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In many markets, it is possible to find rival sellers charging different prices for
the same good. Earlier research has attempted to explain this phenomenon by
demonstrating the existence of dispersed price equilibria when consumers must
make use of costly search to discover prices. We ask whether such equilibria can
be learned when sellers adjust prices adaptively in response to current market
conditions. With consumer behavior fixed, convergence to a dispersed price equi-
librium is possible in some cases. However, once consumer learning is introduced,
the monopoly outcome first found by Diamond (Journal of Economic Theory 3
(1971), 156–68) is the only stable equilibrium.

1. INTRODUCTION

It is a common experience to find that prices vary between different sellers,
giving consumers an incentive to search for low prices. Rothschild (1973) set
economists a challenge. Sellers, presumably, would only charge prices different
from those of their competitors if they could make a profit by doing so. To explain
price dispersion, economists must show that such price-setting behavior was a
rational response by traders to the search behavior of consumers, and vice versa.
Subsequently, several models have been developed in which price dispersion is
indeed a Nash equilibrium. But in fact, Diamond (1971) had already gone one
stage further by investigating what form of equilibrium pricing was dynamically
stable under a plausible adaptive process.

Here we ask whether the models of price dispersion that followed from
Rothschild’s challenge can also pass this additional test. We examine a number of
existing models that exhibit equilibrium price dispersion and show how they can be
placed in a simple, common framework. We extend current models of learning to
deal with the large strategy sets present in these price setting games. We then inves-
tigate whether the equilibrium price distributions are stable, first, under learning
by sellers alone, and then, under simultaneous learning by buyers and sellers.

Diamond pioneered this adaptive approach to price setting, but his main result
is usually viewed as a paradox. He was able to show that for any positive search
costs, in equilibrium, no consumer would search, and all firms would charge prices
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at monopoly levels. This is clearly a Nash equilibrium: When prices are identical,
there is no incentive to search; when there is no search, there is no incentive to cut
prices to increase sales. Note that the converse state where all consumers are fully
informed and all firms charge a competitive price cannot be a Nash equilibrium.
For positive search costs and with all prices identical, active search is not optimal.
Since consumers are not fully informed, firms can raise prices without losing all
customers. Although those economists raised on the “Law of One Price” might
have expected price dispersion to be fragile, it was surprising that the collapse was
in this direction.

Faced with this challenge, subsequent authors (a partial list includes Salop
and Stiglitz, 1977; Varian, 1980; Burdett and Judd, 1983; Rob, 1985; Wilde, 1992;
Benabou, 1993) produced models with dispersed price equilibria. However, none
of these results have passed the test that Diamond imposed on his model. The
striking difference about the model of Diamond (1971) is that it is “A Model
of Price Adjustment” not of equilibrium. The advantage of such a disequilib-
rium approach is that it can answer the question how one equilibrium is chosen
over another. This question is particularly relevant because in this type of model
there are often multiple equilibria. In the models we examine, Varian (1980) and
Burdett and Judd (1983), two dispersed price equilibria coexist with the Diamond
monopoly outcome. As Burdett and Judd themselves remarked, we need some
way of reducing this multiplicity of equilibria. Until this question is resolved, the
existence of dispersed price equilibria is not a fully satisfactory explanation for
the existence of price dispersion.

Furthermore, a disequilibrium approach allows for additional possibilities. The
dispersed price equilibria we model are mixed-strategy equilibria. Sellers are in-
different between charging the different prices in support of the equilibrium distri-
bution. This is troubling in that theorists from Shapley (1964) onward have shown
nonconvergence of learning models in games with mixed-strategy equilibria. The
example often chosen to illustrate this is a “Rock–Scissors–Paper” (RSP) game, a
game of three choices with a cyclical best-response structure, Rock beats Scissors,
which beats Paper, which in turn beats Rock. There is a unique mixed-strategy
equilibrium. This equilibrium will be stable under a wide range of learning rules
(Hofbauer, 2000; Hopkins, 1999a, 1999b) if payoffs satisfy a negative definiteness
condition, linked to evolutionary stability. However, it is just as easy to find ex-
amples where the unique equilibrium is unstable, and there is no convergence to
Nash equilibrium at all.

Oligopolistic pricing games when not all consumers are fully informed about
prices are like RSP games in the following way. The best response to a rival charg-
ing a given price p is often, like in Bertrand-style competition, to charge a price
fractionally below p. In this way a seller can steal away relatively well-informed
consumers who respond to prices. However, unlike in Bertrand-style competition,
there will be some lowest price p, greater than marginal cost, charging below,
which is not a best response. This is because of the presence of badly informed
consumers. When prices are sufficiently low, a seller may have an incentive to give
up competing for informed buyers and rather raise her price and sell only to the
uninformed. That is, just as in RSP games there is a cycle of best responses, a high
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price is “beaten” by a medium price that is beaten by a low price that in turn is
beaten by a high price. The major difference is that, in fact, there are not just three
possible prices or strategies but an infinite number.

The contribution of this present article is twofold. First, to examine the problem
that sellers face, we develop learning dynamics for use when the strategy set is
a continuum and payoffs are nonlinear. Economists are used to treating price as
a continuum. Retailers, however, are forced to price in whole pennies. Similarly,
most often when dealing with learning with a continuum of strategies, researchers
divide the strategy space into a discrete grid. However, mixed-strategy equilibria
that take the form of continuous distributions over prices are not easily repre-
sented using this method. Hence, we take a hybrid approach. We use a discrete
approximation to the strategy set in order to examine dynamics in finite dimen-
sions. But we determine the stability of this learning process by analysis of the
sellers’ profit function treated as an operator on the function space L2.

Second, this approach enables us to obtain clear results on the stability of dis-
persed price equilibria. The condition for dynamic stability in these price-setting
games is that payoffs should satisfy a negative definiteness condition similar to
that for basic RSP games. Our results are to a certain extent positive. We find that
agents following simple learning rules may learn their way to equilibrium, even
though equilibrium strategies require randomization over an infinite number of
prices. However, convergence to equilibrium is only possible for particular distri-
butions of information among consumers. This tightens considerably the existing
predictions concerning the nature of dispersed price equilibrium. The natural next
step is to make consumer behavior endogenous. That is, what happens when con-
sumers learn too?

The condition for stability under seller learning is what we call “sufficient ig-
norance,” that is, the number of informed consumers must be sufficiently low.
Therefore, any equilibrium stable under seller learning must be close to the no-
search Diamond outcome. This in turn means that when consumer learning is
introduced, even a small perturbation from the dispersed price equilibrium will
move the system into the basin of attraction of the Diamond outcome. Thus we
can show that this is the only stable equilibrium under the joint dynamics. We
discuss the implications of this result in our final section.

2. PRICING GAMES WITH THE ROCK–SCISSORS–PAPER PROPERTY

In this section, we will argue that a number of oligopoly games, where sellers
compete to attract consumers who have imperfect information about prices, have
a distinct similarity with the simple game of Rock–Scissors–Paper (RSP). Such a
game is usually of the form

R S P
Rock 0, 0 a, −b −b, a
Scissors −b, a 0, 0 a, −b
Paper a, −b −b, a 0, 0

a, b > 0(1)
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There is a cycle of best responses, Rock beats Scissors, which beats Paper, which
in turn beats Rock, and the only equilibrium is in mixed strategies (in the above
version at ( 1

3 , 1
3 , 1

3 )). We claim that making this analogy has two advantages. First,
it brings home the actual problem that price setters face in such markets; they must
randomize over prices in order to be unpredictable. Second, it enables a simple,
unified treatment of several different models. Third, it clarifies what happens when
we introduce learning into these models.

One result from the recent literature is that the mixed equilibrium of the simple
game above is only stable under adaptive learning schemes, such as fictitious
play, if the benefit to winning is bigger than the cost to losing, that is, if a > b. The
intuition is that when the penalty to losing, −b, is particularly high, the prospect of
a draw along the diagonal is relatively attractive. Agents are tempted into playing
the same strategy as their opponent. Translating this into the price-setting games
we will consider, when price competition is particularly fierce, we find that price
dispersion is not sustainable. There is a similar pressure toward price conformity.
As we will see, dispersed price equilibria will only be stable under learning, if on
average consumers are not well informed and hence price competition is muted.

We will show that a number of models of price competition have what we will
call the Rock–Scissors–Paper property because they have the same basic best
reply structure as the simple game above. We are concerned with a market for a
homogeneous good. For example, the same book or computer from a particular
producer is often sold by many different outlets, often at different prices. The
sellers we can think of as a continuum of identical small shops, which buy the
good from a wholesaler for a constant unit cost, which here we assume to be
zero. We assume (an average of) µ customers per seller. Sellers’ utility is identical
with their expected profits. Consumers seek to buy exactly one unit providing
it is offered to them at less than or equal to their reservation price, p∗ > 0. An
action for a seller is then simply a choice of a price. A continuum of consumers are
uninformed about which firms charge which prices. They must engage in costly
nonsystematic search in order to obtain price quotations.

We assume that the current choice of all sellers can be summarized by a cumu-
lative distribution function F(p). The profit for any one seller is given by

�(p) = pD(F(p))(2)

Clearly there are a number of differing assumptions that we can make about what
information consumers possess and what choices they will make in response to
that. This will feed through to different functional forms for the demand function
D(F(p)). For example, if all consumers were completely informed about prices
and always purchased from the cheapest supplier, we would have Bertrand-style
competition and demand is discontinuous at the lowest price. However, if some
consumers are not fully informed and therefore not sensitive to prices, demand
may be continuous in F(p). Second, if sellers cut prices to compete for informed
customers, at a certain point, margins become so low that it becomes more attrac-
tive to raise prices and sell only to the uninformed customers. This we formalize
as Definition 1.
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DEFINITION 1. We say that a price-setting game has the Rock–Scissors–Paper
(RSP) property if

1. Demand is continuously differentiable and strictly decreasing in F(p).
2. The highest price charged is p ≤ p∗, then demand at that price is strictly

positive, that is, D(1) > 0, so that there exists some p ∈ (0, p∗) such that
pD(0) = p∗ D(1).

Condition 1 implies that if all sellers charge a price p, where p∗ ≥ p > p, then
any seller, just as under Betrand-style competition, can gain a discrete jump in sales
by the smallest possible price cut. However, Condition 2 says that even the highest
priced seller has positive demand. This is what differentiates this case from strict
Bertrand competition. It follows that there must be a lowest price beyond which
price cutting makes no sense. Even if a seller is the lowest priced (F(p) = 0) and
hence she sells the most, if her price is less than p she could do better by charging
p∗. A game with the RSP property will have an equilibrium in mixed strategies,
which of course is a dispersed price equilibrium. We can characterize any such
equilibrium a bit further.2

LEMMA 1. Price-setting games with the Rock–Scissors–Paper property possess
a mixed equilibrium with a continuous density on the interval [p, p∗] where p > 0
and this is the only symmetric equilibrium.

