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We report laboratory experiments that use new, visually oriented software to explore the dynamics
of 3×3 games with intransitive best responses. Each moment, each player is matched against the
entire population, here 8 human subjects. A “heat map” offers instantaneous feedback on current profit
opportunities. In the continuous slow adjustment treatment, we see distinct cycles in the population mix.
The cycle amplitude, frequency and direction are consistent with the standard learning models. Cycles are
more erratic and higher frequency in the instantaneous adjustment treatment. Control treatments (using
simultaneous matching in discrete time) replicate previous results that exhibit weak or no cycles. Average
play is approximated fairly well by Nash equilibrium, and an alternative point prediction, “TASP” (Time
Average of the Shapley Polygon), captures some regularities that Nash equilibrium misses.
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1. INTRODUCTION

Rock–Paper–Scissors, also known as RoShamBo, ShouShiLing (China), or JanKenPon (Japan)
is one of the world’s best known games. It may date back to the Han Dynasty 2000 years ago,
and in recent years has been featured in international tournaments for computerized agents and
humans (Fisher, 2008).

The RPS game is iconic for game theorists, especially evolutionary game theorists, because
it provides the simplest example of intransitive dominance: strategy R (Rock) beats strategy S
(Scissors) which beats strategy P (Paper), which beats strategy R (Rock). Evolutionary dynamics
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therefore should be cyclic, possibly stable (and convergent to the mixed Nash equilibrium (NE)),
or perhaps unstable (and non-convergent to any mixture). Questions regarding cycles, stable or
unstable, recur in more complex theoretical settings, and in applications ranging from mating
strategies for male lizards (Sinervo and Lively, 1996) to models of equilibrium price dispersion
(Hopkins and Seymour, 2002; Lahkar, 2011).

The present article is an empirical investigation of behaviour in RPS-like games, addressing
questions such as: Under what conditions does play converge to the unique interior NE? Or to
some other interior profile? Under what conditions do we observe cycles? If cycles persist, does
the amplitude converge to a maximal, minimal, or intermediate level? These empirical questions
spring from a larger question that motivates evolutionary game theory: To understand strategic
interaction, when do we need to go beyond equilibrium theory?

Theoretical analysis of evolutionary dynamics in RPS-like games date back to Zeeman
(1980), with extensions to best response dynamics due to Gaunersdorfer and Hofbauer (1995);
see Hofbauer and Sigmund (1998) and Sandholm (2010) for reviews. The extensive theoretical
literature yields the consensus prediction that RPS-like payoff matrices are of two major types. In
one type, the interior equilibrium is an Evolutionarily Stable Strategy (ESS) and thus an attractor,
so that any cyclic behaviour will die out over time and there will be convergence to equilibrium.
In the other main type of RPS-like game, the interior equilibrium is unstable, so that cycles will
persist and possibly increase in amplitude. Benaïm et al. (2009) introduce the idea of the TASP
(Time Average of the Shapley Polygon) and show in the unstable case that, although play will
continue to cycle, average play can converge to the TASP, which in general is not equal to the NE.

Empirical work is surprisingly sparse; we were able to find only three other human subject
experiments investigating RPS-like games. Cason et al. (2010) study variations on a 4×4
symmetric matrix game called RPSD, where the 4th strategy, D or Dumb, is never a best response.
Using the standard laboratory software zTree, the authors conducted 12 sessions, each with 12
subjects matched in randomly chosen pairs for 80 or more periods. In all treatments the data
were quite noisy, but in the most favourable condition (high payoffs and a theoretically unstable
matrix), the time-averaged data were slightly better explained by TASP than by NE. The article
reports no evidence of cycles.

Hoffman et al. (2012) is another zTree study begun about the same time as the present
article. The authors compare behaviour with three different symmetric 3×3 matrices of the form⎛
⎝

0 −1 b
b 0 −1

−1 b 0

⎞
⎠, where the treatments are b=0.1,1.0,3.0. The unique NE = (1,1,1)/3 is an ESS

(hence in theory dynamically stable) when b=3, but not in the other two treatments. The authors
report 30 sessions each with 8 human subjects matched simultaneously with all others (mean-
matching) for 100 periods. They find that time average play is well approximated by NE, and
that the mean distance from NE is similar to that of binomial sampling error, except in the b=0.1
(unstable) treatment, when the mean distance is larger. This article also reports no evidence of
cycles.

Earlier, using fixed pair matches (more relevant to repeated games than evolutionary games),
Engle-Warnick and Hopkins (2006) compared play of a bimatrix version of RPS to play in a
(rescaled) zero sum game. The mixed equilibrium in the former game is predicted to be unstable
under learning, while the mixed equilibrium in the second is predicted to be stable. There is
evidence for cyclical play in both games, with some evidence of stronger cycles in the unstable
RPS game.

Section 2 reviews relevant theory and distills three testable hypotheses. Section 3 then lays
out our experimental design. The main innovations are (a) new visually oriented software called
ConG, which enables players to choose mixed as well as pure strategies and to adjust them in
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essentially continuous time, and (b) 3×3 payoff bimatrices where the NE is distinct from the
centroid (1,1,1)/3. As in previous studies, we compare matrices that are theoretically stable to
those that are theoretically unstable, and in the latter case we can distinguish TASP from NE as
well as from the centroid. We also compare (virtually) instantaneous adjustment to continuous
but gradual adjustment (Slow), and to the more familiar synchronized simultaneous adjustment
in discrete time (Discrete).

Section 4 reports the results. After presenting graphs of average play over time in sample
periods and some summary statistics, it tests the three hypotheses. All three enjoy considerable,
but far from perfect, support. We introduce a new empirical measure called the Cycle Rotation
Index. Among other things, we find that cycles persist in the continuous time conditions in both
the stable and unstable games, but that cycle amplitudes are consistently larger in the unstable
games. In terms of predicting time average play, Nash equilibrium is better than Centroid, and
when it differs from the NE, the TASP is better yet.

A concluding discussion is followed by an Appendix that collects mathematical details and
sketches a possible explanation for the persistence of observed cycles in stable games. A second
Supplementary Appendix, reproduces instructions to subjects.

