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Abstract

Previous data from experiments on market entry gatNeglayer games where each player faces
a choice between entering a market and staying out, appear inconsistent with either mixed or pure
Nash equilibria. Here we show that, in this class of game, learning theory predicts sorting, that
is, in the long run, agents play a pure strategy equilibrium with some agents permanently in the
market, and some permanently out. We conduct experiments with a larger number of repetitions
than in previous work in order to test this prediction. We find that when subjects are given minimal
information, only after close to 100 periods do subjects begin to approach equilibrium. In contrast,
with full information, subjects learn to play a pure strategy equilibrium relatively quickly. However,
the information which permits rapid convergence, revelation of the individual play of all opponents,
is not predicted to have any effect by existing models of learning.
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1. Introduction

Theories of learning in games are increasingly being subjected to tests using data from
controlled laboratory experiments with paid human subjects. The success or failure of var-
ious learning models has been assessed on the basis of how well these models predict or
track the behavior of subjects in these experimental sessions. Given the usual short time
horizon in experiments, researchers interested in testing models of learning have tended
to concentrate on assessing their short-run fit. Long-run predictions have largely been
ignored. One might reasonably be uncertain whether asymptotic results are likely to be
relevant in experiments with finite length, or simply be interested in how subjects respond
to novel situations. However, the long-run behavior of different learning models is often
the same, giving clear hypotheses to fest.

This paper is a first attempt to see whetherlthg-run predictions of learning models
do indeed help to explain behavior in the market entry game. This much studied game is
a stylized representation of a very common economic problem: a number of agents have
to choose independently whether or not to undertake some activity, such as enter a market,
go to a bar, drive on a road, or surf the web, the utility from which is decreasing in the
number of participants. Those choosing not to undertake the activity can be thought of as
staying at home, staying out of the market, or simply not participating. Market entry games
typically admit a large number of Nash equilibria. Pure equilibria involve considerable co-
ordination on asymmetric outcomes where some agents enter and some stay out. The only
symmetric outcome is mixed, requiring randomization over the entry decision. There also
exist asymmetric mixed equilibria, where some agents play pure while others randomize.
Given this multiplicity of equilibrium outcomes, an obvious question is: which type of
equilibrium are agents likely to coordinate upon? Many previous experiments have been
conducted in an effort to address this and related questions. See, for example, Rapoport
et al. (1998, 2000, 2002), Seale and Rapoport (2000), Camerer and Lovallo (1999), Sundali
etal. (1995), and Erev and Rapoport (1998). However, up to now, hone of these studies has
yielded evidence to suggest that repeated play leads to coordination on any type of Nash
equilibrium, although in many experiments the average frequencies of entry in market en-
try games look remarkably like those generated by Nash equilibriunfflagt is, market
entry games seem to represent a case where Nash equilibrium fails as a predictor of human
behavior, at least at the individual level.

Here we investigate the alternative hypothesis that, given sufficient repeated play and
adequate feedback, individuals in experimental market entry games dleautdequi-
librium behavior. This assertion leads naturally to further questions: what in practice is
“sufficient” and what is “adequate”? How long should we expect to wait before agents co-
ordinate on an equilibrium? What information is necessary? How do these factors interact,
for example, does better information lead to faster convergence? In this paper, we attempt

1 see, e.g. Hopkins (2002).

2 But as Ochs (1998, p. 169) notes in a recent survey of experimental market entry game reseaaari-
mon feature of all market game experimentsis that the aggregate distributions [of entry rates] are not produced
by Nash equilibrium profiles, that is, thedividual behavior observed in all of these experiments is at variance
with that implied by the best response conditions of a Nash equilibrium” (emphasis added).
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to answer these questions in two ways. First, we provide formal results on long-run be-
havior in market entry games under two different models of learning that differ in terms
of sophistication and use of information. Second, we report the results of a new series of
experiments designed to test these predictions.

