 50, last 50, and all 100 periods of the game, averaged
over 34 subjects; the statistics presented are averages of individual player averages. The
table is further divided into three sections from left to right: mixed-strategy equilibrium
predictions, results from the low-incentive treatment, and results from the high-incentive
treatment. The table shows that the mean frequencies are close to equilibrium in all
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cases. For example, across all 100 periods of the game strategies 1, 2, and 3 were chosen
with a mean frequency of 0.29, 0.36 and 0.35 in the low-incentive BB treatment, and
0.31, 0.35, and 0.34 in the high-incentive treatment B̂B̂. This compares with the mixed-
strategy equilibrium 0.28, 0.32, and 0.35 for both treatments, and this result is similar
across the sessions and treatments. In the case of AB, B players overweight strategies
1 and 2 with respect to equilibrium, and underweight strategy 3. By contrast the mean
frequencies of play of the A players are very close to equilibrium in both high and low
payoff treatments.7

One of the principal questions is whether the time average of play is convergent.
Figures 1-3 show the average of strategy choices for games BB and AB for both the
low and high incentive treatments over time. The figures were generated by counting
the number of times each player had chosen each of her three strategies throughout
the entire game for each round in the game, then averaging the choices across players.
The figures primarily show stability of choices during the sessions: play converges after
approximately 25 periods of play in both treatments. The averages for all three strategies
are similar between high and low incentive treatments in both the AB and BB games
after 100 periods, despite being different at the start of the game.

Players’ marginal frequencies are equally important but are not directly observable.
We attempt to establish an approximate pattern for them by dividing the data on choices
into ten period blocks. In Figures 4-6, the vertical axis gives the frequencies of choices
of the three strategies and the horizontal axis corresponds to ten blocks of ten periods
each. That is, the first block gives the decisions made in the first ten periods averaged
over all subjects. These figures seem to indicate that marginal choice frequencies are
reasonably stable over time. Average data could hide considerable heterogeneity at the
level of individual pairs. However, if one looks at Tables 1 and 2, standard deviations
are stable over time and are similar in AB and BB treatments.

Tables 3 and 4 present 3 × 3 aggregate strategy pair tables for the BB and AB
treatments. The row in each table represents the strategy played by a player at time t,
and the column represents the strategy played by her opponent at time t. Each cell in
the table is a count of number of times the corresponding strategy pair occurred in the
data, summed across periods and all subject pairs. For example, the top section of Table
2 indicates that strategy pair LL occurred in the first 50 periods of the low-incentive
treatment 55 times, and in the high-incentive treatment 84 times. Below the table is
the chi-squared test statistic for independence between rows and columns (where a low
p-value implies rejection of the null hypothesis of independence). The left table always
represents the low-incentive treatment and the right table represents the high-incentive

7The differences and similarities between the empirical and empirical frequencies are not in fact
very well explained by QRE analysis (see the estimates of QRE for AB and BB in Section 4.3) even
though it has had much success in other games (see McKelvey and Palfrey (1995)). The fit might be
improved by taking into account risk aversion (Goeree et al., (2003)) but as our main focus here is on
the dynamics of play, this is not something we have explored.
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treatment. The sub-tables a, b, and c present results from the first 50, last 50, and all
100 periods of the game.

In the BB games (Table 3), we detect a difference within the high-incentive treatment
and across both the low- and high-incentive treatments. We reject independence in the
low-incentive treatment both in the first and last half of the session. However, we do not
reject independence in the first half of the high-incentive treatment, and then we do reject
independence in the second half. Thus the frequency tables suggest that, when summing
over all subject pairs in the sessions, play between subjects is never independent with
low incentives and loses its independence over time with high incentives.

Table 4 presents 3× 3 aggregate strategy pair tables for the AB treatments. In all
cases, i.e., for both player types and in both the beginning and end of the game we reject
independence of play between the row and the column players. Recall that in the BB
treatments, play was independent early in the high-incentive treatment.

6.1.2 Analysis by subject pair

Tables 5 and 6 further explore correlated play, this time on a pair-by-pair basis. We
computed the same chi-squared statistic for independence between the actions of row
players and column players and interpreted it as a measure of the distance the play
of a subject pair was from independence for each player pair in each treatment. We
conducted Wilcoxon-Mann-Whitney tests for differences in this statistic between the
two treatments. For example, in the first 50 periods of the low-incentive treatment the
average chi-squared statistic was 7.17; in the high-incentive treatment it was 4.38; and
the p-value of the Wilcoxon-Mann-Whitney test for the difference between treatments
was 0.117.