2. SOME THEORY

The games that were used in the experiments are, first, a game we call Ua

Ua =
R P S

Rock 60, 60 0, 72 66, 0
Paper 72, 0 60, 60 30, 72
Scissors 0, 66 72, 30 60, 60

(1)

where U is for unstable because, as we will show, several forms of learning will not converge in
this game. The subscript a distinguishes it from Ub that follows. Second, we have the stable RPS
game,

S =
R P S

Rock 36, 36 24, 96 66, 24
Paper 96, 24 36, 36 30, 96
Scissors 24, 66 96, 30 36, 36

(2)

Finally, we have a second unstable game Ub

Ub =
R S P

Rock 60, 60 72,0 30, 72
Scissors 0, 72 60, 60 66, 0
Paper 72, 30 0, 66 60, 60

(3)

Notice that in Ub the best response cycle is reversed so that it is a RSP game rather than RPS.
(Of course, subjects in the experiment observed only the neutral strategy labels A, B, and C in
all games.)

All these games have the same unique NE which is mixed with probabilities (0.25, 0.25, 0.5).
The equilibrium payoff is 48 in all cases.

While these games are identical in their equilibrium predictions, they differ quite substantially
in terms of predicted learning behaviour. Consider a population of players who play this game
among themselves, either via repeated random matching or (as in our experiment, to reduce
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sampling variance) via matching against the average mixed strategy of all other players. Suppose
that each player chooses a target mixed strategy that is (close to) a best response to the current
strategies of their opponents, and that (as in our experiment) the actual mixture employed moves
smoothly towards the chosen target. Then we would expect that the population average mixed
strategy x would move according to continuous time best response (BR) dynamics, which assumes
that the population average strategy moves smoothly in the direction of the best reply to itself.
That is, formally,

ẋ∈b(x)−x (4)

where b(·) is the BR correspondence. Equation (4) uses “∈” because the BR correspondence
can be multivalued. In our games, the correspondence is single valued almost everywhere so the
equation can be read as an ordinary differential equation with “∈” replaced by “=”. Note also that
equation (4) applies strictly only to an infinite population but can be used as an approximation in
finite populations.1

Because of the cyclical nature of the BR structure of RPS games (Rock is beaten by Paper which
is beaten by Scissors which is beaten by Rock), if the evolution of play can be approximated by
the BR dynamics, then there will be cycles in play. The question is whether these cycles converge
or diverge.

It is easy to show that in the game S, under the BR dynamics, the average strategy would
converge to the NE. This is because the mixed equilibrium in S is an evolutionarily stable strategy
or ESS. In the games Ua and Ub, however, there will be divergence from equilibrium and play
will approach a limit cycle.2 For example, the case of Ua is illustrated in Figure 1, with the
interior triangle being the attracting cycle. This cycle was named a Shapley triangle or polygon
by Gaunersdorfer and Hofbauer (1995) after the work of Shapley (1964) who was the first to
produce an example of non-convergence of learning in games.

More recently, Benaïm, Hofbauer and Hopkins (BHH) (2009) observe the following.3 If play
follows the BR dynamics then, in the unstable game, play will converge to the Shapley triangle;
furthermore, the time average of play will converge to a point that they name the TASP (Time
Average of the Shapley Polygon), denoted “T” on Figure 1. It is clearly distinct from the NE of
the game, denoted “N” in Figure 1.

These results can be stated formally in the following proposition. The proof can be found in
the Appendix.

Proposition 1. (a) The Nash equilibrium x∗ = (0.25,0.25,0.5) of the game Ua is unstable
under the BR dynamics (4). Further, there is an attracting limit cycle, the Shapley triangle, with
vertices, A1 = (0.694,0.028,0.278), A2 = (0.156,0.781,0.063) and A3 = (0.018,0.089,0.893)
and time average, the TASP, of x̃≈ (0.24,0.31,0.45). Average payoffs on this cycle are
approximately 51.1.

1. A formal model of how BR-like dynamics can arise in similar situation, though again with a large population,
can be found in Hofbauer and Sandholm (2007).

2. Intuitively, the instability arises in Ua and Ub because the normalized gain from winning (which ranges from 6
to 12) is much smaller than the absolute normalized loss from losing (which ranges from –30 to –60). In contrast, in the
stable game S the normalized gain from winning (30–60) is much larger than the absolute normalized loss from losing
(–6 to –12). In other words, in the unstable games draws are almost as good as wins, which pushes learning dynamics
towards the corners of the simplex (see Figure 1) where draws are more frequent. In the stable game, draws are much
worse than wins and only a little better than losses, pushing the dynamics away from the corners and decreasing the
amplitude of the cycles.

3. Other recent theoretical results on cycles in RPS-like games can be found in Lahkar (2011), Hahn (2012), and
Hommes and Ochea (2012).
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Figure 1

The Shapley triangle A1A2A3 for game Ua with the TASP (T) and the NE (N). Also illustrated are orbits for the

perturbed BR dynamics for precision parameter values 0.2 and 0.5

(b) The NE x∗ = (0.25,0.25,0.5) of the game S is a global attractor for the BR dynamics (4).
(c) The NE x∗ = (0.25,0.25,0.5) of the game Ub is unstable under the BR dynamics (4). Further,
there is an attracting limit cycle, the Shapley triangle, with vertices, A1 = (0.028,0.694,0.278),
A2 = (0.781,0.156,0.063) and A3 = (0.089,0.018,0.893) and time average, the TASP, of x̃≈
(0.31,0.24,0.45). Average payoffs on this cycle are approximately 51.1.

These theoretical arguments lead to the following testable predictions. Note that Hypothesis 2
competes with Hypothesis 1, whereas Hypothesis 3(a) elaborates on Hypothesis 1 and Hypotheses
3(b,c,d) elaborate on Hypothesis 2.

2.1. Testable hypotheses

1. NE: average play will be at the NE (0.25,0.25,0.5) and average payoff will be 48 in all
treatments.

2. TASP:

(a) The population average mixed strategy further averaged over time will be closer to the
TASP than to the NE in Ua and Ub.

(b) Average payoffs will be higher in Ua and Ub than in S.