PROOF. For a symmetric equilibrium, we have to find, out of possible price
distributions F(p), an equilibrium price distribution denoted �(p) such that
pD(�(p)) is constant for all prices in its support. Suppose p∗ is such a price.
Then, by Condition 2 of the RSP property, we have the following relations:

p∗ D(1) = pD(0) = pD(�(p))(3)

We must set �(p) such that D(�(p)) = p∗ D(1)/p or �(p) = D−1(p∗ D(1)/p).
Because demand is continuously differentiable and strictly decreasing in F(p),
we know that such an inverse function exists and is unique. Furthermore, the
equilibrium distribution function �(p) is continuously differentiable and strictly
increasing on [p, p∗]. The only other possible equilibrium would be one without
p∗ in its support, but then a profitable deviation to p∗ exists. �

There now follow some examples of models that have the RSP property.

Model I (Informed/uninformed consumers). This is based on the model of
Varian (1980), where consumers have a stark choice between being either very well
informed or completely uninformed. It is assumed that information is not freely
available, but at a cost c consumers can obtain (almost) complete information
about prices. One can imagine that this cost is to purchase some authoritative

2 Similar results for specific models can be found in Varian (1980), Burdett and Judd (1983), and
Rob (1985). The unified framework is new.
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newspaper or to use an internet search engine. The essential point is that the exact
amount of information obtained is outside the control of the consumer but is
determined by an information provider, a situation that corresponds quite closely
to many real markets. Here we assume that, for the cost c, one receives N price
quotations, where N is large.3 The consumer then purchases from the cheapest of
the N sellers. If this information is not purchased, then consumers must choose a
seller at random. Let q1 be the proportion of these uninformed consumers, and
1 − q1 the proportion of consumers who are informed.

Thus, in any period, all sellers get µq1 uninformed customers, as they are ran-
domly distributed without regard to price. The expected number of informed
customers for a seller charging a price p is µ(1 − q1)N(1 − F(p))N−1. Demand
for an individual seller at a price p is therefore

D(F(p)) = µ
[
q1 + N(1 − q1)(1 − F(p))N−1](4)

Model IIa (Fixed sample size search). Again, consumers are not fully informed
about prices. Instead, the consumer must decide how many quotations to obtain at
a constant cost c per quotation (the convention is that the first quotation is free).
Only once all price quotations have arrived can the consumer purchase from the
firm that offers the lowest price. Such nonsequential search can be optimal, and
fits the case where a consumer must write away for quotations, or where a number
of quotations can be obtained by buying a magazine or newspaper. This case has
been analyzed by Burdett and Judd (1983).

In particular, we use the notation that a proportion q1 of consumers chooses to
obtain one price, q2 has two price quotations, and so on. The measure of consumers
for whom a given price p is the lowest that they find with two quotations is 2(1 −
F(p)), after three 3(1 − F(p))2. Hence, demand for each seller is given by

D(F(p)) = µ

∞∑
k=1

qkk(1 − F(p))k−1(5)

Model IIb (Noisy sequential search). In the standard model of sequential
search, a consumer looks at one price and then must decide whether to buy or to
sample another price at cost c. It is well known that it is optimal in this case to adopt
the strategy of buying if and only if offered a price at or below a reservation price
p∗. If consumers share a common search cost c, and hence share a single reser-
vation price p∗, no seller will have positive sales at any price p > p∗. However,
suppose search is “noisy” in that at each search, a consumer has a possibility of
seeing more than one price. In particular, the (exogenous) probability that kprices
are observed is qk. Then, as Burdett and Judd (1983) point out, this case becomes
almost identical to the previous one. Here the difference is that the distribution
of the qk is exogenous, and does not arise out of consumer choice. Nonetheless,

3 In Varian’s original model, the number of sellers is finite and equal to N. So possession of N
quotations means complete information. If N is large, the difference between the specifications is
small.
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the sales for each seller charging a price that is acceptable to consumers, that is,
below p∗, are given by (5), just as in the nonsequential case.

If the proportion of uninformed buyers denoted by q1 is neither one nor zero,
it is easy to verify that all three models, I, IIa, IIb, will have the RSP property.4

Other Models. There are three other types of model that we do not analyze
here but we note that they do have the RSP property. The first class of model is
where consumers search sequentially with a nondegenerate distribution of search
costs, and hence, reservation prices, as considered by, for example, Rob (1985).
Consequently, sellers face a similar choice between targeting the more or less
price-sensitive consumers. The second class consists of models with switching costs.
Suppose that in contrast to the above models, consumers are perfectly informed
about prices. However, imagine that there is some difficulty or cost to switching
between suppliers, either because of geographical distance (Shilony, 1977), or
because consumers become attached to a particular supplier in the first period of a
multiperiod situation (Padilla, 1995). Then, as before, some consumers will only go
to the seller with the lowest price, while others are effectively not sensitive to prices
because they are locked in. The third class, the Bertrand–Edgeworth competition,
is where individual sellers do not have the capacity to serve the whole market.
Hence, even the highest priced seller may have positive sales (Condition 2) as
lower priced sellers may run out of stock or capacity.

In both models I and II, it is possible to derive exactly the equilibrium distribu-
tion. In equilibrium, the profit from charging p is equal to the profit from charging
p∗ that is equal to the profit from charging some arbitrary price p, p < p < p∗.
Given the relations (3), we can solve for both p and F(p) (see Section 6). We
highlight here two important characteristics. First, for 0 < q1 < 1, the equilibrium
is given by a density function that we denote φ, which is positive and continuous
on (p, p∗). Second, as the level of captive customers q1 approaches one, then p
approaches p∗ and we have the Diamond monopoly outcome.

3. POSITIVE DEFINITE ADAPTIVE MARKET DYNAMICS

Having described some possible equilibria, we now deal with disequilibrium.
We imagine that the above one-shot game is repeated many times. That is, at
each point in time, firms must choose prices; buyers must choose a level of search.
As is common in the literature on learning, agents do not play some complex
intertemporal equilibrium. Instead, they adjust their play to the stage game. In this
context, firms change prices in the direction of increasing profits. Positive definite
adaptive (PDA) dynamics are a simple way to model the aggregate effects of this
individual learning behavior. We show (Proposition 2) that a negative definiteness
condition related to the concept of an “evolutionarily stable strategy” (ESS) is a

4 In giving the demand functions (4) and (5), we have, in effect, assumed no mass points in the
distribution of prices. If there were any mass points, we leave to the reader to confirm that, provided
0 < q1 < 1, first, demand would still be polynomial and hence continuous in F(p), and, second, that
D(1) > 0.
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sufficient condition for stability under all PDA dynamics. We also establish a
sufficient condition for instability (Proposition 3).

By modeling the sellers as a single infinite population, we are doing as much
as possible to make dispersed price outcomes possible. First, given that there
is a continuum of sellers, there is some freedom about whether agents actually
randomize. Some agents could play mixed strategies, some could play pure. This
could still support a continuous density of prices in aggregate. Second, this is a
situation where firms are small relative to the size of the market and have little
strategic power. Therefore, the likelihood of a collusive outcome is relatively
low.

If individual sellers do indeed behave in a way that is consistent with some model
of learning, then we want to characterize the aggregation of that learning behavior.
Does the market as a whole approach a dispersed price equilibrium? Fortunately,
we know that the aggregation of a number of different learning models described
below all belong to the class of PDA dynamics. These were first introduced by
Hofbauer and Sigmund (1990) and linked to human learning by Hopkins (1999a,
1999b). PDA dynamics represent a class of different models and so it is difficult
to give a simple characterization. However, as we will see, they do embody in
a general way, the simple idea that better performing strategies become more
popular. The reason we use PDA dynamics is that they arise quite naturally from
the aggregation of several better known dynamics, which we now detail. Thus the
results we obtain also hold for a wide variety of specific learning models.

Learning Model A (Fictitious play). This is the learning model that has perhaps
attracted the most interest in recent years (see, for example, Fudenberg and Kreps,
1993; Young, 1993). Agents keep track of the play of their opponents and play a
best response to past play. In this context, this assumption would mean that sellers
would have to observe the prices of all other sellers. Fudenberg and Levine (1998)
discuss extensions to the case where the actions of other players are not observed.
In this case, fictitious play becomes similar to reinforcement learning, our next
model.

Learning Model B (Reinforcement learning). Here we take this to mean either
what Erev and Roth (1998) call their “basic model,” which seems to fit quite well
the behavior of experimental subjects, or the model of Cross examined in Börgers
and Sarin (1997). In both cases, the demands on information available to agents
and on their rationality are much less than for fictitious play. The essence of these
models is simply that an agent has a probability distribution over possible actions
and if an action is taken and the resulting payoff is satisfactory, the probability
distribution is updated to place a higher probability on that action. Consequently,
the only information needed is access to one’s own payoffs.

Learning Model C (Learning by imitation). As an example of this approach,
we can take the model of Schlag (1998). Here, it is imagined that each agent
observes the action and payoff of one other randomly drawn agent. Schlag finds
that in this context, the optimal behavioral rule is a proportional imitation rule that,



PRICE DISPERSION UNDER LEARNING 1165

when aggregated over a population of agents, yields the evolutionary replicator
dynamics.

We first describe the general form of the PDA learning dynamics for finite
games, before extending it to the more complicated continuum cases we shall
need. Consider a population of agents who play a symmetric game with n possible
actions. Each agent plays a (possibly mixed) strategy y ∈ Sn, where Sn is the stan-
dard n-simplex, Sn = {y = (y1, . . . , yn) ∈ IRn :

∑
i yi = 1, and yi ≥ 0 for 1 ≤ i ≤ n}.

We suppose that the strategy mix in the population is described by a distribution
function G on Sn. Then x = ∫

y dG is the vector that determines the expected
mixed strategy played by a randomly chosen agent. In particular, if all agents play
pure strategies, then x is simply the vector whose components are the proportions
of the population playing each strategy. We suppose that the expected return to
each strategy, given an aggregate population state x, is determined by a (possibly
nonlinear) profit function, �(x) = (�1(x), . . . , �n(x)). That is, an agent playing
a strategy y ∈ Sn receives payoff y · �(x). The possible nonlinearity of � will be
important.

We have to describe how the population state x changes in time as a result of
some learning process such as the learning models A, B, and C discussed above.5

The PDA dynamics we consider have the general form

ẋ = Q(x)�(x)(6)

where Q(x) is an n × n matrix that operates on the vector �(x). For example, the
best-known dynamics of the form (6) are the replicator dynamics, with Q(x) being
in this case the matrix with xi (1 − xi ) in each diagonal position and −xi xj on the
off-diagonal.