Tables 5 and 6 show that the mean chi-squared statistic increased from the first to
the last half of the session for the B treatment, but declined slightly for the A treatment.
In the B treatment (Table 5), there was nearly a statistical difference between high and
low payoff treatments in the first 50 periods of the game, with a distance closer to
independence in the high incentive treatment (p-value 0.117). The difference between
treatments evaporated in the second half of play. This analysis, which takes into account
subject pair heterogeneity, is consistent with the aggregate results previously discussed:
play is less independent at the start of the low-incentive treatment and becomes non-
independent with time in both treatments. Table 6 shows that in the AB games the
magnitude of the mean chi-squared statistic increased from the low- to the high-incentive
treatment in both the first and last half of the session, but not significantly so.

The bottom line resulting from this analysis is that play is correlated across opponents
in all of our treatments. We explore the most likely explanation for this in the next
subsection.
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6.1.3 Best response cycles

If play is not independent across time or across opponents, then the most likely alterna-
tive explanation is that subjects are playing best-response cycles. In the BB treatments,
best response cycles call for the following responses to opponent play in the previous
period: 1 if the opponent plays 3; 2 if the opponent plays 1; 3 if the opponent plays
2. We estimated the conditional probability of each of the three responses in the cycle,
and then subtracted the unconditional probability of playing the best response for each
subject. That is, we computed Pr(1|3) − Pr(1), Pr(2|1) − Pr(2), Pr(3|2) − Pr(3). If
subjects’ choices are independent of their opponent’s last choice, then these differences
will be zero. If they are cycling, the differences will be positive.

The results for the BB treatments are presented in Table 7. The table shows the
conditional probability, the unconditional probability, the difference between the two
measures, and the p-value of the t-test that this difference is zero. At the far right of
the table we show the p-value of the Wilcoxon-Mann-Whitney test for a difference be-
tween experimental treatments. The table shows that all best responses are statistically
significant no matter how we cut the data and no matter the treatment. The table also
shows no statistical difference between any period of play or any treatment.

Table 8 presents results from tests for best-response cycling in the AB treatments,
with Table 8a presenting results for B players and Table 8b for A players. The only
difference between these tables and Table 7 is the Player A best response pattern: 1 if
the opponent plays strategy 1; 2 if the opponent plays strategy 2; and 3 if the opponent
plays strategy 3.

Table 8a shows that B players have a tendency to play their cycle, as they did in the
BB treatments. In every case the difference between the conditional and conditional
choice frequencies is statistically higher than zero (t-tests). By contrast with B-player
behavior in the BB treatments, there is a statistical difference for two of the three best
responses (with the third best response having a p-value of 0.133) between the high and
low incentive treatments during the first 50 periods of play. This result goes away in the
second 50 periods of play.

Table 8b shows that in most cases the A players cycle as well. As with the B-players,
there is evidence for a difference between the two treatments with two out of three of
the best responses in the cycle. Unlike the B-players this difference persists throughout
all 50 periods of the game.

In Table 9 we compare cycling across treatments. We test whether the behaviour of
B-players in AB treatments is different from the behaviour of B-players in BB treat-
ments. In most cases, the differences are not significant. However, there is evidence
that cycling is more pronounced in the high incentive AB treatment than in the high
incentive BB treatment initially, but the difference is not significant in the second half
of the data, nor overall.
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We conclude from the analysis in this section that (1) players have a strong tendency
to play their best-response cycles, (2) B-players cycle more in the high incentive treat-
ment early in the game, but that the difference induced by high incentives goes away
with experience in the game and (3) that A-players cycle more in the high incentive
treatment throughout the game. These results contradict the theoretical predictions.

6.1.4 Regression analysis

For one final look at the data we ran a multinomial regression on each half-session of data
separately. In the regressions the dependant variable is the decision at time t, and the
independent variables are dummies for each of the three opponent’s strategies at time
t−1. We clustered on the subject id number for the purpose of computing the standard
errors. The regression reports the probability of playing a strategy conditional on the
various independent variables. Rather than report the regression output directly, for
simplicity we present a grid in which we place an “X” whenever a strategy is significantly
more probable than another strategy.

For example, the right-most column in the top of Table 10 shows that in periods
1-50 in the low-incentive treatment, strategy 3 was more likely to be played than either
strategy 1 or 2 whenever the opponent played strategy 2 at time t−1. The two X’s that
represent this result are both bold-faced to show that they are consistent with a best-
response cycle. The table provides evidence that whenever an opponent’s one-period
lagged strategy affects decision-making, it is overwhelmingly likely for the response to
be on a best-response cycle. And several best-response cycles are represented by the
behavior that generated this table.