3. BR dynamics:

(a) In S, there will be counter-clockwise cycles that diminish in amplitude over time with
ultimate convergence to NE.

(b) In Ua, there will be persistent counter-clockwise cycles that approach the Shapley
triangle limit cycle.

(c) In Ub, there will be persistent clockwise cycles that approach the Shapley triangle limit
cycle.

(d) Thus the average distance from NE will be consistently higher in Ua and Ub than
in S.
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After proofs of Propositions, the Appendix offers a theoretical analysis of robustness.
Specifically, if subjects choose best responses imprecisely, then average frequencies will evolve
according to the perturbed best response (PBR) dynamics rather than the strict BR dynamics. In
games Ua and Ub, the PBR dynamics also give rise to cycles, two of which for Ua are illustrated
in Figure 1 for specified levels of the PBR precision parameter.

A second phase of the robustness analysis focuses on discrete time settings, which constitute
some of our experimental treatments. The Appendix shows that the above theoretical results
still apply provided strategy adjustment step size is sufficiently small. However, if the step size
exceeds some critical level, then cycles may not die out even for the stable payoff matrix. Factors
associated with larger step sizes are noted in the next section.

3. LABORATORY PROCEDURES

Figure 2 displays an example of the subjects’decision screen during an experimental session. The
upper left corner indicates the game payoff matrix B, and subjects choose actions by clicking on
locations on the “heat map” triangle in the lower left. They can choose a pure action by clicking on
a vertex, and can choose any desired mixture by clicking an interior point. The thermometer to the
right of the triangle shows how heat map colours correspond to current payoff flow rates, given
the current average mixture x(t) in the population. This hugely reduces the subjects’ cognitive
load, since otherwise they would continually have to approximate, for each mixture y they might
choose, the matrix product y ·Bx(t) that gives the payoff flow.

The upper right side of the screen presents in real time the dynamic time path of strategies
selected by the subject and the population average. The lower right panel shows the payoff
flow received by the subject and the population average; the grey area represents the player’s
accumulated earnings so far in the current period.

Figure 2

ConG Software: CS treatment (10 seconds transit)
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Periods lasted 180 seconds each. Each session began with one unpaid practice period,
providing subjects with an opportunity to familiarize themselves with the interface and display.
The written instructions that were read aloud to subjects before this practice period are
included in the Supplementary Material. Debriefings after the session was over, as well
as experimenter impressions during the session, indicate that most subjects quickly became
comfortable with the task, which they regarded as an enjoyable and not especially challenging
video game.

Subjects participated in groups of 8 and played the three game matrices Ua, S, and Ub in
treatment “blocks” of 5 periods each. Treatments were held constant within blocks, while between
blocks we switched the game matrix and changed the action set.

We used four different action sets: Continuous Instant, Continuous Slow, Discrete Pure, and
Discrete Mixed. In the Continuous conditions, subjects click mixture targets and receive payoff
and population strategy updates in essentially continuous time. In the Instant case, the chosen
mixture adjusted to their target click instantaneously; more precisely, lags are typically less than
50 milliseconds, hence imperceptible. In the Slow case, the actual mixture moves at a constant
rate towards the target click; the rate is such that it would take 10 seconds to move from one
vertex to another.

In the Discrete conditions, the 180-second period was subdivided into 20 subperiods of
9 seconds each, and subjects received payoff and population strategy updates at the end of each
subperiod. In the Pure case, subjects were restricted to specify a pure strategy in each subperiod,
and in the Mixed case subjects could click any mixture or pure strategy in each subperiod. (If the
subject clicked several points during the subperiod, only the last click counted.) Each subperiod
after the first, the heat map displayed the potential payoffs given the population mixture chosen in
the previous subperiod, and therefore the heat map remained static over the 9-second interval. In
the Continuous conditions, the heat map (and the displays on the right side of the screen) updated
every 200 milliseconds to reflect the current population mixture.

The original motivation for these different action treatments is to facilitate comparison to
earlier work that uses only discrete time and pure strategies. Our experiment holds constant one
novelty (the visual interface featuring a simplex heat map) while varying the other two novelties,
the discrete (pure) versus continuous (mixed) strategy set, and the discrete time versus continuous
strategy adjustment. The effect of continuous time is further explored by running the different
adjustment speeds, instantaneous, and slow.

Fortuitously, the four action sets also shed light on a neglected theoretical issue raised in the
Appendix—the impact of effective step size in discrete time adjustment models. Our discrete
time treatments allow all subjects to change strategies simultaneously and thus adjustment is
rapid relative to the time period (the 9-second interval). Allowing only pure strategies amplifies
the impact of simultaneity. In contrast, in the continuous treatments, simultaneous adjustment by
all subjects is highly unlikely in a time frame of 50–200 milliseconds, and such asynchronous
adjustment is slowed further in the continuous slow adjustment treatment. We therefore expect
effective step size in our data to be ordered by treatment, from smallest to largest, as follows:
continuous slow, continuous instant, discrete mixed, discrete pure.

Matrices Ua and S were played in each of the four action sets. A bonus treatment Ub evaluates
whether cycle rotation direction varied as predicted by BR dynamics. It was used only in
conjunction with the treatment (due to its small effective step size) expected to be the most
conducive to clean cycles: Continuous Slow. Thus, we have 9 different combinations of matrix
and action set, or treatments.

Each of the 11 sessions consisted of 5 blocks of 5 periods, with the treatment sequences
shown in Table 1. The within-subject design was chosen to change the matrix every block and
to give 6 independent observations (i.e. from 6 different sessions) of each of the 9 treatments,
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TABLE 1
Balanced incomplete block design

Block 1 Block 2 Block 3 Block 4 Block 5

Sess D1 Ua-DM S-CI Ua-DP S-DM Ub-CS
Sess D2 Ub-CS Ua-CS S-CS Ua-CI S-DP
Sess D3 S-CS Ua-DM S-CI Ub-CS S-DM
Sess D4 Ua-CI S-DM Ua-DM S-CS Ua-CI
Sess D5 S-DP Ub-CS Ua-DP S-CI Ua-CS
Sess D6 Ua-CS S-DP Ua-CI S-DM Ua-DP
Sess D7 S-CI Ua-CS Ub-CS S-CS Ua-DM
Sess D8 Ua-DP S-DM Ua-DM S-DP Ua-CI
Sess D9 S-CI Ua-DP S-DP Ua-CS S-CS
Sess D10 S-DM Ua-CI S-CS Ua-DP S-CI
Sess D11 Ua-CI S-DP Ua-CS Ub-CS Ua-DM

Note: Every treatment appears in Blocks 1 and 5, at least 8 out of 9 treatments appear in each of the other Blocks, and no
treatment appears more than twice in any Block.

while balancing treatments across block positions.4 The within-subject variation in treatments
also reduced subject boredom. To avoid confounding the treatment variation with learning, all
treatments were included in early, middle, and late blocks.