In general, Q(x) must satisfy some restrictions in order that (6) should represent
a plausible learning dynamic. Recall that, for x ∈ Sn, the support of x is the set
T(x) = {i : xi > 0}, and for any subset T ⊆ {1, 2, . . . , n}, we define the following
subspaces of IRn, IRn

T = {y ∈ IRn : yi = 0 for i /∈ T}, IRn
T0 = {y ∈ IRn

T :
∑

i yi = 0}
and IRn

T1 = {y ∈ IRn : yi = constant for i ∈ T}. When T = {1, 2, . . . , n}, we write
IRn

0 for IRn
T0 and similarly for IRn

1 . Note that IRn may be decomposed as an or-
thogonal direct sum, IRn = IRn

T0 ⊕ IRn
T1. This allows us to specify the following

restrictions on Q(x).

DEFINITION 2. A (differentiable) PDA operator on IRn is an n × n-matrix oper-
ator Q(y), defined and continuously differentiable for y ∈ IRn, and satisfying the
following properties for x ∈ Sn with support T = T(x):

1. Q(x) maps IRn into IRn
T0.

2. Q(x)y = 0 for y ∈ IRn
T1.

5 These learning processes, in fact, unfold in discrete time, and PDA dynamics in continuous time.
However, results in the theory of stochastic approximation show that the two are linked. See Fudenberg
and Levine (1998, Ch. 4) for a survey of results on (stochastic) fictitious play and Hopkins (1999b) for
the connection in this context with PDA dynamics.
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3. Q(x) is positive definite on IRn
T0; i.e., y · Q(x)y > 0 for all y ∈ IRn

T0 with
y �= 0.

4. Q(x) is symmetric.

The dynamics (6) is called a (differentiable) PDA dynamics with payoff function
�, if �(x) is defined and continuously differentiable for x ∈ IRn, and Q(x) is a
differentiable PDA operator on IRn.

The long list of conditions should not hide the generality of the dynamics speci-
fied. The substantive conditions placed on Q are positive definiteness and symme-
try. Positive definiteness ensures that the vector of changes in strategy frequencies
ẋ is at less than a 90◦ angle to the vector of payoffs �(x). This is thus a very weak
formulation of the assumption that strategies with a high payoff grow at the ex-
pense of those with a lower return. Symmetry is naturally present in the learning
models considered here (see Hopkins, 1999a). It simply implies that the differ-
ent strategies receive equal treatment. More specifically, if an increase of some
amount �1 in the payoff to a strategy i leads to a reduction of the growth rate of
strategy j of �2, then symmetry requires that an increase of �1 in the payoff to j
would lead to a decrease of �2 in the growth rate of i .6

Property 1 is principally there so that x will continue to sum to one. However,
it also implies that no strategy present in the initial distribution will disappear in
finite time, nor will any new strategy be created. Thus, we will want to look at cases
where all prices are present in the initial distribution. This may seem somewhat
restrictive, but it should be remembered that any distribution, including those
where all firms charge the same price, can be approximated arbitrarily closely by a
distribution with full support. Second, this formulation does not prevent the limit
of the dynamic process being a state like the no-search outcome, where all sellers
charge the same price. Property 2 means that a mixed strategy equilibrium, that
is, where all strategies have the same return, is an equilibrium for the dynamic.

However, the fact that a Nash equilibrium is an equilibrium for some learning
dynamic does not mean that it will be asymptotically stable. As a consequence we
introduce the idea of evolutionarily stable strategy (ESS), a refinement on Nash
equilibrium. This concept originates in biology, where it is defined as a strategy
profile that is “uninvadable.” Agents playing some alternative strategy would not
be able to supplant agents playing the established equilibrium strategy. However,
despite its biological origins, it turns out to be a sufficient condition for stability
under many learning processes. It differs from Nash equilibrium in that it considers
deviations from equilibrium not just by individual agents, but also by small but
positive measures of the population.

The conditions for a state φ to be an ESS are first that φ should be a Nash
equilibrium, and second that if there is an alternative best reply to φ, then φ

should do better against such an alternative than that alternative does against
itself. In terms of our (possibly nonlinear) payoff function �, these conditions
may be expressed formally as

6 Positive definiteness without symmetry would generate dynamics that Friedman (1991) calls “weak
compatible.” Friedman shows that ESSs may be unstable under such dynamics and therefore Propo-
sition 2 does not hold without symmetry.
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φ · �(φ) ≥ x · �(φ) for all x ∈ Sn(7)

and for all x ∈ Sn for which equality holds in (7)

φ · �(x) > x · �(x)(8)

What this last condition implies is a kind of concavity of the payoff function. For
example, if � is linear, such as the payoff matrix for a normal form game, then (8)
implies that (x − φ) · �(x − φ) < 0 for any alternative best response x (because
(x − φ) · �(φ) = 0). Now, as x and φ are both vectors whose components sum to
unity, z = x − φ is an element of IRn

0 . It therefore follows from these observations
that � must be negative definite on IRn

T0 where T is the support of φ.
When � is not linear, we shall, instead of (8), require the related condition

that the linear approximation at the equilibrium point, given by the derivative
�′

φ = d�
dx (φ), be negative definite on IRn

T0. That is,

z · �′
φz < 0 for all z ∈ IRn

T0 with z �= 0(9)

As we have seen, when � is linear, (8) implies (9), but only a restricted converse
holds: (9) implies (8) only for alternative best replies having support subordinate
to T. In general, for nonlinear payoff functions, neither of these implications is
valid. However, it can be shown that the second implication is valid locally. That
is, condition (9) implies that there is a neighborhood of φ in Sn, such that (8) holds
for any alternative best reply in this neighborhood with support subordinate to T.
In any case, (9) is a weaker condition than (8). We therefore introduce, by way
of compensation, the following refinement of Nash equilibrium, specifically with
nonlinear payoff functions in mind.

DEFINITION 3. A point φ ∈ Sn is a regular ESS with respect to the differentiable
payoff function �, if conditions (7) and (9) are satisfied, and also

�i (φ) < π∗ for i /∈ T(10)

where T is the support of φ, and π∗ = φ · �(φ) is the equilibrium payoff.

Condition (10) means that any strategy not in support of φ receives a strictly
lower return than those that are. Thus, every alternative best reply to φ has support
subordinate to T, which, as observed above, means that (9) and (10) imply (8),
at least locally. In the special case in which φ is a pure strategy, T contains only
one point and IRn

T0 = {0}. Thus, condition (9) does not apply, and a pure-strategy
regular ESS is just a strict Nash equilibrium.

Clearly a regular ESS is a Nash equilibrium, and thus is a stationary point of any
PDA dynamics. Furthermore, the following fundamental result holds. The proof
of this result (and all subsequent results) is in the Appendix but the intuition is that
PDA dynamics shift strategies in the direction of better responses. Thus, strategies
not in the support of φ will tend to decrease in frequency because of (10), and will
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eventually disappear. On the other hand, strategies in support of φ constitute an
(local) ESS, and so φ is resistant to small perturbations from equilibrium.

PROPOSITION 2. A regular ESS for a (possibly nonlinear) differentiable payoff
function � is a locally asymptotically stable stationary point for any differentiable
PDA dynamics (6) with payoff function �.

We shall also be interested in conditions under which a Nash equilibrium φ is
unstable with respect to a general PDA dynamics. If, for example, the derivative
�′

φ is positive definite on IRn
T0, then the mixed equilibrium will be unstable for all

PDA dynamics. But it is also possible to show that if �′
φ is neither positive nor

negative definite, then the equilibrium will be unstable for some PDA dynamic.

PROPOSITION 3. Let φ ∈ Sn be a Nash equilibrium with support T for the payoff
function �. If �′

φ is positive definite on IRn
T0, then φ is unstable under all PDA

dynamics. Suppose �′
φ is neither positive nor negative definite; then there is a non-

empty class of PDA operators, such that φ is unstable under the PDA dynamics (6)
defined by any Q in this class.

In fact, the class of PDA operators referred to in Proposition 3 is very large, even
when there is only a one-dimensional subspace of IRn

T0 on which �′
φ is positive

definite. Of course, if T contains only two elements, then IRn
T0 is one-dimensional,

so the hypothesis of Proposition 3 implies that φ is unstable for any PDA dynam-
ics. In the even simpler case in which φ is a pure strategy, then IRn

T0 = {0}, and
so Proposition 3 cannot apply. However, our main interest is in dispersed price
equilibria, which are mixed strategy equilibria. These we now investigate.

4. DERIVING A STABILITY CONDITION

As Burdett and Judd themselves suggested,

Examples of further possible work include stability analysis which may give further
information concerning the durability of equilibrium price dispersion and reduce the
multiplicity of equilibria in the nonsequential model. (1983, p. 967)

In this section, we do indeed carry out a stability analysis, for the fixed sample
size model of Burdett and Judd, their model of noisy sequential search, Varian’s
model of sales, and indeed any market model that has the RSP property. For now,
we consider only the behavior of sellers, treating consumer behavior as fixed. More
specifically, we assume that for both Models I and II, the distribution of consumer
behavior {qk} is constant and 0 < q1 < 1, so that a dispersed price equilibrium
exists for sellers. We go on to treat the problem of consumer dynamics in Section 6.

In the previous section, we introduced the idea of modeling learning dynamics
as a positive definite transformation of payoffs. However, to deal with Models
I and II within the conceptual framework of the learning theory introduced in
the previous section, we must confront the fact that these models are formulated
for a continuum of prices, whereas our learning models were described only for
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finite strategy sets. We could proceed either by approximating the market game
models of Section 2 by finite-dimensional games over a finite set of prices, or by
introducing an infinite-dimensional version of the learning theory of Section 3.7

We take a hybrid approach that requires some words of justification.
The most common approach to learning with a continuum of strategies has been

to take a discrete approximation to the strategy space. This is undoubtedly more
simple, and is to be recommended if one is concerned with equilibria that are pure.
A pure equilibrium in a game of continuum of strategies will typically remain an
equilibrium in a game that is a discrete approximation. However, the models of
price dispersion we are concerned with have mixed strategy equilibria that consist
of continuous distributions. Of course, if only a finite number of prices were al-
lowed, it would be possible to construct a discrete distribution that approximated
the original equilibrium. But it is not guaranteed that this approximation would
be an equilibrium of the discrete game with a finite number of strategies.8 Yet, the
other possible approach, truly infinite-dimensional dynamics, offers a host of com-
plications. We would argue that our framework allows us the “best of both worlds.”