Table 11 shows results from the multinomial regressions for the AB games. Table 11a
shows statistically significant responses to opponent actions at time t− 1 for B players,
and Table 11b presents the same results for A players. As in the BB treatments, the
tables show many responses to opponent actions and most of them are on a best-response
cycle. There appear to be more of these responses by B players than A players, and this
is consistent with results presented in the previous subsection.

6.2 Comparison of Results with the Theoretical Hypotheses

The first thing to observe is that Figures 1-3 indicate that the time average of play in
all four treatments AB, BB, ÂB̂ and B̂B̂ converges. Divergence would imply persistent
cycles in the data, giving radically different values in different time periods and different
sessions. Notice that the time averages after 50 periods do not change substantially over
time. There is also little difference between BB and B̂B̂. This leads us to reject diver-
gence of the time averages and, hence, also Hypothesis 1(b). It is true that the figures
use aggregated data. However, the summary statistics including standard deviation in
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Table 1 do not indicate any greater dispersion amongst individual subjects in B̂B̂ than
in BB or than in the AB treatments. Convergence of the time average is consistent
with Hypotheses 2 and 3.

Of course, as we noted in Section 3, convergence in time average does not imply con-
vergence in behaviour. We cannot directly observe the marginal frequencies of different
strategies employed by each subject. However, Figures 4-6 that report choice frequen-
cies in ten period blocks give no indication of non-stationarity in choices. Divergence in
behaviour would imply considerable and increasing variation between blocks in choice
frequencies. This we do not see. Again, subject heterogeneity may be hidden by aggre-
gation. However, again the standard deviations reported in Table 1 indicate that play
is not more dispersed in the BB treatments than in AB.

The third major observation is that both types of correlation of play, across time
and across opponents, are present. Intertemporal correlation is indicated by Tables 7-
9 to be found in all treatments. If subjects randomised independently of each other,
then we would expect little difference between the unconditional probability of playing
an action and the probability conditional on the opponent’s previous action. Instead,
Tables 7 and 8 indicate that subjects often played a best response to the previous action
of their opponent. Similarly, in Tables 10-11 we have a number of significant coefficients,
indicating both a lack of independence and, again, a tendency to best respond. This
would lead to a rejection of Hypotheses 1(a) and 3(a) which suggest that there should
be convergence in behaviour.

Evidence on contemporaneous correlation between opponents is found in Tables 3-6.
The chi-squared statistic leads us to reject independence of play between row and column
players very strongly in all cases except the low incentive stable treatment (Table 6).
This evidence again is not consistent with Hypotheses 1(a) and 3(a).

Hypothesis 2(b) based on learning theory includes the claim that there should be
greater evidence of cycling in B̂B̂ than in BB than in the AB treatments. Hypothesis
3(b) claims there should not. If we compare Tables 3c and 4c, then there appears not to
be too great a difference, either between BB and B̂B̂ or between BB and AB in that,
in all cases, play of row and column players seems to be heavily correlated. Similarly,
an examination of Tables 5 and 6, would lead us to reject iid play over the 100 periods
in all cases, except perhaps in the low incentive stable treatment AB. Further, Table
9 that directly compares AB and BB treatments finds only one significant difference
in cyclical behaviour over the complete experiment (and this is in the wrong direction).
Thus, if we look at statistics for the complete 100 periods, Hypothesis 3(b), that there
is no great difference between the (supposed) stable and unstable games, fares best.

However, if we compare the differences over time, we see a different picture. First,
looking at Table 3, compare the chi-squared statistics for the first 50 periods with those
for the second half of the experiments. While there is little change in BB, cycling seems
to have increased considerably in B̂B̂ from the first 50 periods to the second. Table 4
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provides evidence for the opposite effect in games AB and ÂB̂. While the chi-squared
scores indicate that we reject independence both in the first and second half of the data,
the level of correlation has decreased over time. We find a similar pattern in Tables 5
and 6. The average level of correlation increases from the first to the second half in both
BB treatments but decreases in both AB treatments. These results are consistent with
a learning story: in the stable games AB and ÂB̂, subjects get closer to equilibrium
play over time, so that correlation decreases over time (however, the level of correlation
displayed in ÂB̂ in Table 6 remains high). In B̂B̂, however, learning takes players
further from equilibrium, and the cycling becomes more pronounced. This is supportive
of Hypothesis 2(b).

In summary, we can reject both strict equilibrium play, that is, independent ran-
domisation, and complete divergence. This is enough to cast doubt on both classical
learning models (Hypotheses 1(a) and 1(b)) and the simple assumption that subjects
always play equilibrium (Hypothesis 3(a)). However, while we find significant evidence
for best response cycles in all treatments, there is some evidence that these cycles weaken
over time in the AB treatments, but strengthen over time in B̂B̂. This is consistent with
converging learning in the first case, and diverging learning in the second. Thus, there
is some support for the learning hypotheses 2(a) and 2(b). However, the differences
between the stable and unstable treatments are not very strong and so it is difficult to
rule out Hypothesis 3(b), that is, there is weak convergence to equilibrium in all the
games.