Each session lasted about 100 minutes, including instruction and payment time. No subject
participated in more than one session, and all were recruited broadly from the student populations
at Purdue University and UC-Santa Cruz. All 25 periods in the 5 blocks were paid periods, and
subject earnings averaged approximately $25.

4. RESULTS

We begin with graphs of the population mixtures during some sample periods in the Continuous
Slow treatment. The figures show a projection of the mixture triangle into the (x,y) plane, so
mixture probability for the third strategy (“Scissors”) is suppressed. The vertical axis represents
time remaining in the 180-second period, so moving downward in the figure corresponds to
moving forward in time. The NE appears as a vertical red line at (x,y)= (0.25,0.25). Figure 3
shows about a dozen irregular counterclockwise cycles of the population average mix around the
NE in a sample period using the stable S matrix. Many of the cycles here have amplitude less
than 0.1, but a few of them reach a distance of 0.2 or more from the NE.

Figure 4 shows 10 counterclockwise cycles around the NE for a sample period using the
unstable matrix Ua. The first few cycles (at the top) seem centered on the centroid (x,y)=
(0.33,0.33) but last few cycles center closer to the NE. The amplitude is much larger than for the
S matrix, and falls only slightly by the end of the period. Figure 5 shows 11 cycles for the reverse
unstable matrix Ub. They are similar to those for Ua, with one major exception: as predicted, the
cycles are clockwise.

These sample periods are typical in most respects. Time graphs for other periods suggest that
cycles in Continuous Slow treatments persist even with the stable matrix S, as well as with (as
predicted) the unstable matrices. The cycles typically seem to converge towards an approximate
limit cycle, rather than having inward or outward spirals. As we document below, consistent with

4. One treatment, Ua-CI, was repeated in the final block of session D4. To preclude questions about the number of
independent observations, this repeat block was excluded from the analysis dataset, but results are qualitatively unchanged
when it is included.
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Figure 3

Session 10, period 14: S matrix, Continuous-Slow

Figure 4

Session 2, period 6: Ua matrix, Continuous-Slow
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Figure 5

Session 11, period 20: Ub matrix, Continuous-Slow

Hypothesis 3abc, the cycles under Continuous Slow are consistently counterclockwise for S and
Ua and clockwise for Ub.

In the Instant treatment, the cycles are much more frequent and jagged, as Figures 6 and 7
illustrate, and also display greater amplitude for the Ua matrix. Note that only the middle 60
seconds are shown, but even so there are more than a dozen cycles.

In the Discrete treatments, the path of population mixes by subperiod is not so obviously
cyclic; see Figures 8–11 for typical examples.

4.1. Convergence across periods

Are there trends from one period to the next? To investigate, we plotted average population
mixtures in each of the 5 periods within each block separately for each treatment in each session.
The results are displayed in Figures 12 and 13 for 4 of the 9 treatments.

Figure 12 shows that behaviour remains quite unsettled in the action set featured in previous
investigations—discrete time and pure strategy only—especially for the unstable matrix Ua. For
example, the population mean frequency of Scissors in one session bounces from about 0.26 in
period 4 to 0.61 in period 5. Although Scissors seems the most frequent strategy overall, and
Rock the least, this is reversed in some period averages.

In contrast, Figure 13 shows much more consistent mean strategy choices in the Continuous-
Instant treatment, particularly for the Stable matrix. The mean Rock frequency is always at or
slightly below the NE value of 0.25, and the Paper frequency at or slightly above. The mean
Scissors frequency is below the NE value of 0.50, but by period 5 in the Stable matrix it clusters
tightly around that value. The other two action set conditions show behaviour more settled than
in Figure 12 but less than in Figure 13.
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Figure 6

Session 3, period 14, Middle 1/3: S matrix, Continuous-Instant

Figure 7

Session 2, period 17, Middle 1/3: Ua matrix, Continuous-Instant
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Figure 8

Session 3, period 23: S matrix, Discrete-Mixed

Figure 9

Session 11, period 21: Ua matrix, Discrete-Mixed
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Figure 10

Session 2, period 22: S matrix, Discrete-Pure

Figure 11

Session 1, period 11: Ua matrix, Discrete-Pure
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Figure 12

Mean choice by period within block for the Discrete-Pure treatment
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Figure 13

Mean choice by period within block for the Continuous-Instant treatment
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TABLE 2
Time average behaviour

Prediction//Treatment Rock Paper Scissors Payoff

NE 0.25 0.25 0.50 Wald test Wald test 48
TASP (Ua) 0.242 0.31 0.449 rejects rejects 51.1
TASP (Ub) 0.31 0.242 0.449 Nash? TASP? 51.1

S Continuous-Instant 0.226 0.269 0.504 Yes – 47.59N

S Continuous-Slow 0.236 0.265 0.500 Yes – 48.03
S Discrete-Mixed 0.242 0.294 0.464 Yes – 47.95
S Discrete-Pure 0.247 0.320 0.433 Yes – 47.57N

Ua Continuous-Instant 0.247 0.318 0.435 Yes No 49.82NT

Ua Continuous-Slow 0.228 0.281 0.491 Yes Yes 49.08NT

Ua Discrete-Mixed 0.225 0.342 0.433 Yes Yes 49.70NT

Ua Discrete-Pure 0.205 0.337 0.458 Yes No 50.71N

Ub Continuous-Slow 0.303 0.240 0.457 Yes No 48.81NT

Notes: Wald tests of the joint hypothesis that three coefficients on dummy variables for the three strategies correspond
to indicated theoretical predictions (regression standard errors estimated with clustering on sessions), all 5% 2-tailed
tests. Superscript N denotes average payoff significantly different from Nash (5% 2-tailed Wilcoxon test), and T denotes
significantly different from TASP (5% 2-tailed Wilcoxon test, relevant only for Ua and Ub).