Our dynamics are finite dimensional, but the use of some aspects of the Hilbert
space L2 allows us to determine stability of equilibrium by the evaluation of a
single integral rather than the daunting prospect of determining the eigenvalues
of an arbitrarily large matrix. We have shown in Proposition 2 that with a finite
number of strategies, a mixed strategy equilibrium will be locally asymptotically
stable if the linearization of the profit function is negative definite. That is, the sign
of the quadratic form z · �′

φz = ∑
zi (�′

φz)i determines stability. Similarly here, if
we construct an alternative price distribution f (p) close to the equilibrium distri-
bution φ(p), then over time the distribution of prices will approach φ(p) if, letting
z= f − φ, the integral

∫
z(p)�′

φz(p) dp is negative. Finally, this in turn means that
there is a relatively simple condition on the demand function, given in Proposi-
tion 4, that determines whether this integral will be positive or negative, and hence
whether the mixed equilibrium will be unstable or stable. The interpretation of
this condition is discussed in Section 5.

In effect, what we assume is that buyers, faced with a price distribution with
continuous support, round up any prices in fractions of pennies mentally to the
nearest penny. That is, insofar as customers can “see” such small price differences,
they can only respond rather crudely in their buying behavior, in terms of prices
set in finite units. Because of this, sellers have no incentive to make price changes
below this unit threshold. Thus, assuming a large, but finite number of equally
spaced prices, and from here on that p∗ is normalized to 1, 0 < p1 < p2 < · · · <

pn = p∗ = 1, we define the finite-dimensional approximation to the profit operator
� by

�n( f )(p) = �n
i ( f ) = n

∫ pi

pi−1

r D(F(r)) dr for pi−1 < p ≤ pi (1 ≤ i ≤ n)(11)

7 Examples of evolutionary dynamics with continuous strategy spaces are to be found in Friedman
and Yellin (1997) Oechssler and Reidel (2001), and Seymour (2000).

8 For a fine enough grid and for an ε > 0, no price in the support of the discrete equilibrium would
earn a profit more than ε greater than any other. But a mixed equilibrium demands equality.
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That is, the profit to a seller charging p in a market characterized by the density
f and associated distribution function F is the average over the price interval
pi−1 < p≤ pi of the profits obtained from all possible prices in the interval (given
the differentiable demand function D).9 This means that when we consider the
stability of a dispersed price equilibrium we only have to deal with deviations
from that equilibrium that involve changes above the unit threshold. Hence, the
dynamics will be finite dimensional.

Nonetheless, as previously mentioned, we do make some use of the infinite-
dimensional function space E = L2[0, 1]. This is the linear space of those real-
valued functions f (p) that are square integrable on [0, 1]; i.e.,

∫ 1
0 f 2(p) dp < ∞.

Then E is a Hilbert space with inner product 〈 f, g〉 = ∫ 1
0 f (p)g(p) dp. The associ-

ated norm is ‖ f ‖ = 〈 f, f 〉 1
2 . Of course, we will be particularly interested in the sub-

set of probability density functions, SE = { f ∈ E : f ≥ 0, and
∫ 1

0 f (p) dp = 1}.
Thus, functions f ∈ SE define the allowable price distributions. Equation (2) then
defines a profit function,�( f ) ∈ E, given by�( f )(p) = pD(F(p)). As outlined in
Section 2, a dispersed price equilibrium in both Models I and II takes the form of an
equilibrium probability density function φ that is nonzero on an interval T = [p, 1]
called the support of φ as defined in Lemma 1. Finally, let �(p) = ∫ p

0 φ(r) dr .
We now consider a PDA dynamics for the profit function (11), defined for any

f ∈ E, but with a fixed number n of prices

ḟ = Q( f̂ )�n( f ) f ∈ E(12)

where f̂ = ( f̂ 1, . . . , f̂ n) is the associated finite probability distribution over prices,
f̂ i = ∫ pi

pi−1
f (r) dr , and Fi = ∑

j≤i f̂ j = F(pi ). Thus, Q( f̂ ) is a finite-dimensional,
differentiable PDA operator, as in Definition 2. In particular, any x ∈ IRn de-
fines an element of E by x(0) = 0, and x(p) = nxi for pi−1 < p≤ pi . Then the
associated cumulative function is X(p) = ∫ p

0 x(r) dr = X(pi−1) + xi n(p − pi−1)
for pi−1 < p≤ pi . Thus, X(pi ) = Xi = ∑

j≤i x j gives the cumulative distribution
associated with the vector x, and x̂i = ∫ pi

pi−1
x(p) dp = xi recovers the vector x from

its functional form. It follows that (12) defines a PDA dynamics on IRn,

ẋ = Q(x)�n(x) x ∈ IRn(13)

with profit function

�n
i (x) = n

∫ pi

pi−1

pD(X(p)) dp(14)

Nevertheless, it will be convenient to retain the infinite-dimensional formulation
(12), principally because it is technically easier to work with the continuous density

9 Note that, because prices are equally spaced, pi − pi−1 = 1
n , so that 1

/
(pi − pi−1) = n, which

explains the factor n in front of the integral in (11).
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φ ∈ SE, rather than just the associated equilibrium distribution φ̂ ∈ Sn. This tech-
nicality centers around the fact that the cumulative distribution �(p) = ∫ p

0 φ(r) dr
is not equal to the cumulative function �̂(p), derived from the finite probability
distribution φ̂ = (φ̂1, . . . , φ̂n), with φ̂i = ∫ pi

pi−1
φ(r) dr . Of course, the equilibrium

condition (3), that all prices in the support of the equilibrium earn the same profit,
holds for the continuum of prices p ∈ T. But it does not hold with �(p) replaced
by �̂(p). Because of this, profits generated by the discrete approximation �n(φ̂)
will not be equal to �n(φ). Consequently, the discrete distribution φ̂ need not be
even a stationary point of the dynamics (13). For this reason, our strategy will be
to start with the infinite-dimensional space E and project to a finite-dimensional
IRn, as in (11) and (12), rather than to work with dynamics that are explicitly finite
dimensional, as in (13) and (14).

It is the stability of the dispersed price equilibrium φ ∈ SE, regarded as a
stationary point of the dynamics (12), which we investigate in the remainder
of this section. More precisely, for z ∈ IRn

0 = {y ∈ IRn :
∑

i yi = 0}, we may de-
fine f = φ + z ∈ E, where, as above, the vector z is identified with the function,
z(p) = nzi for pi−1 < p≤ pi . Then

∫ 1
0 f (p) dp = 1, and hence there is a subset

Sn(φ) ⊂ IRn
0 consisting of those z for which f is a probability density function; i.e.,

for which φ + z ≥ 0. We now use the dynamics (12) to define a PDA dynamics on
IRn

0 , relativized at φ, by

ż = γ n(z) = Q(φ̂ + z)�n(φ + z) z ∈ IRn
0(15)

under which Sn(φ) is invariant, and that has a stationary point at z = 0. We shall
find conditions under which z = 0 is locally asymptotically stable, and conditions
under which it is unstable, with respect to the dynamics (15) restricted to Sn(φ).

Our main result of this section can now be stated. Recall that T = [p, 1] is
the support of φ, with p = pn. We also use T to denote the associated finite set
{n, n + 1, . . . , n}.

PROPOSITION 4. Suppose the demand function D(F) is twice differentiable (al-
most everywhere) for F ∈ [0, 1], and define

�(F) = D′′(F)D (F) − D′(F)2(16)

Then:

(a) If �(F) > 0 for (almost) all F ∈ [0, 1], the derivative of the profit function
(11), �n

φ
′, is negative definite on IRn

T0, and the dispersed price equilibrium
at z = 0 is a regular ESS, and hence is a locally asymptotically stable equi-
librium of the dynamics (15).

(b) If �(F) < 0 for (almost) all F ∈ [0, 1], the derivative of the profit func-
tion (11), �n

φ
′, is positive definite on IRn

T0, and hence the dispersed price
equilibrium at z = 0 is unstable under the dynamics (15).
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5. STABILITY UNDER SUFFICIENT IGNORANCE

In this section, we use the condition we have just derived to examine whether
there are any dispersed price equilibria of the models we consider that are in fact
asymptotically stable. We find that the set of stable equilibria, although not empty,
is rather smaller than the set of unstable equilibria. Furthermore, it is characterized
by a condition that we could call “sufficient ignorance.” That is, one has stability
only when the average amount of information held by consumers is small.10

To see this, remember the condition for stability derived in Proposition 4 is that
the function �(F) = D′′(F)D(F) − D′(F)2 must be positive. Second, remember
from our discussion in Section 2 that results from RSP games suggested that
stability would be inversely related to the severity of price competition. Obviously
D′(F), the slope of the demand curve, represents one possible measure of price
competition. Furthermore, one can see that the larger it is in absolute value, the
less likely it is that the stability condition will be met. We will see below that in
both Models I and II, the absolute value of D′(F) is increasing in the proportion
of informed consumers. Ignorance certainly promotes stability, if not bliss.

There is another effect we can identify. The condition for stability (16) will more
likely be satisfied if D′′(F) is large and positive. This would mean that the demand
curve in terms of F would be relatively steep around p and relatively flat near
p∗. This initial steepness implies that the premium in sales for the very lowest
price over those near the lowest is particularly large. This is roughly equivalent
to the payoff from winning being large in RSP games. The later flatness could be
compared to the penalty for failing to be the cheapest, “losing,” not being large.
Both effects, as noted in Section 2, would tend to lead to stability. We now examine
when exactly our models of price dispersion satisfy the criterion (16).

Model I. From the definition of Model I in Section 2 and, in particular, the
demand function (4), we obtain

D(F) = q1 + N(1 − q1)(1 − F)N−1

D′(F) = −(1 − q1)N(N − 1)(1 − F)N−2

D′′(F) = (1 − q1)N(N − 1)(N − 2)(1 − F)N−3

Immediately, we can see that D′′(F) = 0 for the case N = 2, so that �′ must
be positive definite. However, we are principally interested in the case when N is
large. When N > 2, the condition for the linearization of the profit function to be
negative definite boils down to

(1 − q1)N(N − 1)(1 − F)N−3[q1(N − 2) − (1 − q1)N(1 − F)N−1] > 0

for all F ∈ [0, 1]. However, this holds if and only if it holds for F = 0. Then we
have

10 Though clearly at least some consumers need to be informed or else we would have the Diamond
outcome.
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q1 >
N

2(N − 1)

That is, for the dispersed price equilibrium to be stable, the proportion of unin-
formed has to be sufficiently large. As N goes to infinity, the minimum proportion
falls to one half. One can also calculate that if the above inequality is not met,
then �′ is neither positive nor negative definite.