We show that two different models of learning predict not only that play should con-
verge to a Nash equilibrium, but also that it should only converge to a subset of the total
number of Nash equilibria. These predictions are in clear contrast with all previous exper-
imental evidence on market entry games, which as noted above, has not been consistent
with any Nash equilibrium. There are two models of learning which have attracted partic-
ular interest in explaining behavior in laboratory experiments, reinforcement learning and
stochastic fictitious play.They differ considerably in terms of sophistication. However,
we show that under both, play must converge to an asymmetric pure equilibrium that in-
volves what could be called “sorting,” where some players always enter and the remaining
players always stay out. However, these are asymptotic results. Thus, even if one of these
learning models accurately describes human behavior, there is no guarantee that we would
see the predicted outcome in the time available for laboratory experiments. What we seek
to examine is whether such results are relevant in the timeframe of experiments, and by
implication whether they are relevant outside the laboratory.

Previous experimental investigations of market entry games have concentrated on test-
ing whether the symmetric mixed equilibrium or an asymmetric pure Nash equilibrium
characterize the behavior of experimental subjects. In fact, the data seem to suggest a
much more heterogeneous outcome, with some subjects apparently mixing between the
two choices and some playing pure. However, the average number of entries per period is
in rough accordance with equilibrium. Erev and Rapoport (1998) report two things of inter-
est. First, distance from the symmetric mixed equilibrium is decreasing over time. Second,
speed of convergence of the average number of entries toward Nash equilibrium levels is
faster when more information is provided.

Learning models provide a potential explanation for the first of these experimental find-
ings. For example, we show that under both reinforcement learning and stochastic fictitious
play the mixed equilibrium is a saddlepoint, and hence movement toward this equilibrium
in the short run is not inconsistent with convergence to a pure strategy equilibrium in the
long run. In addition, Erev and Rapoport report a decrease in “alternation” over time, that
is, the frequency that an agent plays the strategy which she did not play the previous period,
which suggests individuals are getting closer to pure strategies. As to the second finding,
the speed of convergence is more difficult to pin down theoretically and, in particular, the
hypothesis that stochastic fictitious play that uses information about forgone payoffs is
faster than simple reinforcement learning models that do not, has been difficult to formal-
ize. Indeed, the results of our experiments are at variance with theoretical predictions about
the impact of information on learning.

Existing experiments on market entry games have not provided ideal data sets to test
the predictions of learning theory. For example, Rapoport et al. (1998) had sessions lasting

3 There is now a very large literature. See for example Fudenberg and Levine (1998), Erev and Roth (1998),
Camerer and Ho (1999).
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100 periods, but within that time, the parameter which determined the number of entrants in
equilibrium was constantly altered. Erev and Rapoport (1998) kept the parameters constant
in each session, but each session lasted 20 periods, which is probably not sufficient for
long-term behavior to emerge. As the capacity paramatbanges, the profile of strategies
necessary to support a Nash equilibrium also changes, making coordination on a Nash
equilibrium extremely challenging. There have been other experimental investigations of
learning behavior employing large numbers of repetitions, for example, in Erev and Roth
(1998), or in single person decision problems, Erev and Barron (2002). But the interest in
these studies was to fit simulated learning models rather than to test theoretical results on
convergence.

The new experiments on which we report here have several new features. First, each
session involved 100 periods of play of an unchanging market entry game to give some
chance for long-run behavior to be observed. Second, three different information treat-
ments were employed. In the first “limited information” treatment, subjects were given no
initial information about the game being played and each round were only told the payoff
they earned. In the second, “aggregate information” treatment subjects were told the payoff
function, and then were told after each round the number of subjects who had entered, the
number who had stayed out, and the payoff each had earned. In the final “full information”
treatment subjects were given the same information as in the aggregate information treat-
ment, but in addition after each round the choice and payoff of each individual subject was
revealed.