7 Conclusions

We tested the theoretical possibility, first discovered by Shapley (1964), that in some
games learning fails to converge to any equilibrium, either in terms of marginal frequen-
cies or of average play. Subjects played repeatedly in fixed pairings one of two classes of
3×3 game, each having a unique Nash equilibrium in mixed strategies. The equilibrium
in one class of games is predicted to be stable under learning, in the other class unstable.
Thus, if we take learning theory seriously, play should be more dispersed in the second
class. Furthermore, in the second class, there should be greater correlation of play both
across time and across players.

Our experimental design provided a tough test of the theory by studying play in
fixed pairings. This potentially allowed players to attempt to collude, which would
conflict with the myopic maximisation assumed by fictitious play. However, the lack
of information about opponents’ payoffs seems to have successfully prevented collusive
behaviour. Otherwise, by providing the subjects with the entire history of play as well
as history of marginal choice frequencies, the design kept the subjects well informed.
One conjecture would be that withholding information on past choices might encourage
more divergent behaviour in unstable games.
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As it was, the performance of the theory was mixed. Play in both classes of games
was on average not too far from equilibrium. However, we found play from round-to-
round not to be independent in either treatment. On some measures it looks as though
that play is more strongly correlated in the unstable class of game than in the stable
and this would be consistent with the theory. But it is not possible to make a clear
distinction between the stable and unstable cases, as strong correlation is present in all
treatments. As is often the case, theoretical predictions that are clearly different on the
page are not so distinct once one tries to reproduce them in the laboratory.

This highlights a more general point. Theorists typically obtain results in complex
models by taking limits. In this case, stochastic fictitious play seems to predict significant
differences in behaviour between the stable and unstable games. However, this is only
really true for parameter values being close to their limit values, in particular the level
of noise must be sufficiently small and memory must be sufficiently long. In practice,
the observed differences are much smaller than the apparent theoretical predictions.
However, this is still consistent with the predictions of the model but with a high level
of noise and with a short memory. This is consistent with the findings of Camerer
and Ho (1999) whose estimates of similar learning models find parameter values far
from their limiting values. This is also consistent with the findings of the literature
on logit equilibrium (see Anderson et al. (2002) for a survey) that explains significant
and persistent deviation from Nash equilibrium play on the basis that noise is non-
vanishing. We present evidence here that similar considerations hold for dynamics as
well as equilibrium behaviour. If one wants to predict the dynamics of play, one should
also take into account that noise is substantial and correlation is persistent.

Appendix

Most of the theoretical results follow from application of the theory of stochastic ap-
proximation. Note that that, given the updating rules (14) or (15), the expected change
in beliefs can be written

E[bimn+1|bn]− bimn = γn(p
i
mn − bimn), for m = 1, ..., 3 (16)

where γn is the step size (equal to 1/(n+ t) under fictitious play beliefs, equal to 1− δ
under recency). In the terminology of stochastic approximation, the associated system
of ordinary differential equations (ODE) can be written in vector form as

ḃi = φ(bj)− bi, ḃj = φ(bi)− bj. (17)

It is possible to predict the behaviour of the stochastic learning process by the analysis
of the behaviour of these ODE’s.

Proof of Proposition 1: In this game, the perturbed equilibrium is unique and globally
stable under the associated ODE (17) by Theorem 3.2 of Hofbauer and Hopkins (2005).
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This in turn implies convergence with probability 1 of stochastic fictitious play by stan-
dard results in the theory of stochastic approximation (see, for example, Benveniste et
al. (1990), Chapter 2, Corollary 6).

Proof of Proposition 2: Any perturbed equilibrium of this game is unstable under the
ODE (17) for sufficiently large β by Theorem 4.7 of Hofbauer and Hopkins (2005). For
β larger than the critical value β̂, stochastic fictitious play converges to the equilibrium
with probability zero, by the result of Pemantle (1992).

Proof of Proposition 3: Some results follow based on techniques developed by Norman
(1968). The focus is now on the Markov process defined by the appropriate choice rule
and the updating rule (15). The state of the process at any time can be given by
bn ∈ SN × SM = S, that is, a vector of beliefs for each player. This obviously evolves
according to the actions chosen by the two players. If the first player chooses action
i, and the second j, then denote that event as ij and event operator fij . Norman
(1968) defines a Markov process on a metric space with metric d to be strictly “distance
diminishing” if ρ(fij) < 1 for all ij where

ρ(f) = sup
b 6=b0

d(f(b), f(b0))

d(b, b0)
.