Model II. We classify distributions, q = {qk}, for which �(F) is positive or
negative. To keep things as simple as possible, we shall only consider the case in
which qk = 0 for k > 3. Then, given the original demand function (5)

D(F) = q1 + 2q2(1 − F) + 3q3(1 − F)2

D′(F) = −2q2 − 6q3(1 − F)

D′′(F) = 6q3

and the condition for stability that �(F) > 0 reduces to

2q2
2 − 3q1q3 + 6q2q3(1 − F) + 9q2

3 (1 − F)2 < 0 for all F ∈ [0, 1]

Again, this holds if and only if it holds for F = 0; i.e., if and only if

2q2
2 − 3q1q3 + 6q2q3 + 9q2

3 < 0

Substituting q3 = 1 − q1 − q2, this condition reduces to

H(q1, q2) = 12q2
1 + 15q1q2 + 5q2

2 − 21q1 − 12q2 + 9 < 0(17)

We now note that H(q1, q2) = 0 is the equation of an ellipse in the (q1, q2)-plane
(with center at (2, − 9

5 )), and that (17) holds for points in the interior of this ellipse.
The points of interest are therefore in the intersection of the ellipse with the
projection of the (q1, q2, q3)-simplex onto the (q1, q2)-plane. It is this intersection
that is labeled “Stable” in Figure 1. Clearly it is nonempty. Also, observe that the
values of q1 in the stable region all satisfy q1 > 2

5 (5 − √
10) ≈ 0.74. That is, q1 must

be fairly large. However, stability also requires the presence of some well-informed
consumers, that is, q3 must be greater than zero.

The points in the interior of the (q1, q2)-simplex that lie outside the ellipse
H(q1, q2) = 0, given in (17), all give rise to unstable dispersed price equilibria.
Those equilibria that are strictly positive definite satisfy (17) with the inequality
reversed. A similar argument to the one used above shows that such points lie
outside the ellipse in the (q1, q2)-plane, 3q2

1 + 3q1q2 + 2q2
2 − 3q1 = 0. This ellipse

is the curve that separates the purely unstable region (see Figure 1) from the rest.11

11 In the intermediate area, the linearization of the profit function �′ would be neither negative nor
positive definite, and any equilibrium would be unstable under some PDA dynamic by Proposition 3,
a result that is discussed further at the end of the next section.
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FIGURE 1

DISTRIBUTIONS FOR WHICH EQUILIBRIA ARE NEGATIVE DEFINITE

If one looks at the results on Models I and II, one thing is apparent. The condi-
tions for stability effectively demand a sufficient level of ignorance. In Model I, the
proportion of the uninformed has to be relatively high; in Model II, the average
number of prices known has to be close to 1. This in turn means, as p is endogenous,
that for stable equilibria, prices will be relatively concentrated near p∗.

6. CONSUMER DYNAMICS

We now examine what happens if we remove the assumption that consumer
behavior is fixed and assume instead that it follows a learning process similar to
that we have analyzed for sellers. One might wonder how the results of the previous
two sections might change. Will consumer learning stabilize equilibria that are
unstable under seller dynamics alone? Is there a possibility of joint stability? As
we shall see, the answers to both questions are negative.12 We first characterize the
dynamics for consumers. We then show that the Diamond no-search outcome is
locally stable under the joint dynamics. We go on to characterize the possible
dispersed price equilibria and show that they cannot be robustly stable under the
joint buyer–seller dynamic.

12 This does not follow from the standard results on the instability of mixed-strategy equilibria in
asymmetric games, which apply only to games with linear payoffs.
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Let f (p) be the price distribution for sellers, and q = (q1, q2, . . . , qN) be the pro-
portion of consumers having 1, 2, . . . , N price quotations, respectively. In Model I,
all elements of q are 0 except q1, the proportion uninformed, and qN, the propor-
tion informed. In Model IIa, N is an integer large enough so that qk = 0 for k > N.
Let c > 0 be the fixed cost per quotation. We do not consider Model IIb in this
section because in that model, the distribution of consumer information {qk} is
exogenous.

We will analyze general consumer dynamics of the form

q̇ = R(q)K( f ) ( f, q) ∈ E × IRN(18)

where R is the PDA operator for consumers. Here, R(q) is an N × N matrix, and
K( f ) ∈ IRN gives the consumers’ payoffs when sellers use the price distribution f .
More precisely, the expected payoff to a consumer in possession of k quotations
(the convention is that the first quotation is free) is −(k − 1)c − ∫ 1

0 f (p)kp[1 −
F(p)r ]k−1 dp ≡ Kk( f ). These payoffs and hence the dynamics (18) are defined in
terms of a continuous price distribution f . However, as explained in Section 4, we
can restrict these dynamics to a finite number of dimensions in the neighborhood
of an equilibrium.

As discussed in Section 2, the Diamond equilibrium for sellers is the mass
point distribution at which all firms charge the maximum price p = 1. As it is a
strict Nash equilibrium, one would expect it to be locally stable under learning.
However, to show this, certain technical difficulties have to be overcome. Whereas
up to now we have been working with continuous density functions, the Diamond
equilibrium is the Dirac delta-function at p = 1, defined to be the continuous
linear operator on (bounded, measurable) functions given by δ1 f = f (1). The
full Diamond equilibrium for sellers and consumers is the pair (δ1, e1), where e1 =
(1, 0, . . . , 0) ∈ IRN is the sample distribution for consumers. That is, all consumers
sample only once (are uninformed in Model I). We can show that this equilibrium
is indeed locally asymptotically stable.

PROPOSITION 5. The subspace f = δ1 is invariant and locally attracting under the
joint seller–consumer dynamics. Within this subspace, the Diamond equilibrium
q = e1, is globally asymptotically attracting for all initial conditions other than a
finite set of unstable isolated equilibria of the consumer dynamics.

Having considered the Diamond equilibrium, we now look at the possible sta-
bility of dispersed price equilibria under the joint seller–consumer dynamics. We
can show that there exists a distribution of prices and a value of q1 such that for
both Models I and IIa, buyers and sellers are simultaneously in equilibrium. In
Model I, buyers have to choose whether to be informed at a cost c before they
purchase, and in Model IIa, they must choose how many prices to sample each at
a cost c. Thus, whereas in Model I buyers have effectively two strategies to choose
between, in Model IIa, they potentially have many. However, Burdett and Judd
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(1983) show that in Model IIa, a joint dispersed price Nash equilibrium is only
possible when consumers sample at most two prices.

This follows from the fact that an equilibrium q∗ for consumers must give an
equal return for the different levels of search in the support of q∗: The benefit
of each additional search must equal its cost c. However, there are decreasing
returns to search. That is, the reduction in expected price from one further search
is decreasing in the number of searches, or in other words, the expected price
paid is a convex decreasing function of k. Hence, if the benefit of a second search
over the first is c, the benefit of the third is less than c, and consumers cannot
be indifferent between one, two, and three searches. Finally, a dispersed price
equilibrium for sellers is only possible if 0 < q1 < 1, so a joint equilibrium is only
possible where q1 + q2 = 1.

In view of these remarks, we restrict attention to the case in which q = (q1, 1 −
q1), with 0 ≤ q1 ≤ 1. In this case, the properties of PDA operators imply that the
consumer dynamics (18) are equivalent to a one-dimensional dynamics of the
form

q̇1 = ρ(q1)(c − V(F))(19)

where c > 0 is a constant, giving the cost of being informed in Model I and the
cost of moving from one to two quotations in Model IIa. The function ρ(q1) is a
scalar-valued PDA operator, positive for 0 < q1 < 1, with ρ(0) = ρ(1) = 0. The
function V(F) is defined as

V(F) =
∫ 1

0
pf (p) dp −

∫ 1

0
pf (p)N [1 − F(p)]N−1 dp(20)

=
∫ 1

0
[1 − F(p)] dp −

∫ 1

0
[1 − F(p)]N dp

(the second equality follows on integration by parts). The function V(F) gives
the expected difference in price paid in Model I between an uninformed and an
informed buyer. In Model IIa for N = 2, it gives the expected difference in price
paid by a buyer searching once and a buyer searching twice. A mixed equilibrium
for buyers, therefore, is a distribution of prices F such that V(F) = c. That is, given
sellers’ behavior, buyers are indifferent between being informed and uninformed.

The task is to find a joint equilibrium. From (3), for fixed 0 < q1 < 1, there is a
unique equilibrium for sellers given by

�(p) =

 1 −

(
q1(1 − p)

N(1 − q1)p

) 1
N−1

for p ≤ p ≤ 1

0 for 0 ≤ p < p
(21)

where

p = q1

q1 + N(1 − q1)
(22)
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FIGURE 2

EQUILIBRIA FOR CONSUMERS

Substituting this into (20), we obtain V(�). Note that if we can find a value of q1

such that V(�) = c, we have a joint equilibrium between buyers and sellers. In the
following proposition, we show V(�) to be concave. Consequently, generically,
for a given equilibrium level of prices, and provided that c is not too high, two such
values of q1 will exist. These we label (q

1
, q̄1). This result is illustrated in Figure 2.

There is another equilibrium, the Diamond outcome with q1 = 1 and all sellers
charging p∗ = 1.

PROPOSITION 6. In Models I and IIa, for c > 0 and fixed N ≥ 2, there is at least
one and at most three values of q1 > 0 such that buyers and sellers are simultaneously
at equilibrium. One of these is the Diamond equilibrium q1 = 1.

We now address the stability of the these equilibria. Given the results of the
last section, we know that for Model IIa, the linearization of the sellers’ profits at
both equilibria will be positive definite (because for these equilibria to exist, qk =
0, k > 2). We confirm that this dooms stability under the joint dynamic. However,
for Model I, the prospects look more hopeful. The a priori candidate for stability
would be the mixed equilibrium with the higher proportion of uninformed, that
is, (φ, q̄1), which potentially would satisfy our condition of sufficient ignorance.
However, we can show that this equilibrium too is unstable. The essence of the
argument can be seen in Figure 2, to the right of q̄1, that is, when there are slightly
more uninformed consumers than in equilibrium, c > V(q1). Or, in other words,
the return to search is less than its cost. So the number of uninformed consumers
will tend to increase in the direction of the no-search Diamond outcome.
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PROPOSITION 7. Consider Models I and IIa. For c > 0, N > 2, and n sufficiently
large, a dispersed price equilibrium is unstable for the joint seller–consumer dynam-
ics defined by some nonempty class of pairs of PDA operators (Q, R). For N = 2,
a dispersed price equilibrium is unstable for all PDA seller–consumer dynamics.

For N = 2, the result is conclusive: Any dispersed price equilibrium, includ-
ing, for example, the equilibrium constructed by Burdett and Judd (1983) (here
Model IIa), is unstable under any PDA learning dynamic. For N > 2, there is insta-
bility of dispersed price equilibria under some PDA dynamics but not necessarily
all. However, we would argue that it is very difficult to be confident about exactly
how people learn and so stability results that only hold for one type of learning
must be suspect. This is because stability and instability are asymmetric. In these
games with large numbers of players, it would only need a positive measure of
agents to adopt a learning rule for which the equilibrium was unstable to destabi-
lize the equilibrium as a whole. In contrast, for an equilibrium that is not robustly
stable to be an attractor, it would require all agents to adopt an appropriate rule.