4.2. Hypothesis tests

Table 2 displays predicted (top 3 rows) and actual (remaining 9 rows) overall mean frequency of
each strategy and average payoffs. The Wald tests are based on regressions of the observed relative
frequency of each strategy choice in each treatment and session block on dummy variables for
each strategy. They test the joint hypothesis that estimates correspond to the theoretical values
shown in the top of the table. Superscripts in the rightmost column refer to non-parametric
Wilcoxon tests for average payoffs that conservatively treat each session as a single independent
observation. We draw the following conclusions regarding the three testable Hypotheses given
at the end of Section 2.

Result 1. In the Stable game, NE is better than Centroid in predicting time average strategy
frequencies, although the data reject both Nash and Centroid. Average payoff is significantly
lower or not significantly different than in NE. Thus Hypothesis 1 finds mixed support.

Evidence: Table 2 indicates that the data reject the NE at the 5% significance level in all 4
action set conditions for the Stable game. The centroid is also rejected in all 4 cases for the Stable
game, but 10 of the 12 average strategies are closer to NE than to the Centroid (1,1,1)/3. (The
two exceptions are for Paper in the two Discrete conditions.) In each of the four treatments, the
average payoff is at least 1.3 below the Centroid payoff of 49.33. but it is always within 0.50 of
the Nash prediction of 48. The N superscripts indicate that the data reject the null hypothesis of
NE payoffs (in favour of a mean payoff lower than in NE) in two of these four treatments.

Result 2. In the Unstable game, TASP is better than NE (and a fortiori better than Centroid) in
predicting time average strategy frequencies. The average payoff is always significantly higher
than the NE prediction and usually closer to the TASP prediction, albeit significantly lower than
the TASP prediction in most cases. Moreover, consistent with TASP, payoffs are significantly
higher in the Unstable game than the Stable game. Thus Hypothesis 2 also finds mixed support.
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TABLE 3
Mean transits and cycle rotation indexes

Game-condition Number of Number of Cycle
counter-clockwise transits clockwise transits rotation index

S Continuous-Instant 24.1 5.8 0.64∗
S Continuous-Slow 9.3 0.9 0.86∗
S Discrete-Mixed 2.1 1.3 0.30
S Discrete-Pure 0.5 0.7 −0.04

Ua Continuous-Instant 30.4 1.2 0.92∗
Ua Continuous-Slow 8.3 0.0 1.00∗
Ua Discrete-Mixed 1.8 0.3 0.78∗
Ua Discrete-Pure 0.9 0.2 0.68∗
Ub Continuous-Slow 0.3 8.5 −0.94∗

Note: * Denotes index significantly (p < 5%) different from 0 according to 2-tailed Wilcoxon test.

Evidence: The Wald tests in Table 2 indicate rejection of the NE null hypothesis for the strategy
frequencies of the Unstable game in all 5 cases, and in all cases the deviations are in the direction
of TASP. Rejection the TASP predictions occurs in only 2 of the 5 cases. The average payoff
always lies between the NE and TASP predictions, but is closer to TASP in 4 of 5 cases. In all
5 cases the Nash prediction of 48 is rejected; in one case the TASP prediction is not rejected.
In all 4 pairwise comparisons, average payoffs are significantly higher (at the 1% level in Mann–
Whitney tests) in the Unstable than the Stable game. This is as predicted by TASP, while NE
predicts no difference and Centroid predicts a difference in the wrong direction. Finally, TASP
tracks the observed asymmetry between Ua and Ub in Rock and Paper time averages, whereas NE
and Centroid predict no asymmetry. The observed asymmetry (for their shared Continuous-Slow
action set) is significant according to a Mann–Whitney test.

Result 3. Cycles are clockwise for the Unstable matrix Ub, and counter-clockwise for the other
matrices, Stable S and Unstable Ua. Cycle rotations are also more regular for the Unstable matrix
than the Stable matrix. These patterns are consistent with the Hypothesis 3abc.

Evidence: Table 3 reports a new statistic called the cycle rotation index to document
clockwise or counter-clockwise rotation of mean strategy choices. To calculate this index, we
first constructed a line segment (in the projection of the simplex into the 2-dimensional plane)
between the NE and the simplex edge, illustrated in Figure 1 as the vertical dashed line extending
below the point N. This line segment S is the set of all mixtures in the simplex in which the
Rock frequency is at its NE level of 0.25 and the Paper frequency is below its NE level of 0.25.
It serves as a Poincare section (see, for example, Chapter 17 of Hofbauer and Sigmund, 1988) or
“tripwire” for counting cycles.

For each period in our data set, we counted how many times (CCT , counter-clockwise transits)
the population mixture crosses S from left to right and how many times (CT , clockwise transits)
from right to left. The average number of transits in each direction are shown in the centre
columns of Table 3 for each treatment. The cycle rotation index then is defined for each period
as CRI= CCT−CT

CCT+CT ∈[−1,1]. Thus CRI values near 1 (–1) indicate consistently counter-clockwise
(clockwise) cycles, and values near 0 indicate no consistent cycles. The last column of Table 3
reports CRI averaged over all periods in each treatment.

The large values of CCT and CT the Continuous-Instant treatments reflect a substantially
higher cycle frequency than in the Continuous-Slow treatments. The Discrete treatments have
fewer transits, in part because each period has only 19 potential strategy changes, versus 179
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Figure 14

Mean squared deviation from NE by block in Continuous-Instant treatments

potential strategy changes each Continuous period, where the data are sampled at 1-second
intervals.