Lemma 1 The Markov process defined by stochastic fictitious play with forgetting is
distance diminishing with respect to the standard Euclidean metric.

Proof: Given arbitrary states b, b0, fij(b) = ((1 − δ)X1 + δb1, (1 − δ)X2 + δb2)
and fij(b

0) = (((1 − δ)X1 + δb01, (1 − δ)X1 + δb02). It is easy to show therefore that
d(fij(b), fij(b

0)) = δd(b, b0) and ρ(fij) = δ for all possible events.

Let Tn(b) be the set of states reached with positive probability in n steps if we start
at b. Let d(S1, S2) be distance between two subsets S1 and S2 of the state space. That
is,

d(S1, S2) = inf
b∈S1,b0∈S2

d(b, b0)

Then Norman (1968, Theorem 2.2, p66) is able to show that if the following condition
holds

lim
n→∞

d(Tn(b), Tn(b
0)) = 0 for all b, b0 ∈ S

then a distance diminishing Markov process is ergodic. That is, its limit distribution is
independent of initial conditions. From an arbitrary initial state b0 there is a positive
probability that both players continue to choose their first action for an indefinite number
of periods. As this run of play continues, bn will approach the state ((1, 0, 0), (1, 0, 0)).
This state is therefore accessible from any initial state and from the theorem of Norman
the Markov process is ergodic.
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Proof of Proposition 4: (a) The perturbed equilibrium is unique and globally asymp-
totically stable under the ODE (17) and has all negative eigenvalues (Theorems 3.2 and
4.5 of Hofbauer and Hopkins (2005)). The result then follows from Benveniste et al.
(1990, Ch2, Theorem 3).

Proof of Proposition 5: Given the updating dynamic (15), beliefs bn follow a AR(1)
process. Using standard time series results, one can calculate the variance of bimn as
pimn(1− pimn)(1− δ)/(1 + δ) which is non-vanishing. The probabilities pn that generate
the play are a time invariant function (10) of the beliefs, and, therefore, also follow an
AR(1) process.
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Strategy Equilibrium Mean Result Std. Dev. Min. Max. Mean Result Std. Dev. Min. Max.
1 0.28 0.29 0.10 0.12 0.48 0.31 0.08 0.14 0.56

First 50 periods 2 0.32 0.36 0.13 0.08 0.64 0.35 0.08 0.18 0.50
3 0.39 0.35 0.11 0.10 0.62 0.34 0.09 0.16 0.50
1 0.28 0.29 0.14 0.06 0.67 0.31 0.10 0.08 0.45

Last 50 periods 2 0.32 0.36 0.14 0.08 0.63 0.36 0.14 0.10 0.92
3 0.39 0.35 0.12 0.16 0.65 0.33 0.13 0.00 0.65
1 0.28 0.29 0.10 0.13 0.49 0.31 0.08 0.15 0.49

All 100 periods 2 0.32 0.36 0.09 0.19 0.61 0.35 0.08 0.22 0.61
3 0.39 0.35 0.09 0.18 0.50 0.34 0.09 0.13 0.50

Notes: Choice frequencies are averages of player averages

Strategy Equilibrium Mean Result Std. Dev. Min. Max. Mean Result Std. Dev. Min. Max.
1 0.26 0.30 0.16 0.08 0.72 0.28 0.14 0.06 0.52

First 50 periods 2 0.27 0.35 0.06 0.24 0.44 0.35 0.09 0.22 0.54
3 0.48 0.36 0.15 0.04 0.52 0.38 0.11 0.22 0.62
1 0.26 0.31 0.14 0.12 0.57 0.34 0.13 0.06 0.55

Last 50 periods 2 0.27 0.37 0.14 0.04 0.55 0.35 0.10 0.18 0.53
3 0.48 0.32 0.19 0.00 0.73 0.31 0.11 0.12 0.49
1 0.26 0.30 0.14 0.13 0.65 0.31 0.12 0.06 0.52

All 100 periods 2 0.27 0.36 0.08 0.18 0.47 0.34 0.08 0.22 0.54
3 0.48 0.34 0.15 0.02 0.58 0.35 0.10 0.18 0.46

Notes: Choice frequencies are averages of player averages

Strategy Equilibrium Mean Result Std. Dev. Min. Max. Mean Result Std. Dev. Min. Max.
1 0.28 0.31 0.10 0.10 0.54 0.30 0.09 0.08 0.50

First 50 periods 2 0.32 0.29 0.16 0.00 0.60 0.33 0.16 0.06 0.68
3 0.39 0.40 0.19 0.12 0.88 0.37 0.17 0.06 0.64
1 0.28 0.31 0.13 0.08 0.53 0.30 0.10 0.16 0.47