7. CONCLUSION

We have shown that the market pricing models that we consider are in many
ways like Rock–Scissors–Paper games, both in terms of their equilibria and the
learning behavior they induce out of equilibrium. We have developed techniques
to determine the stability of dispersed price equilibria under learning. We have
shown that most such equilibria are in fact unstable. The ones that survive
are where average consumer information is low and where prices are close to
the monopoly level. Finally, once consumer learning is introduced, even these are
unstable.

Once again we have a problem. We continue to see price dispersion on an
everyday level. Indeed, recent research (Brynjolfsson and Smith, 1999) shows this
is just as true for internet-based sellers as it is for conventional retailers. However,
it remains enormously difficult to construct dispersed price equilibria that are not
extremely fragile. The possible exception is Model IIb, where search is noisy, and
the flow of information to consumers is exogenous and so perhaps higher than they
would choose themselves. Even there, stability of equilibrium is only possible in
a relatively small area of the parameter space.

What this article leaves open is price dispersion as a disequilibrium phe-
nomenon. In particular, one can think of a constant flow of new consumers who
search more frequently than they would with experience.13 Or one can imagine
price cycles that never converge to any equilibrium. What evidence is there of such
behavior? One difficulty is that although the collection of evidence of dispersed
prices is common, explicit comparison with the predictions of particular models
is rare. Cason and Friedman (2000) test the noisy search model of Burdett and
Judd (1983) (our Model IIb) experimentally. Prices chosen by their experimental
subjects were not generated by a mixed strategy in that there was strong serial

13 One recent paper very much in this spirit is by Haruvy and Erev (2000).



PRICE DISPERSION UNDER LEARNING 1179

correlation. Rather, prices seem to follow cycles that match the pattern of best
responses present in the Rock–Scissors–Paper structure. That is, prices fall in a
manner reminiscent of Bertrand undercutting, but then when prices reach the
minimum we call p, prices jump back up again. It is difficult to say in the time
scale of the experiments whether the cycles are convergent or divergent.

This suggests two paths for future research. First, further empirical or experi-
mental investigation might reveal whether existing equilibrium models of price
dispersion explain the data well, or whether nonequilibrium approaches fare bet-
ter. Second, on a theoretical level, the models we investigate here rely heavily
on homogeneity assumptions. One can speculate whether learning in an environ-
ment such as that proposed by Benabou (1993) with heterogeneity among both
buyers and sellers would fare better. But what we have shown here is that, ironi-
cally, learning by consumers can lead to the Diamond equilibrium and monopoly
prices.

APPENDIX

PROOF OF PROPOSITION 2. Before proving Proposition 2, we need a lemma,
which shows that a PDA operator satisfies an apparently stronger positivity con-
dition than Property 3.

NOTATION 1. For x ∈ Sn and y ∈ IRn, let Varx(y) = x · y2 − (x · y)2 be the vari-
ance of y with respect to the probability distribution x. For T ⊆ {1, 2, . . . , n}, let
ST = {x ∈ Sn : support(x) = T}, and take ei = (0, . . . , 1, . . . 0) ∈ IRn to be the vec-
tor having 1 in the ith coordinate and zero elsewhere. Let eT = ∑

i∈T ei , and write
e = ∑n

i=1 ei .

LEMMA A. Let Q be a PDA operator on IRn. Then there is a constant m > 0
(depending only on Q), such that, for all x ∈ Sn, y ∈ IRn,

y · Q(x)y ≥ mVarx(y)

PROOF. Let T be the set of triples (T, x, u) where T ⊆ {1, 2, . . . , n}, x ∈ ST

and u ∈ IRn
T satisfies x · u = 0 and |u| = 1. Then T is a compact subset of

P{1, 2, . . . , n} × Sn × IRn, where PX denotes the power set of X. If Q is con-
tinuously differentiable, the function u · Q(x)u is continuous on T . By Properties
1, 2, and 3 of PDA operators, u · Q(x)u ≥ 0, with equality if and only if u is con-
stant on T = T(x). However, if ui = c for i ∈ T, then 0 = x · u = cx · e = c, since
x · e = 1, so u is zero on T, and hence u = 0 because u ∈ IRn

T . This contradicts
|u| = 1. It follows that u · Q(x)u > 0 on T . Let m = infT {u · Q(x)u}. Then m > 0
by the compactness of T . It now follows that y · Q(x)y ≥ m|y|2, for any y ∈ IRn

T
with x · y = 0.

Next, observe that Varx(y) = x · y2 = ∑
i xi y2

i ≤ ∑
i y2

i = |y|2. Hence, y ·
Q(x)y ≥ mVarx(y) for all y ∈ IRn

T with x · y = 0. For general y ∈ IRn
T , we have y′ =

y − (x · y)eT satisfies y′ ∈ IRn
T and x · y′ = 0 (because x · eT = 1). Thus, by Proper-

ties 1 and 2 of PDA operators, y · Q(x)y = y′ · Q(x)y′ ≥ mVarx(y′) = mVarx(y).
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Finally, consider an arbitrary y ∈ IRn. Write y = yT + z, where yT ∈ IRn
T , and z

is zero on T. Then x · y = x · yT and Varx(y) = Varx(yT). Also, z ∈ IRn
T1, and hence

Q(x)z = 0 by Property 2 of PDA operators, which also, by Property 4, implies that
z · Q(x) = 0. Hence, y · Q(x)y = yT · Q(x)yT , and the general result follows. �

We now proceed with the proof of Proposition 2. Recall that the derivative
of the vector-valued profit function, �(x), at a point x ∈ IRn, is the matrix �′

x,
defined by

�′
x y = lim

ε→0

1
ε

{
�(x + εy) − �(x)

}
y ∈ IRn(A.1)

Similarly, the derivative of the matrix-valued PDA operator, Q(x), at a point
x ∈ IRn, is the bilinear function, Q′

x, defined by

Q′
x(y, z) = lim

ε→0

1
ε

{
Q(x + εy)z − Q(x)z

}
y, z ∈ IRn(A.2)

By the product rule, we therefore obtain the Jacobian derivative, Jx, for the PDA
dynamics (6),

Jx y = [Q�]′x y = Q(x)�′
x y + Q′

x (y, �(x))(A.3)

Let T be the support of φ. Note first that that the restriction of Jφ to IRn
T0 will,

by (A.2) and Property 2 of PDA operators, be equal to Q(φ)�′
φ . Since �′

φ is
negative definite, and Q(φ) is symmetric and positive definite on IRn

T0, it follows
from a theorem of Hines (1980, pp. 348–49) that this restriction of Jφ to IRn

T0 has
only eigenvalues with negative real part. Hence, φ is locally asymptotically stable
under the restriction of the dynamics to ST . If T contains m ≥ 1 elements, this
implies that the stable manifold of φ has dimension ≥ m − 1. If m = n (i.e., φ has
full support), we are home. If m < n, we proceed by induction by successively
adding faces of Sn to the stable manifold. To do this, proceed as follows:

Choose a sequence T = T0 ⊂ T1 ⊂ . . . ⊂ Tn−m = {1, 2, . . . , n}, with Tr contain-
ing m + r elements. Suppose, inductively, that φ is locally asymptotically stable
under the restriction of the dynamics (6) to Sr = STr . We must show that φ is
locally asymptotically stable under the restriction of the dynamics to Sr+1.

Let α = π∗e − �(φ). Then from Definition 3, αi = 0 for i ∈ T and αi > 0 for
i /∈ T. In particular, α ∈ IRn

T1. It follows that, for x ∈ Sn, α · x = 0 if and only if
x ∈ ST . From (A.1) and Properties 3 and 4 of PDA operators, we have, for z ∈ IRn

0 ,

α · Jφz = α · Q′
φ(z, �(φ)) = −α · Q′

φ(z, α)(A.4)

To estimate the right-hand term, consider Sφ = {x − φ : x ∈ Sn}. Then, α · Q(φ +
z)α ≥ 0 for each z ∈ Sφ , by Property 3 of PDA operators, with equality if and only
if α is constant on the support of φ + z, by Property 2. Note that zi ≥ 0 for i /∈ T.
By Lemma A, there is a constant m > 0, such that α · Q(φ + z)α ≥ mVarφ+z(α).
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Hence,

1
ε
α · Q(φ + εz)α ≥ m

1
ε

Varφ+εz(α) = m(α2 · z) + O [ε]

the latter equality since α · φ = α2 · φ = 0 and z ∈ IRn
0 . In the limit ε → 0, we

therefore obtain

α · Q′
φ(z, α) ≥ �(α · z)(A.5)

where � = mα∗ > 0, with α∗ = min{αi : i /∈ T}.
Let Ur be a neighborhood of φ in Sn such that Sr ∩ Ur is contained in the stable

manifold of φ. Suppose that the unstable or center manifold of φ has a nonempty
intersection with (Sr+1 − Sr ) ∩ Ur . Then, since Sr has dimension m + r − 1, and
Sr+1 has dimension m + r , the unstable or center manifold in Sr+1 ∩ Ur can be at
most one-dimensional. Since Sr+1 and Sr are invariant under the dynamics, this
implies that Jφ has a real eigenvalue λ ≥ 0, and a real eigenvector v with φ + v ∈
Sr+1. By hypothesis v /∈ Sr , and hence α · v > 0. Thus, α · Jφv = λ(α · v) ≥ 0. But,
by (A.4) and (A.5), α · Jφv ≤ − �(α · v) < 0. This is a contradiction. We conclude
that the unstable or center manifolds do not intersect Sr+1, and hence that there
is a neighborhood Ur+1 ⊆ Ur of φ in Sn such that Sr+1 ∩ Ur+1 is contained in the
stable manifold. The result now follows by induction. �

PROOF OF PROPOSITION 3. If �′
φ is positive definite on IRn

T0, then the restriction
of Q(φ)�′

φ to IRn
T0 has only eigenvalues with positive real part, by the theorem

of Hines (1980, pp. 348–49). On the other hand, if �′
φ is not negative definite on

IRn
T0, then by the same theorem, there is a positive definite symmetric operator A

on IRn
T0 such that AP�′

φ has an eigenvalue with positive real part on IRn
T0, where

P : IRn → IRn
T0 ⊂ IRn is the standard orthogonal projection. We shall extend any

such Ato a PDA operator, Q(x), on IRn so that Q(φ) = AP. We do this by starting
with any PDA operator, Q̃(x), on IRn and modifying it locally in a neighborhood
of φ.