The Discrete treatments for the Stable game S do not exhibit clear cyclical behaviour, as
indicated by CRI’s not significantly different from 0. All other conditions exhibit significant
cycles, with only the Unstable game Ub displaying clockwise cycles, consistent with the
Hypothesis 3abc. Although not shown on the table, Mann–Whitney tests with p-values below
0.05 for all four cases confirm that CRI always is larger for the Unstable matrix Ua than for the
Stable matrix S.

Result 4. Cycle amplitude, and thus average distance from the NE, is significantly higher in
the Unstable than in the Stable game (support for Hypothesis 3d). Although the cycle amplitudes
usually decrease in size across periods for the Stable matrix, they do not converge to NE, contrary
to Hypothesis 3a. Cycles also persist and have larger amplitudes for the Unstable matrices, but
less than that of the Shapley triangle limit cycle. Thus Hypotheses 3bc find mixed support.

Evidence: Define cycle amplitude for a period as the time average over that period of
the squared Euclidean distance A(t)=||x(t)−x∗||2 = (x0(t)−x∗

0)2 +(x1(t)−x∗
1)2 +(x2(t)−x∗

2)2

between NE mix x∗ and the instantaneous actual mix x(t). (The average squared deviation from
the period average x̄ yields similar results.) Figures 14 and 15 display cycle amplitude period
by period for each block of the Continuous conditions; each line comes from an independent
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Figure 15

Mean squared deviation from NE by block in Continuous-Slow treatments

TABLE 4
Mean squared deviation from Nash equilibrium

Continuous-Slow Continuous-Instant Discrete-Mixed Discrete-Pure

Stable S 0.014 0.039 0.048 0.093
Unstable Ua 0.044 0.112 0.089 0.129
Unstable Ub 0.048

p-value for M-W: S versus Ua 0.004 0.004 0.004 0.037
p-value for M-W: Ua versus Ub 0.200

Notes: Excludes first period of each 5-period block to reduce impact of hysteresis. M-W is a 2-tailed Mann–Whitney test
comparing MSDs by period across the given treatments.

session. The amplitude declines between the first and last period in 22 out of the 24 blocks; the
two exceptions are both in the Unstable – Continuous Instant treatment. But the amplitudes do
not decline to zero; even in later periods of the 12 Stable matrix blocks, the squared deviations
remain around 0.01 (i.e. trajectories remain about 0.10 away NE), contrary to Hypothesis 3a.

Table 4 reports average cycle amplitude in each treatment. Numerical calculations indicate
that the Shapley triangle limit cycle has amplitude 0.187 for the Ua and Ub matrices. The entries
in Table 4 are all smaller than that, and Wilcoxon tests indicate that they are significantly smaller
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(p-value < 5%) for all treatments. The observed cycle amplitudes are consistent with the PBR
dynamics for the low precision parameters illustrated in Figure 1.

The Mann–Whitney p-values shown at the bottom of Table 4 indicate that the amplitude,
conditioning on the action set condition, is always significantly greater in the Unstable than the
Stable game. The amplitude is not significantly different between the two Unstable games for
their shared Continuous-Slow action set, and no difference is consistent with our analysis of BR
dynamics.

One loose end remains. What about cycle frequency, as opposed to cycle amplitude? The
last piece of evidence under Result 3 noted that the Unstable matrices have significantly larger
cycle rotation indexes and thus produced more consistent rotation direction than their Stable
counterparts. However, the CCT and CT entries in Table 3 suggest no clear ordering on the number
of cycles per period, nor do eyeball impressions of individual period graphs. We estimated cycle
frequencies each period using standard frequency domain techniques, employing the cumulative
spectral distribution function to identify the most significant cycle frequencies for the strategy
and payoff time series.5 Stronger cycles are evident in the continuous treatments, but overall the
frequencies are estimated with substantial noise. Nevertheless, tests show significantly higher
frequencies for the Ua-CI treatment than for Ua-CS, which comes as no surprise given the time
series graphs and the CCT and CT counts noted earlier. More importantly for present purposes,
we find no significant differences between S and Ua (or Ub) in any action treatment. This is
consistent with the Conjecture stated in Appendix A based on PBR dynamics.

5. DISCUSSION

Evolutionary game theory predicts cyclic behaviour in Rock–Paper–Scissors-like population
games, but such behaviour has not been reported in previous work.6 In a continuous
time laboratory environment we indeed found cycles in population mixed strategies, most
spectacularly for the Unstable matrices with Slow adjustment. Moreover, we consistently
observed counterclockwise cycles for one Unstable matrix and clockwise cycles for another,
just as predicted.

Surprisingly, we also found very persistent cycles for Stable matrices, where the theory
predicted damped cycles and convergence to NE. The theory was partially vindicated in that these
cycles had smaller amplitude than those for corresponding Unstable matrices, but the amplitude
settled down at a positive value, not at zero.

Evolutionary game theory considers several alternative dynamics. In our setting, replicator
dynamics predicts that the cycles for the Unstable matrices have maximal amplitude (i.e. converge
to the simplex boundary), while BR dynamics predict cycles that converge to the Shapley triangle
and therefore have a particular amplitude less than maximal. The amplitude of cycles we observed
with Unstable matrices varied by the action set available to each subject (instantaneous versus
slow adjustment in continuous time, and pure only versus mixed strategies in discrete time), but
it was always less than for the Shapley triangle. The data thus seem more consistent with the PBR
dynamics with treatment-dependent step size. Indeed, the ordering of treatments by effective step

5. This procedure decomposes the time series into a weighted sum of sinusoidal functions to identify the principal
cycle frequencies.

6. In laboratory studies focusing on convergence to mixed strategy equilibrium, Friedman (1996) and Binmore
et al. (2001) both report some evidence of transient cyclic behaviour in 2-population games. Neither study considered
RPS-like games or persistent cycles.
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size noted in section 3 corresponds very closely with the “predicted” ordering of cycle amplitudes
observed for each payoff matrix.7

Classic game theory predicts that, on average, play will approximate NE. Indeed, time averages
over our 3-minute continuous time periods (and over 20 subperiod discrete time periods) fairly
closely approximated NE in all treatments. However, for the Unstable matrix, evolutionary game
theory provides an alternative prediction of central tendency called the TASP, and it consistently
outperformed NE.