Last 50 periods 2 0.32 0.28 0.17 0.00 0.57 0.31 0.15 0.06 0.59
3 0.39 0.41 0.19 0.12 0.92 0.39 0.18 0.16 0.77
1 0.28 0.31 0.10 0.10 0.54 0.30 0.08 0.21 0.48

All 100 periods 2 0.32 0.29 0.16 0.00 0.60 0.33 0.15 0.06 0.59
3 0.39 0.40 0.19 0.12 0.88 0.37 0.16 0.11 0.66

Notes: Choice frequencies are averages of player averages

Game Parameters Low Incentive (N = 15) High Incentive (N = 15)

Table 2b: Average Choice Frequencies in AB Treatments, A Players

Game Parameters

Table 1: Average Choice Frequencies in B Treatments

Low Incentive (N = 34) High Incentive (N = 34)

Game Parameters Low Incentive (N = 15) High Incentive (N = 15)

Table 2a: Average Choice Frequencies in AB Treatments, B Players



1 2 3 1 2 3
1 55 90 94 1 84 97 97

Row time t strategy 2 109 75 145 Row time t strategy 2 101 92 103
3 91 122 69 3 71 109 96

Notes: Aggregate counts across 17 pairs Notes: Aggregate counts across 17 pairs
           chisq = 42.76, p-value = 0.000            chisq = 6.23, p-value = 0.183

1 2 3 1 2 3
1 45 112 106 1 48 124 119

Row time t strategy 2 88 78 139 Row time t strategy 2 104 68 124
3 89 118 75 3 81 119 63

Notes: Aggregate counts across 17 pairs Notes: Aggregate counts across 17 pairs
           chisq = 41.92, p-value = 0.000            chisq = 58.86, p-value = 0.000

1 2 3 1 2 3
1 100 202 200 1 132 221 216

Row time t strategy 2 197 153 284 Row time t strategy 2 205 160 227
3 180 240 144 3 152 228 159

Notes: Aggregate counts across 17 pairs, all 100 periods Notes: Aggregate counts across 17 pairs, all 100 periods
           chisq = 83.02, p-value = 0.000            chisq = 41.61, p-value = 0.000

Table 3b: Strategy Pair Tables for B Treatments, Periods 51-100

 Low Incentive High Incentive

Column time t strategy Column time t strategy

Table 3a: Strategy Pair Tables for B Treatments, Periods 1-50

Low Incentive High Incentive

Column time t strategy Column time t strategy

Table 3c: Strategy Pair Tables for B Treatments, All Periods

Low Incentive High Incentive

Column time t strategy Column time t strategy



1 2 3 1 2 3
1 59 87 87 1 53 104 65

A time t strategy 2 48 72 100 A time t strategy 2 46 81 121
3 114 101 82 3 109 73 98

Notes: Aggregate counts across 15 pairs Notes: Aggregate counts across 15 pairs
           chisq = 25.92 p-value = 0.000            chisq = 50.00, p-value = 0.000

1 2 3 1 2 3
1 66 98 73 1 68 95 59

A time t strategy 2 54 67 88 A time t strategy 2 77 70 87
3 109 114 81 3 113 94 87

Notes: Aggregate counts across 15 pairs Notes: Aggregate counts across 15 subjects pairs
           chisq = 16.88, p-value = 0.003            chisq = 13.31, p-value = 0.024

1 2 3 1 2 3
1 125 185 160 1 121 199 124

A time t strategy 2 102 139 188 A time t strategy 2 123 151 208
3 223 215 163 3 222 167 185

Notes: Aggregate counts across 15 subject pairs, all 100 periods Notes: Aggregate counts across 15 subjects, all 100 periods
           chisq = 40.99, p-value = 0.000            chisq = 54.44, p-value = 0.000

Table 4b: Strategy Transition Tables for AB Treatments, Periods 51-100

Low Incentive High Incentive

B time t strategy B time t strategy

Table 4a: Strategy Pair Tables for AB Treatments, Periods 1-50

Low Incentive High Incentive

B time t strategy B time t strategy

Table 4c: Strategy Transition Tables for AB Treatments, All Periods

 Low Incentive High Incentive

B time t strategy B time t strategy



High-Low
N N p-value

First 50 periods 17 17 0.077
Last 50 periods 17 17 0.843
All 100 periods 17 17 0.361

Notes: Wilcoxon-Mann-Witney tests for difference between high and
low treatments two-tailed.

High-Low
N chisq p-value N chisq p-value p-value

First 50 periods 15 15 0.141
Last 50 periods 15 15 0.305
All 100 periods 15 15 0.253

Notes: Wilcoxon-Mann-Witney tests for difference between high and
low treatments two-tailed.