For δ > 0, let Bδ(φ) ⊂ IRn be the open ball of radius δ, centered at φ. Choose δ

sufficiently small so that T ⊆ T(x) for all x ∈ Sn ∩ Bδ(φ). Let µ : IRn → [0, 1] be
a bump function at φ; i.e., µ is continuously differentiable and satisfies

(a) µ(y) = 0 for y /∈ Bδ(φ)
(b) µ(φ) = 1
(c) 0 < µ(y) < 1 for y ∈ Bδ(φ) − {φ}

Now define a modified operator Q by

Q(y) = (1 − µ(y)) Q̃(y) + µ(y)Q(φ)(A.6)

where Q(φ) is as constructed previously. That Q defines a PDA operator re-
mains to be checked. Clearly, Q is continuously differentiable on IRn, and Q(x) is
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symmetric. For x ∈ Sn and |x − φ| ≥ δ, we have Q(x) = Q̃(x) by property (a) of µ,
and hence Properties 1–4 of PDA operators are satisfied for such x. By construc-
tion of Q(φ) and property (b) of µ, these properties are satisfied for x = φ. For
x ∈ Sn ∩ Bδ(φ), x �= φ, we have T ⊆ T(x), so that IRn

T0 ⊆ IRn
T(x)0 and IRn

T(x)1 ⊆ IRn
T1.

Since Q̃(x) maps IRn to IRn
T(x)0, and Q(φ) maps IRn to IRn

T0, by Property 1 of
PDA operators, it follows that Q(x) maps IRn to IRn

T(x)0. This proves Property 1
for Q(x). If y ∈ IRn

T(x)1, then Q̃(x)y = 0 by Property 2 for Q̃(x), and Q(φ)y = 0
since y ∈ IRn

T1. This proves Property 2 for Q(x). Finally, any nonzero y ∈ IRn
T(x)0

may be orthogonally decomposed in the form y = y0 + y1, with y0 ∈ IRn
T0 and

y1 ∈ IRn
T1 ∩ IRn

T(x)0. Then, from (A6),

y · Q(x)y = (1 − µ(x)) y · Q̃(x)y + µ(x)y0 · Q(φ)y0

By construction, y0 · Q(φ)y0 ≥ 0, with equality if and only if y0 = 0. Also, y �= 0
implies y · Q̃(x)y > 0 by Property 3 for Q̃(x). Since x �= φ, we have (1 − µ(x)) > 0
by Property (c) of µ. It now follows that y · Q(x)y > 0, which proves Property 3
for Q(x). �

PROOF OF PROPOSITION 4. We first show

〈 f, �n(g)〉 = f̂ · �n(g), for all f, g ∈ E(A.7)

To see this,

〈 f, �n(g)〉 =
∫ 1

0
f (p)�n(g)(p) dp

=
n∑

i=1

∫ pi

pi−1

f (p)�n(g)(p) dp

=
n∑

i=1

�n
i (g)

∫ pi

pi−1

f (p) dp

=
n∑

i=1

f̂ i�
n
i (g)

= f̂ · �n(g)

Suppose i /∈ T. Then, since φ(p), and hence �(p), is zero for p < p,

�n
i (φ) = n

∫ pi

pi−1

pD(�(p)) dp = 0

On the other hand, because of (3), the equilibrium payoff is π∗ = D(1) > 0. This
shows that condition (10) of the definition of regular ESS is satisfied. For condition
(7), we have, using (A7), for f ∈ SE,

〈 f, �n(φ)〉 = f̂ · �n(φ) = π∗ ∑
i∈T

f̂ i ≤ π∗ = 〈φ, �n(φ)〉 = φ̂ · �n(φ)
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since f̂ ∈ Sn, and hence
∑

i∈T f̂ ≤ ∑n
i=1 f̂ i = 1, with equality if and only if the

support of f̂ is subordinate to the support of φ̂. This shows that all alternative best
replies to φ have support subordinate to T.

Case (a). It remains to be shown that the negative definiteness condition (9)
for a regular ESS holds in case (a). The result then follows by Proposition 2.

The derivative matrix �n
φ

′ may be calculated from (A.1), which gives

�n
φ

′z(p) = n
∫ pi

pi−1

r D′(�(r))Z(r) dr, for all p ∈ (pi−1, pi ]

Using (3), this may be written as

�n
φ

′z(p) = nπ∗
∫ pi

pi−1

[
D′ (�(r))
D(�(r))

]
Z(r) dr, for all p ∈ (pi−1, pi ](A.8)

Let z ∈ IRn
T0, so that z(p) = Z(p) = 0 for p < p, and Z(1) = 0. Because �n

φ
′z is

constant on each price interval (pi−1, pi ], the formula (A.7) holds with �n(g)
replaced by �n

φ
′z. Thus,

〈
z, �n

φ
′z

〉 = ẑ · �n
φ

′z =
∫ 1

p
�n

φ
′z(p)z(p) dp = 1

2
nπ∗

∫ 1

p

[
D′ (�(p))
D(�(p))

]
dZ2(p)

Write F = �(p) ∈ [0, 1], and note that F increases monotonically from 0 to 1 as
p increases from p to p. Now integrate by parts to obtain

〈
z, �n

φ
′z

〉 = −1
2

nπ∗
∫ 1

p

d
dp

[
D′ (F)
D(F)

]
Z2(p) dp(A.9)

= −1
2

nπ∗
∫ 1

0

d
dF

[
D′ (F)
D(F)

]
Z

(
�−1(F)

)2
dF

By hypothesis,

d
dF

[
D′ (F)
D(F)

]
= �(F)

D(F)2
> 0(A.10)

for (almost) all F ∈ [0, 1]. Then (A.9) gives 〈z, �n
φ

′z〉 < 0 for all z �= 0 in IRn
T0,

which proves case (a). �

Case (b). The reversed inequality (A.10), together with (A.9), shows that �n
φ

′

is positive definite on IRn
T0, and so the equilibrium z = 0 is unstable by Proposition

3, which proves (b). �
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PROOF OF PROPOSITION 5. Even though δ1 is not an element of E = L2[0, 1], we
may still form its projection δ̂1 ∈ IRn. Thus,

δ̂1i =
∫ pi

pi−1

δ1(p) dp =
{

0 for i < n
1 for i = n

(A.11)

That is, δ̂1 = en. Similarly, the associated profit function �n(δ1) is defined by equa-
tion (11)), where the cumulative probability distribution �1 associated with δ1, is
the function on [0, 1] defined by �1(p) = 0 if p < 1 and �1(1) = 1. Thus,

�n
i (δ1) = n

∫ pi

pi−1

pD
(
�1(p)

)
dp = 1

2
(pi−1 + pi )D(0)(A.12)

Note that �n(δ1) depends on the distribution of consumer samples, q, through the
term D(0).

Consider a perturbation from the Diamond equilibrium of the form ( f, q) =
(δ1, e1) + (z, r), with z ∈ IRn

0 , r ∈ IRN
0 , such that f is a probability density, and q a

probability distribution. It is possible to show that such a perturbation must decay
to zero. This proof is in two parts.

LEMMA B. The dynamics (15) on IRn
0 with φ = δ1, has a locally asymptotically

stable equilibrium at z = 0, independently of any consumer dynamics.

PROOF. First note from (A.11) that the support of δ̂1, is T = {n}. Thus, IRn
T

is the one-dimensional subspace of IRn generated by en, from which it follows
that IRn

T0 = {0}. We therefore have IRn = IRn
T1 and hence, by Property 1 of PDA

operators, that Q(δ̂1) = 0 for any PDA operator Q. This certainly implies that
z = 0 is a stationary point of the dynamic (15) with φ = δ1.

Let z ∈ IRn
0 be such that δ̂1 + z ∈ Sn. Then z ≥ 0 on Tc = {1, . . . , n − 1}. From

the condition Zn = ∑
i zi = 0, we have zn = −Zn−1. Thus, z = z1 − Zn−1en, where

z1 = ∑
i<n zi ei . From (A.11), δ̂1 + z = z1 + (1 − Zn−1)en. Thus, z is completely de-

termined by z1, subject only to the requirement that Zn−1 ≤ 1.
Let γ n(z) be defined as in (15) with φ = δ1, and z ∈ IRn

0 . Then, from (A.3), the
Jacobian derivative of γ n at z = 0 is the operator on IRn

0

J0z = Q(δ̂1)�n
δ1

′z + Q′
δ̂1

(z, �nδ1) = Q′
n(z, �nδ1)(A.13)

where we have written Q′
n for Q′

δ̂1
. Now consider the element α ∈ IRn defined by

αi = p̂n − p̂i(A.14)

where p̂i = 1
2 (pi−1 + pi ). Then αn = 0 and αi ≥ αn−1 = 1

n > 0. By Property 1 of
PDA operators, together with (A.12) and (A.13), it follows that

J0z = −D(0)Q′
n(z, α)(A.15)
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Note that z · α = z1 · α = ∑n−1
k=1 zkαk ≥ αn−1 Zn−1 = 1

n Zn−1. Thus, if z ∈ IRn
0 with

zi ≥ 0 for i < n, then, as observed earlier, z is completely determined by z1 =∑
i<n zi ei , and hence z · α ≥ 0, with equality if and only if z = 0. We denote by

IRn
0+ the cone consisting of those z ∈ IRn

0 for which zi ≥ 0 for i < n.
We can now make the key calculation as follows. Let z ∈ IRn

0+. Then, for ε > 0,
Lemma A gives

1
ε
α · Q(δ̂1 + εz)α ≥ 1

ε
mVarδ̂1+εz(α) = m(z · α2) + O[ε]

since δ̂1 · α = en · α = αn = 0, and similarly δ̂1 · α2 = 0. Thus, taking the limit ε → 0,
and using (A.15), we obtain

α · J0z ≤ −mD(0)(z · α2) ≤ −mµ(z · α2)(A.16)

where µ > 0 is a constant, independent of any consumer dynamics, satisfying
D(0) ≥ µ.

Now define a pseudo-inner product 〈·, ·〉α on IRn
0 , by 〈z, w〉α = (z · α)(w · α).

This is clearly bilinear and symmetric, with an associated pseudo norm ‖z‖α =√〈z, z〉α = |(z · α)|. Thus, ‖z‖α ≥ 0 for all z ∈ IRn
0 . However, equality does not nec-

essarily imply that z = 0, unless, as we have shown above, z ∈ IRn
0+.

Consider the function � : IRn
0+ × [0, ∞) → IR defined by �(z, ε) = α · γ n(εz).

Then � is differentiable with respect to ε, and ∂�
∂ε

(z, ε) = α · Dγ n
εzz. Hence, by the

mean value theorem, there exists θ(z) ∈ (0, 1) such that

�(z, ε) = εα · Dγ n
εθ(z)zz(A.17)

Now let Sn
α = {z ∈ IRn

0+ : ‖z‖α = 1} be the closed unit ‖ · ‖α-sphere segment in IRn
0+.