Our results, therefore, are quite supportive of evolutionary game theory. EGT offers short
run predictions, where classic game theory has little to say, and those predictions for the most
part explained our data quite well. EGT’s long run predictions either agreed with those of classic
game theory or else were more accurate in explaining our data. Moreover, the predictions were
most accurate in the treatment—continuous slow—that best corresponds to the assumptions of
evolutionary game theory.8

While seeking answers to old questions, our experiment also raises some new questions.
Granted that we observed very nice cyclic behaviour, one now might want to know more about
the necessary conditions. Does our “heat map” play a crucial role? Or is asynchronous choice
in continuous time the key? Do cycles dissipate when subjects must choose simultaneously, and
some choose to best respond to the previous population mix while others respond to their (level
k) anticipations of others’ responses?

We hope that our work inspires studies investigating such questions. The current study already
demonstrates that empirically grounded learning models and evolutionary game dynamics can
help us grasp “instability,” an increasingly important theme for social scientists.

A. APPENDIX

In this appendix, we state and prove some results on the behaviour of the best response (BR) and PBR dynamics in the
three games Ua, Ub, and S.

When one considers stability of mixed equilibria under learning in a single, symmetric population, the most general
criterion for stability is negative definiteness of the game matrix, which implies that a mixed equilibrium is an ESS
(evolutionarily stable strategy). In contrast, mixed equilibria in positive definite games are unstable. As Gaundersdorfer
and Hofbauer (1995) show, for RPS games there is a slightly weaker criterion for the stability/instability of mixed
equilibria under the BR dynamics (see below). The RPS games we consider satisfy both criteria.

Proof of Proposition 1. Convergence to the Shapley triangle for the games Ua and Ub follows directly from
the results of Gaunersdorfer and Hofbauer (1995). In particular, first one normalizes the payoff matrices by subtracting
the diagonal payoff. Thus, for Ua, after subtracting 60, the win payoffs become (12, 12, 6) and the lose payoffs in absolute
terms are (60, 60, 30). Thus clearly Ua satisfies the criterion (given in their Theorems 1 and 2) for instability that the
product of the lose payoffs is greater than the product of the win payoffs.9 One can then calculate the Shapley triangle
directly from their formula (3.6, p. 286). The TASP is calculated by the procedure given in Benaïm et al. (2009). The
average payoff can similarly be calculated. These results are easily extended to Ub.

Turning to S, subtracting 36, we find the win payoffs to be (60, 60, 30) and the lose payoffs are (12, 12, 6). Thus,
clearly the NE is globally stable because it satisfies Gaundersdorfer and Hofbauer’s condition that the product of the win
payoffs are greater than the product of the lose payoffs. ‖

We note that these results are largely robust to mistakes, particularly the possibility that the choice of BR is not
completely accurate. Suppose that subjects choose a mixed strategy that is only an approximate BR to the current average

7. The “prediction” noted at the end of the Appendix was obtained from theory developed after the data were
collected, hence the quote marks.

8. As noted by an anonymous referee, our continuous time lab protocols enforce the asynchronous adjustment
assumed in standard EGT, while the slow protocol “ensures that aggregate behavior adjusts with inertia, as it would in a
large population [assumed in standard EGT], even though the [lab protocol] only used 8 subjects at a time.”

9. Furthermore, Ua and UB are also positive definite with respect to the set IRn
0 ={x∈ IRn :∑xi =0} which is a

stronger criterion.
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mixed strategy. Then we might expect that the population average might evolve according to the PBR dynamics

ẋ=a(φ(x)−x) (A.1)

where the function φ(·) is a perturbed choice function such as the logit and a>0 is a velocity term that we use below.
These PBR dynamics are discussed in detail in Hopkins (1999, 2002) and Hofbauer and Sandholm (2002). The fixed
points of the PBR dynamics are not in general identical to NE but instead are Quantal Response (QRE) or Logit (LE)
equilibria.

PBR choice functions such as the logit are typically parameterized with a precision parameter λ, which is the inverse
of the amount of noise affecting the individual’s choice. In such models, an increase of the precision parameter λ, for
learning outcomes are the following. First, it is well known that the stability of mixed equilibria under the PBR dynamics
(A.1) depend upon the level of λ. When λ is very low, agents randomize almost uniformly independently of the payoff
structure and a perturbed equilibrium close to the centre of the simplex will be a global attractor. This means that even
in the unstable games Ua and Ub, the mixed equilibrium will only be unstable under PBR dynamics if λ is sufficiently
large. For the games Ua and Ub, it can be calculated that the critical value of λ for the logit version of the dynamics is
approximately 0.18. Second, in contrast, in the stable game S, the mixed equilibrium will be stable independent of the
value of λ.

Proposition 2. In Ua and Ub, the perturbed equilibrium (LE) x̂ is unstable under the logit form of the PBR dynamics
(A.1) for all λ>λ∗ ≈0.18. Further, at λ∗ there is a supercritical Hopf bifurcation, so that for λ∈ (λ∗,λ∗ +ε) for some
ε>0, there is an attracting limit cycle near x̂.

Proof Instability follows from the results of Hopkins (1999). The linearization of the logit PBR dynamics (A.1) at x̂ will
be of the form λR(x̂)B−I where R is the replicator operator and B is the payoff matrix, either Ua or Ub. Its eigenvalues will
therefore be of the form λki −1 where the ki are the eigenvalues of R(x̂)B. R(x̂)B has eigenvalues with real part positive
as both Ua and Ub are positive definite. Thus, for λ sufficiently large, all eigenvalues of λR(x̂)B−I will have positive
real parts. We find the critical value of 0.18 by numerical analysis. The existence of a supercritical Hopf bifurcation for
RPS games has been established by Hommes and Ochea (2012). ‖

This result is less complete than Proposition 1, in that it does not give a complete picture of PBR cycles away from
equilibrium. Numeric analysis for the logit form of the PBR dynamics suggests that as for the BR dynamics there is
a unique attracting limit cycle (for λ>0.18). The amplitude of this cycle is increasing in λ and approaches that of the
Shapley triangle as λ becomes large. Two sample limit cycles are illustrated in Figure 1.