5.39
4.10
5.63

10.45
9.79
15.53

Low Incentive High Incentive

Table 5: Mean ChiSquared Statistics for Correlated Play in B Treatments

Low Incentive High Incentive

Table 6: Mean ChiSquared Statistics for Correlated Play in AB Treatments

7.13
8.21
11.47

4.25
8.76
8.18

chisq chisq



High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|3) - P(1) 34 0.40 0.29 0.11 0.000 34 0.41 0.31 0.10 0.005 0.660
P(2|1) - P(2) 34 0.50 0.36 0.14 0.000 34 0.44 0.35 0.09 0.010 0.378
P(3|2) - P(3) 34 0.44 0.35 0.09 0.014 34 0.45 0.34 0.11 0.002 0.734

High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|3) - P(1) 34 0.36 0.29 0.07 0.042 33 0.39 0.31 0.08 0.027 0.853
P(2|1) - P(2) 34 0.50 0.36 0.14 0.001 33 0.50 0.36 0.14 0.001 0.858
P(3|2) - P(3) 34 0.42 0.35 0.07 0.079 32 0.44 0.33 0.11 0.002 0.344

High - Low
Response Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|3) - P(1) 34 0.38 0.29 0.09 0.002 34 0.40 0.31 0.09 0.003 0.962
P(2|1) - P(2) 34 0.51 0.36 0.15 0.000 34 0.47 0.35 0.12 0.001 0.411
P(3|2) - P(3) 34 0.43 0.35 0.08 0.005 34 0.45 0.34 0.11 0.000 0.288

Notes: t tests are two-tailed

Table 7: Cycling in B Treatments

Last 50 Periods
Low Incentive (N=34)

First 50 Periods

All 100 Periods
Low Incentive (N=34) High Incentive (N=34)

High Incentive (N=34)Low Incentive (N=34)

High Incentive (N=34)



High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|3) - P(1) 15 0.38 0.30 0.08 0.113 15 0.49 0.28 0.21 0.004 0.108
P(2|1) - P(2) 15 0.49 0.34 0.15 0.014 15 0.57 0.34 0.23 0.000 0.266
P(3|2) - P(3) 14 0.51 0.36 0.15 0.083 15 0.63 0.38 0.25 0.000 0.128

High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|3) - P(1) 15 0.44 0.31 0.13 0.034 15 0.43 0.34 0.09 0.016 0.450
P(2|1) - P(2) 15 0.50 0.37 0.13 0.038 15 0.43 0.35 0.08 0.116 0.639
P(3|2) - P(3) 13 0.52 0.32 0.20 0.027 15 0.43 0.31 0.12 0.013 0.727

High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|3) - P(1) 15 0.41 0.30 0.11 0.030 15 0.45 0.31 0.14 0.000 0.520
P(2|1) - P(2) 15 0.50 0.36 0.14 0.013 15 0.50 0.34 0.16 0.002 0.730
P(3|2) - P(3) 14 0.51 0.34 0.17 0.045 15 0.55 0.35 0.20 0.000 0.280

Notes: t tests are two-tailed

High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|1) - P(1) 15 0.41 0.31 0.10 0.012 15 0.54 0.29 0.25 0.001 0.036
P(2|2) - P(2) 15 0.37 0.29 0.08 0.034 15 0.46 0.33 0.13 0.004 0.244
P(3|3) - P(3) 15 0.45 0.40 0.05 0.117 15 0.53 0.38 0.15 0.000 0.022

High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|1) - P(1) 15 0.35 0.31 0.04 0.490 15 0.42 0.30 0.12 0.006 0.150
P(2|2) - P(2) 15 0.32 0.28 0.04 0.218 15 0.44 0.32 0.12 0.002 0.078
P(3|3) - P(3) 13 0.47 0.40 0.07 0.002 15 0.54 0.39 0.15 0.004 0.446

High - Low
Response N Conditional Unconditional Difference p-value N Conditional Unconditional Difference p-value p-value

P(1|1) - P(1) 15 0.38 0.31 0.07 0.052 15 0.46 0.30 0.17 0.000 0.056
P(2|2) - P(2) 15 0.35 0.29 0.06 0.060 15 0.45 0.32 0.13 0.000 0.102
P(3|3) - P(3) 15 0.47 0.40 0.07 0.010 15 0.53 0.38 0.14 0.000 0.028

Notes: t tests are two-tailed

All 100 Periods
Low Incentive (N=15) High Incentive (N=15)

Last 50 Periods
Low Incentive (N=15) High Incentive (N=15)

Table 8a: Cycling in AB Treatments, B Players

First 50 Periods
Low Incentive (N=15) High Incentive (N=15)