Our results are somewhat surprising. In the limited information treatment, there is some
tendency for groups of subjects to converge upon a pure equilibrium, but only toward
the very end of the 100 period session. The aggregate information treatment, despite the
additional information provided, produced results very similar to those in the limited infor-
mation treatment. In the full information treatment, the tendency toward sorting was much
greater than in the other two treatments. This is despite the fact that all of the learning
models considered predict no effect from the additional information provided in the full
information treatment.

2. Thegame

The market entry game is a game with players who must decide simultaneously
and independently whether to enter a market or to stay out. One very simple formulation,
found for example in Erev and Rapoport (1998), is where payoffs are linear in the number
of entrants or participants. For example, if playsrstrategy iss’ = 0 stay out, o6’ =1
go in, then her payoff is

if 8/ =0
@)= I : ’ 1

i) {v+r(c—m), if ' =1. (@)
Here,v, r, ¢ are positive constants and<Om < N is the number of agents that choose
entry. The constant, therefore, has the interpretation as the capacity of the market or road
or bar. In particular, the return to entry exceeds the return to staying out, if and only if
m < c. We can assumed c < N.
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There are many pure strategy Nash equilibria for this class of gameg #n integer,
any profile of pure strategies which is consistent with either ¢ — 1 entrants is a Nash
equilibrium. If ¢ is not an integer, a pure strategy Nash equilibrium involves exactly
entrants where is the largest integer smaller thanMoreover, ifc is not an integer the
number of Nash equilibria is finite, whiledfis an integer there is a continuum of equilibria.
The latter have the fornm, — 1 players enterN — ¢ stay out, and one player enters with
any probability. Furthermore, this implies that only whers not an integer are the pure
equilibria strict.

Additionally, forc¢ > 1, there is a symmetric mixed Nash equilibrium. This has the form

c—1

)7"=N 1 fori=1,...,N

wherey' is the probability of entry by théth player. Note that the expected number of
entrants in the symmetric mixed equilibriumis- N(c—1)/(N —1) > ¢—1. There are ad-
ditional asymmetric mixed equilibrfeof the formj < ¢ — 1 players enter with probability
one,k < N — ¢ players stay out with probability one, and the remainig j — k players
enter with probabilityc —1— j) /(N — j —k —1). In one of these asymmetric mixed Nash
equilibria, the expected number of entrantgis (c —1— j) (N —j—k)/(N—j—k—-1)
which again is betweenandc — 1. Note though that asapproache® — ¢, the expected
number of entrants approaches

The common feature of all these Nash equilibria is that the expected number of entrants
is betweenc and ¢ — 1. This basic fact is corroborated by the experimental evidence.
However, given the multiplicity of equilibria, it would be preferable if there were some
way to select among the different equilibrium possibilities.

The market entry games that we examine here can be considered as one member of the
large class of coordination games, characterized by having large numbers of Nash equi-
libria. However, unlike games of pure coordination, where players have an incentive for
all to take the same action, here successful coordination involves different players taking
different actions: some enter and some stay out. In one-shot play of such games, given that
the players have identical incentives, one might think the symmetric equilibria is particu-
larly salient, even though in this case it is mixed. In contrast, the insight from the literature
on learning and evolution is that in repeated interaction, individuals will learn to condition
their behavior on the behavior of others and hence converge to an asymmetric equilibrium.
We go on to show that, in market entry games, under some well-known learning models,
agents should indeed coordinate on a pure equilibrium, if only in the long run.

3. Modelsof learning
Here we identify two models of learning which differ in terms of the information they

use but give the same clear prediction about how play in market entry games should develop
in the long run. Imagine this game was played repeatedly by the same group of players at

4 These asymmetric equilibria have not received much attention in previous experimental studies.
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discrete timeintervals =1, 2, 3, .... We suppose that all players have propensities for the
two possible actions. We write playgs propensities asqin, qén), where here strategy 1

is entry and strategy 2 is staying out. Let the probability that agenters in period: be

yi and definey, = (y1, ..., yN). The probability of entry is determined by one of several
possible mappings from propensities, for example, a linear choice rule

. qi
V= (2)
q1, + d2,
or the exponential rule
; exp(Bqy,/n)
= = @3)

exp(Bq., /n) +exp(Bgs, /n)’
The principal focus of interest, however, is what information agents use in modifying
their actions.