Then the restricted function, d� : Sn
α × [0, 1] → IR, given by d�(z, ε) = α · Dγ n

εzz,
is uniformly continuous on its compact domain. Furthermore, from (A.16)

d�(z, 0) = α · Dγ n
0 z ≤ −mµ(z · α2) = −mµ‖zα‖α ≤ −mµαn−1 = −mµ

n
(A.18)

Set m1 = mµ/n. Then, since d� is continuous, there is an ε1 > 0 such that
d�(z, ε) ≤ − 1

2 m1 < 0 for all (z, ε) ∈ Sn
α × [0, ε1]. We therefore conclude from

(A.17) that α · γ n(εz) = �(z, ε) ≤ − 1
2εm1 for all (z, ε) ∈ Sn

α × [0, ε1].
For general z ∈ IRn

0+, we have z = εu, with u ∈ Sn
α , provided ‖z‖α = ε. It now

follows that

d
dt

‖z‖α = α · γ n(z) ≤ − 1
2

m1‖z‖α whenever z ∈ IRn
0+ and ‖z‖α ≤ ε1

Thus, 0 ≤ ‖z(t)‖α ≤ ‖z(0)‖αe− 1
2 m1t for all t ≥ 0 and ‖z(0)‖α ≤ ε1. Hence, ‖z(t)‖α →

0 as t → ∞. Since z(t) ∈ IRn
0+, it follows that z(t) → 0 as t → ∞. �
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For the second part of the proof of Proposition 5, we must show that z = 0 is
globally stable on the subspace f = δ1. First we require a preliminary lemma.

Define a function σ ( f ) : [0, 1] → IRN by: σ ( f ) = (
σ1( f ), . . . , σN( f )

)
, where

σk( f )(p) = kp
[
1 − F(p)

]k−1 1 ≤ k ≤ N

LEMMA C. 〈σ (δ1), δ1〉 = e, where e = (1, 1, . . . , 1) ∈ IRN.

PROOF. For ε > 0, let δε(p) = 0 for p < 1 − ε, and δε = 1
ε

for 1 − ε ≤ p≤ 1.
Thus, δε ∈ L2[0, 1], and δ1 = limε→0 δε, uniformly in p. Then

�ε(p) =
∫ p

0
δε(p′) dp′ =




0 for p < 1 − ε
1
ε

(p − 1 + ε) for p ≥ 1 − ε

Hence,

〈σk(δε), δε〉 =
∫ 1

0
p

k
ε

[
1 − 1

ε
(p − 1 + ε)

]k−1

dp = 1 −
(

k
k + 1

)
ε

Thus, 〈σk(δ1), δ1〉 = limε→0〈σk(δε), δε〉 = 1, as required. �

LEMMA D. The subspace f = δ1 is invariant and locally attracting under the
joint seller–consumer dynamics. The Diamond equilibrium q = e1 is globally at-
tracting for all initial conditions inside this subspace, other than a finite set of isolated
equilibria of the consumer dynamics.

PROOF. Let κ = (0, 1, 2, . . . , N − 1) ∈ IRN. First note that if q = e1 + r is a
probability distribution, then r · e = 0, rk ≥ 0 for k > 1, and r1 = − ∑

k>1 rk. Thus,

κ · r =
∑
k>1

(k − 1)rk ≥ 0(A.19)

It follows that κ · r = 0 if and only if r = 0. From (18) and Lemma C, it therefore
suffices to show that κ · r(t) → 0 as t → ∞ under the consumer dynamics

ṙ = −cR(e1 + r)κ(A.20)

To prove this, we have, by Lemma A for the PDA operator R(q),

κ · R(e1 + r)κ ≥ mVare1+r (κ) = m{κ2 · r − (κ · r)2}(A.21)

where m > 0 is a fixed constant. If r �= 0, then rk > 0 for at least one k > 1, and
so |r1| = −r1 = ∑

k>1 rk > 0. Let r̂ = (r̂2, . . . , r̂N) ∈ IRN−1, be the probability dis-
tribution defined by r̂k = rk/|r1|. By Jensen’s inequality, we have
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κ2 · r = |r1| κ2 · r̂ ≥ |r1|(κ · r̂)2(A.22)

with equality if and only if k − 1 = constant for all k > 1 for which rk > 0. That is,
equality holds if and only if rk = 0 for all but one k > 1. In this case, r = α(ek − e1)
for some α ∈ (0, 1] and some k > 1.

We now have

κ2 · r − (κ · r)2 ≥ |r1|(1 − |r1|)(κ · r̂)2 = 1 − |r1|
|r1| (κ · r)2

Substituting in (A.20) and (A.21), we obtain

d
dt

(
κ · r

) ≤ −mc
(

1 − |r1|
|r1|

)
(κ · r)2

whenever r �= 0. Suppose that 1 − |r1| ≥ η > 0, where η is arbitrarily small (but
fixed). Then d

dt

(
κ · r

) ≤ − mcη(κ · r)2. Integrating this, we obtain, for an initial
condition r(0) �= 0 satisfying 1 − |r1(0)| ≥ η,

0 ≤ κ · r(t) ≤ κ · r(0)
1 + mcη(κ · r(0))t

(A.23)

Since κ · r(t) ≥ |r1(t)|, we conclude that |r1(t)| ≤ |r1(0)| ≤ 1 − η, for all t ≥ 0, and
hence that (A.23) remains valid for all t ≥ 0. Thus, r(t) → 0 as t → ∞. Since we
can take η as arbitrarily small, this shows that r = 0 is globally asymptotically
attracting outside the set of measure zero, |r1| = 1.

Finally, consider what happens when |r1| = 1. Then (A.22) reduces to κ2 · r ≥
(κ · r)2. However, this inequality is strict unless r = α(ek − e1) for some α ∈ (0, 1].
On the other hand, in this case |r1| = 1 if and only if α = 1, and so equality holds
if and only if q = e1 + r belongs to the set of isolated stationary points, S = {ek |
k ≥ 2}. From (A.20) and (A.21), we therefore obtain that d

dt

(
κ · r

)
< 0, except

on S, where d
dt

(
κ · r

) = 0. Since κ · r is instantaneously decreasing outside S, it
follows that |r1| is instantaneously decreasing, and hence that a trajectory with
initial condition r /∈ S, but with |r1| = 1, moves instantaneously into the region
|r1| < 1, and is therefore asymptotically attracted to r = 0. This shows that r = 0
(q = e1) is globally attracting for all trajectories with initial condition not in the
finite set of unstable consumer equilibria S. �

Lemmas B and D complete the proof of Proposition 5. �

PROOF OF PROPOSITION 6. To simplify notation, write α = 1/(N − 1), so α ∈
(0, 1]. Now use (22) to express q1 in terms of p, and substitute in (20) and (21) to
obtain

V(�) = pα(1 − p)−(1+α)
∫ 1

p
(p − p)(1 − p)α p−(1+α) dp
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Now set p = p + (1 − p)x, and β = (1 − p)/p ∈ (0, ∞). Then

V(�) = β

∫ 1

0
x(1 − x)α(1 + βx)−(1+α) dx

For α < 1 (N < 2), this integral may be expressed in terms of a hypergeometric
function, 2 F1(a, b; c, u),

V(�) = β

(1 + α)(2 + α) 2 F1(2, 1 + α; 3 + α, −β) = βW(α, β)

(see Whittaker and Watson, 1978, Ch. XIV), and for α = 1 (N = 2),

V(�) = β−1{−2 + (1 + 2β−1) ln (1 + β)}

Thus, V(�) is a known function of two variables (α, p) (equivalently, (N, q1)),
defined over the bounded domain 0 < α ≤ 1, 0 < p≤ 1. A typical example of a
cross section of this surface (withα fixed) is shown in Figure 2. The important points
to note are that V(�)(p) ≥ 0, V(�)(0) = V(�)(1) = 0, with V(�)′(0) = ∞ and
V(�)′(1) = −1, and V(�)(p) is concave with a unique maximum at p̂ = p̂(α) ∈
(0, 1).

It now follows that, if c > V(�)( p̂), then there are no mixed equilibria, and if 0 <

c < V(�)( p̂), then there are two such equilibria. Since the Diamond equilibrium,
p = 1, is always present, the Proposition is proved. �

PROOF OF PROPOSITION 7. First linearize the joint dynamics (15, 19) about the
given equilibrium (φ, q∗

1 ) to obtain the Jacobian operator that, regarded as a func-
tion on IRn

T0 × IR ⊂ E × IR, has the form

J = ��′ =
(

Q(φ̂) 0

0 ρ(q∗
1 )

) (
�n

φ
′  (φ̂)

−V′
φ 0

)

where  ( f ) = σ1( f ) − σN( f ) with σk( f )(p) = kp
[
1 − F(p)

]k−1
, 1 ≤ k≤ N. That

is, using (23) and (24) and writing α = 1/(N − 1), p̂ = (1 + α)p
/

(α + p),

 (φ)(p) =
[

(α + p)

α(1 − p)

]
(p − p̂)

Also, from (20), V′
φ is the IR-valued linear operator on E given by

V′
φz = lim

ε→0

1
ε

{
V(� + εZ) − V(�)

} = −
∫ 1

p
p−1 (φ)(p)Z(p) dp
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Note that p̂ − p = p(1 − p)
/

(α + p) and 1 − p̂ = α(1 − p)
/

(α + p). Thus, p <

p̂ < 1 for fixed p ∈ (0, 1) (equivalently, fixed q1 ∈ (0, 1)).
First, suppose N > 2, and take z̃ = (εz, 1), with z ∈ IRn

T0. Then, from the defini-
tion of �′ above,

(εz, 0) · �′z̃ = ε
{〈z,  (φ)〉 + εz · �n

φ
′z

}
, and (0, 1) · �′z̃ = −εV′

φz

Hence, if there exists z such that 〈z,  (φ)〉 > 0 and V′
φz < 0, then we can choose

ε > 0 sufficiently small so that (εz, 0) · �′z̃ > 0 and (0, 1) · �′z̃ > 0. The result then
follows from Proposition 3.14 It therefore suffices to construct such a z.

Integration by parts using Z(p) = Z(1) = 0, gives

〈z,  (φ)〉 = −
[

α + p

α(1 − p)

] ∫ 1

p
Z(p) dp

Now, recall that p < p̂ < 1, and that p = pn. Hence, for fixed p, we may choose n
large enough so that p < pn+2 ≤ p̂. Choose zi = 0 for i �= n + 1, n + 2, and zn+1 =
−1, zn+2 = 1. Then Z(p) < 0 for p < p < pn+2, and Z(p) = 0 for p ≥ pn+2. Thus,
〈z,  ( f )〉 > 0, and

V′
φz = −

∫ pn+2

p
p−1 (φ)(p)Z(p) dp < 0

since  (φ)(p) < 0 for p < p < p̂.
Finally, suppose N = 2. By the argument of Section 5, we know that �n

φ
′ is pos-

itive definite on IRn
T0, and hence that Q(φ̂)�n

φ
′ has only eigenvalues with positive

real parts. But the trace of J is equal to the trace of Q(φ̂)�n
φ

′, which is positive.
Hence, J must have at least one eigenvalue with positive real part. This completes
the proof. �
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