All 100 Periods
Low Incentive (N=15) High Incentive (N=15)

Table 8b: Cycling in AB Treatments, A Players

First 50 Periods
Low Incentive (N=15) High Incentive (N=15)

Last 50 Periods
Low Incentive (N=15) High Incentive (N=15)



Response A treatment B-treatment Difference p-value A treatment B-treatment Difference p-value
P(1|3) - P(1) 0.08 0.11 -0.03 0.520 0.21 0.10 0.11 0.077
P(2|1) - P(2) 0.15 0.14 0.01 0.909 0.23 0.09 0.14 0.037
P(3|2) - P(3) 0.15 0.09 0.06 0.595 0.25 0.11 0.14 0.011

Response A treatment B-treatment Difference p-value A treatment B-treatment Difference p-value
P(1|3) - P(1) 0.13 0.07 0.06 0.380 0.09 0.08 0.01 0.988
P(2|1) - P(2) 0.13 0.14 -0.01 0.911 0.08 0.14 -0.06 0.429
P(3|2) - P(3) 0.20 0.07 0.13 0.227 0.12 0.11 0.01 0.837

Response A treatment B-treatment Difference p-value A treatment B-treatment Difference p-value
P(1|3) - P(1) 0.11 0.09 0.02 0.733 0.14 0.09 0.05 0.246
P(2|1) - P(2) 0.14 0.15 -0.01 0.827 0.16 0.12 0.04 0.406
P(3|2) - P(3) 0.13 0.08 0.05 0.309 0.20 0.11 0.09 0.058

Notes: t tests are two-tailed

All Periods
Low Incentive High Incentive

Table 9: The Effect of A and B Treatments on Cycling

Last 50 Periods
Low Incentive High Incentive

First 50 Periods
High IncentiveLow Incentive



Opponent Strategy at t-1 2 3 1 3 1 2 Opponent S 2 3 1 3 1 2
1 X X 1 X X
2 X X 2 X X
3 X 3 X

Opponent Strategy at t-1 2 3 1 3 1 2 Opponent S 2 3 1 3 1 2
1 X X X 1 X X
2 X X 2 X X
3 3

Notes: X refers to significance at the 10% level; boldface indicates consistent with best response cycle

Opponent Strategy at t-1 2 3 1 3 1 2 Opponent S 2 3 1 3 1 2
1 X X 1 X X X
2 X 2 X X
3 3 X X

Opponent Strategy at t-1 2 3 1 3 1 2 Opponent S 2 3 1 3 1 2
1 X 1 X
2 X X 2 X X
3 X X 3 X X

Opponent Strategy at t-1 2 3 1 3 1 2 Opponent S 2 3 1 3 1 2
1 X 1 X
2 2 X
3 X 3 X X

Opponent Strategy at t-1 2 3 1 3 1 2 Opponent S 2 3 1 3 1 2
1 1
2 X 2 X X
3 X X 3 X

Notes: X refers to significance at the 10% level; boldface indicates consistent with best response cycle

Table 11b: Statistically Significant Time t Responses to Opponent Strategies Played at Time t-1 from Multinomial Regressions in ABTreatments, A Players

B Treatment Low Incentive Periods 51 - 100
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

Low Incentive Periods 1 - 50
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

High Incentive Periods 1 - 50

Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than
B Treatment Low Incentive Periods 1 - 50 B Treatment High Incentive Periods 1 - 50

Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

 Low Incentive Periods 1 - 50
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

 High Incentive Periods 1 - 50
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

B Treatment High Incentive Periods 51 - 100
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

 Low Incentive Periods 51 - 100
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

High Incentive Periods 51 - 100
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

Table 10: Statistically Significant Time t Responses to Opponent Strategies Played at Time t-1 from Multinomial Regressions in B Treatments

Table 11a: Statistically Significant Time t Responses to Opponent Strategies Played at Time t-1 from Multinomial Regressions in ABTreatments, B Players

High Incentive Periods 51 - 100
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than

Low Incentive Periods 51 - 100
Strategy 1 more likely than Strategy 2 more likely than Strategy 3 more likely than



Figure 1: Historical Choice Frequencies B Treatment 
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Figure 2: Historical Choice Frequencies AB Treatment B Player

AB Treatment B Player Low Incentive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Round

Pr
op

or
tio

n

1
2
3

AB Treatment B Player High Incentive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Round

Pr
op

or
tio

n

1
2
3



Figure 3: Historical Choice Frequencies AB Treatment A Player
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Figure 4: Average Choice Frequencies B Treatment 
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Figure 5: Average Choice Frequencies Treatment  B Player
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Figure 6: Average Choice Frequencies Treatment  A Player
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