3.1. Smplereinforcement

Simple reinforcement is what is assumed in standard reinforcement learning models.
That is, changes in propensities are a function only of payoffs actually received. In this
case, the change in propensity for playén periodn would be

Q1 =1, + 80 +rc—m)), a1 =a5+(1-8,)v, 4)
wherem,, is the actual number of entrants in periodrl his updating rule together with the
choice rule (2) is what Erev and Roth (1998) call their basic reinforcement learning model.
Note that given the choice rule (2), all propensities must remain strictly positive for the
probability y’ to be defined. This can be assured, given the updating rule (4), if all payoffs
are strictly positive. This last assumption is not usually problematic in an experimental
setting, as experiments are usually designed, as were the ones reported here, so as not to
give subjects negative payoffs.

3.2. Hypothetical reinforcement

In hypothetical reinforcement, in addition to undergoing simple reinforcement, an agent
hypothesizes what she would have received if she had played strategies other than the one
she actually chose. The payoff she would have received is then added to the corresponding
propensity. In this context, this implies

Q1= +v+r(c—m—(1-3,)).  ay1=d5+v. (5)
Of course, use of this rule generally requires more information than simple reinforcement.
Without knowledge of the payoff structure and the actions taken by opponents, it is very
difficult to know what one would have received if one had acted differently. This updating
rule together with the exponential choice rule (3) is an example of stochastic fictitious play
(see for example, Fudenberg and Levine, 1998, Chapfer 4).

5 Fictitious play is often modeled in terms of an agent having beliefs over the actions of opponents rather than
in terms of propensities for his own actions. The two methods are largely equivalent (see, for example, Camerer
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4. Learning dynamics

We now investigate the dynamics of the various types of learning introduced in the pre-
vious section. Each of these dynamics has differing requirements concerning information.
Reinforcement learning requires only information on one own’s payoff. Hypothetical re-
inforcement learning models such as stochastic fictitious play, require information about
both the actions of others and the structure of payoffs. Thus there is an ordering of the
two processes in terms of information requirements, which are reflected in the informa-
tion treatments in our experiments. However, as we now show, the asymptotic behavior of
these learning dynamics are not ordered in terms of their informational inputs. In fact, both
reinforcement learning and fictitious play are predicted to lead to sorting.

To obtain some analytic results on the learning processes we consider, we make use of
results from the theory of stochastic approximation. Simply put (see Appendix A for de-
tails), this allows investigation of the behavior of a stochastic learning model by evaluating
its expected motion. In the case of the classic reinforcement learning process defined by the
updating rule (4) and the choice rule (2), the expected motion oftthplayer’s strategy
adjustment can be written as

E[y,iﬂlyn]—y,i:ilyn(l ynr<c— Zyn>+0< > (6)

JF#

where Q! = Z qn > 0 is a player-specific scaling factor. Note that the right-hand side
of the system of equatlons (6) is very close to the evolutionary replicator dynamics, which
for this game would be the following system of differential equations:

:yi(l—yi)r<c—l—2yj) (7)
J#i

fori=1,...,N

The learning dynamics for market entry games when there are only two players are well
understood. If capacity is between 1 and 2, the game is similar to the games known as
“Chicken” or “Hawk—Dove” in that, if you believe your opponent is going to adopt the
“aggressive” strategy, enter, your best response is to stay out. There are three equilibria,
a symmetric mixed equilibrium and two pure equilibria, where one of the two players
enters and the other stays out. In this type of game, under adaptive learning any asymmetry
is self-reinforcing as if one player initially enters with a high probability, then the other
will move toward the best response of staying out entirely. Hence, under the replicator
dynamics there will only be convergence to the mixed equilibrium if the initial conditions
are entirely symmetric, that is, it is a saddlepoint, with the two asymmetric pure equilibria
being stable attractors. Of course, when there are more than two players, there are many
more equilibria including asymmetric equilibria where some agents randomize and some
play pure and the dynamics are potentially much more complicated. However, we are able
to show in Appendix A that in market entry games of arbitrary size, the behavior of the