The game S is negative definite and hence its mixed equilibrium is a global attractor under both the BR and PBR
dynamics. This implies it is also an attractor for (stochastic) fictitious play.

Proposition 3. The perturbed equilibrium (QRE) of the game S is globally asymptotically stable under the PBR dynamics
(A.1) for all λ≥0.

Proof It is possible to verify that in the game S is negative definite with respect to the set IRn
0 ={x∈ IRn :∑xi =0}. See e.g.

Hofbauer and Sigmund (1998, p. 80) for the negative definiteness (equivalently ESS) condition. The result then follows
from Hofbauer and Sandholm (2002). ‖

Conjecture 1. For λ sufficiently large and for x sufficiently close to the perturbed equilibrium x̂, cycles of the PBR
dynamics, controlling for amplitude, should have the same frequency for all three games Ua, Ub, and S.

The reason behind the conjecture is the following. For λ large, the perturbed equilibrium x̂ is close to the NE
x∗ = (1/4,1/4,1/2). It is then possible to approximate the PBR dynamics by a linear system ẋ=R(x∗)Bx where, for the
logit version of the PBR dynamics, R is the replicator operator (see the proof of Proposition 2 above) and B is the payoff
matrix, which could be any of Ua, Ub, or S. One can calculate R(x∗)B, precisely for all three games and thus derive the
eigenvalues for this linear system, which are exactly 6±9

√
3i for Ua and Ub and −6±9

√
3i for S. It is the imaginary

part of the eigenvalues that determines the frequency of the solutions of the linearized system ẋ=R(x∗)Bx, while the
exponential of the real part determines the amplitude. The imaginary part is identical for all three games and thus one
would expect similar frequencies in cycles. Admittedly, there are two approximations in making this argument. First,
this is a linear approximation to the non-linear PBR dynamics and will only be valid close to equilibrium. Second, the
linearization should properly be taken at x̂ and not at the NE x∗. However, for λ large, the loss of accuracy should not be
too great.

Turning now to discrete time learning, such as in our discrete time treatments, suppose over a time period of length �

a proportion γ of individuals in the population move their choice of strategy x a proportion θ towards the (perturbed) best
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Figure A1

Simulated mean squared distance from NE for the discrete time PBR dynamics in the Stable game S and the unstable

game Ua as a function of step size given precision parameter λ values 0.2 and 0.5

response to the current population state xt . The remaining individuals do not change their strategy.10 Then, the population
state will change to

xt+� =γ θφ(xt)+(1−γ θ )xt . (A.2)

So γ and θ are complements in determining the step size of the discrete process. Then if γ θ is proportional to �, i.e. if
γ θ =a�, we have

xt+� −xt

�
=a(φ(xt)−xt). (A.3)

So if � is small, then the discrete time adjustment process (A.3) will approximate the PBR dynamics (A.1).11 One can also
verify that it has the same fixed points. So, if this discrete time process does converge, it will converge to the perturbed
equilibrium x̂ corresponding to the NE of the appropriate game.

Formally, for stability of a discrete system like (A.2), all eigenvalues have to be less than one in absolute value. The
linearization of the logit version of (A.2) taken at a perturbed equilibrium x̂ is

dxt+�

dxt
=γ θλR(x̂)B+(1−γ θ )I (A.4)

(see the proof of Proposition 2 above for derivation). We can verify directly that the eigenvalues of RB are −6±9
√

3i for
the stable game S with absolute values much greater than one (and similarly for Ua and Ub). We then have the following
standard result.

10. This is, in effect, a very simplified version of the model in Hofbauer and Sandholm (2007). They formally
show how, in a large population with asynchronous adjustment and perturbed payoffs, the aggregate dynamics can be
approximated by the PBR dynamics.

11. There is one other well-known reason why discrete time learning can be approximated by continuous time
dynamics—the long memory assumption associated with classical fictitious play. When beliefs about the current state are
determined by the whole history of play, then the step size of adjustment of strategies becomes very small over time. We
see this as being less relevant in the current experiment where subjects were clearly informed about the current population
state than when information is less complete and subjects might use past experience to form beliefs.
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Proposition 4. For the game S there is a μ∈ (0,1) such that if γ θ <μ, the perturbed equilibrium x̂ is stable under the
discrete time PBR dynamics (A.2). For λ>λ∗ ≈0.18 in the games Ua and Ub the perturbed equilibrium is unstable for
any value of γ θ in (0,1].

Proof The linearization is a convex combination of two matrices λR(x̂)B and I . Thus, its eigenvalues will be a convex
combination of the eigenvalues of these two matrices. In the stable case, the eigenvalues of λR(x̂)B have negative real
part, so their convex combination with the unit eigenvalues of I will have absolute value less than one for γ θ sufficiently
small. For λ>λ∗, the real part of the eigenvalues of λR(x̂)B for Ua and Ub is greater than 1, so the absolute value of
the eigenvalues is definitely greater than one. Consequently, the convex combination of these eigenvalues with the unit
eigenvalues of I always have absolute value greater than one. ‖

In effect, instability carries through into discrete time, but stability only carries through if the step size is sufficiently
small. However, what if the step size is too big? Is there then no difference between the stable and unstable cases? We
turn to numerical simulation and find that, in fact, the difference persists.

Figure A1 shows the simulated long run mean squared deviation from the NE for the discrete time system (A.2). It
graphs for the games S (solid blue) and Ua (dashed red) for λ values 0.2 and 0.5 as marked against a varying step size
(γ θ ) on the horizontal axis. For example, the lowest line is for the stable game S with λ=0.2. One can calculate that for
the equilibrium to be stable the step size must be below 0.3 and indeed the simulation replicates this with the distance
from equilibrium being minuscule for a step size below 0.3. It then steadily rises. However, the distance is always below
that of the unstable game. This leads to several important conclusions.

1. If the step size of the discrete time process is not very small, distance from equilibrium will be non-zero even for
the stable game and even in the long run.

2. Nonetheless, distance from the equilibrium will be larger in the unstable games than in the stable.

3. Factors (such as the action treatments in the experiment) that increase the step size should be associated with
increased observed distance from equilibrium.
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