and Ho, 1999; Hopkins, 2002) for two players but may differ in games with more than two players, depending on
whether beliefs allow for correlation between the play of opponents.
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replicator dynamics is similar to that in this simple case. We show, first, that the replicator
dynamics (7) must converge to one of its rest potn8econd, we find that all mixed
equilibria, symmetric or asymmetric, are saddlepoints and hence unstable.

This is a deterministic result. But this, together with stochastic approximation theory,
allows us to show that reinforcement learning must also converge to a rest point of the
replicator dynamics. The main difference is that, under the replicator dynamics (a deter-
ministic process) if the system happened to start on the stable manifold of one the many
saddlepoint mixed equilibria, then play would converge to that mixed equilibrium. How-
ever, if the actual stochastic learning process were to start on such a manifold, there is a
zero probability of remaining in it, simply because of the noise implicit in the stochastic
process. And if the learning process converges to an equilibrium but not to a mixed equi-
librium, it must converge to a pure equilibrium. This is the intuition behind the following
proposition, the proof of which is in Appendix A.

Proposition 1. If agents use the reinforcement learning updating rule (4) and choice
rule (2), for generic values of ¢, with probability one, the learning process converges to
a pure Nash equilibrium of the game. That is, Pr{lim, o y, € Y} = 1, where Y isthe set
of pure Nash equilibrium profiles.

The reference to generic values ©ofefers to a difficulty mentioned earlier if is an
integer. In this case, there are an infinite number of Nash equilibria wheteagents enter
with probability one, andv — ¢ agents stay out and with the remaining agent completely
indifferent. Our intuition here about what a reasonable outcome constitutes and the analytic
results available are both considerably weaker.

We now turn to hypothetical reinforcement and fictitious play. From Hopkins (2002),
under the hypothetical updating rule (5) and the exponential choice rule (3), the expected
motion of strategies can be written as

E[Yﬁ,+1|y;1] - )’yll = %(y;(l_ y;)r(c -1- Zyrjl> + EU(yL))

J#i
1
+ 0(ﬁ> ®

whereo (y)) is a noise term equal to

o (y') = yi(1-yi)(log(1 - y}) —logyy).
That is, the expected motion is close but not identical to the replicator dynamics. First, there
is the additional noise term which ensures that each action will always be taken with a
positive probability. Second, the expected motion is multiplied by the factdhis has the
effect that learning under stochastic fictitious play is much faster than under reinforcement
learning.

6 This is not as straightforward a result as it might seem. It is quite possible for dynamic systems, particularly
in higher dimensions, to cycle and not converge to any single point.
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The equilibrium points of such dynamics are not in general identical to N&sine
y as a perturbed equilibrium which satisfiesfes 1,..., N,

r(c—l Zyn) |Ogl y) |Ogyi)=0. (9)

J#L

Note that forg sufficiently large and in generic games there will be a perturbed equilibrium
for each Nash equilibrium. Second,&s> oo, the set of perturbed equilibriaapproaches

the set of Nash equilibria. Furthermore, by similar methods to those used in Proposition 1,
we are able to establish the following restlt.

Proposition 2. If all players use hypothetical reinforcement together with the exponential
choice rule (3), for generic values of ¢ and for g sufficiently large, then Pr{lim,,_ o y, €
Y} =1, where Y isthe set of perturbed equilibrium each corresponding to one of the pure
Nash equilibria of the game.

5. Experimental design

The experimental design involves repeated play of the market entry game by a group
of N = 6 inexperienced subjects under one of three different information conditions. We
begin by discussing the parameterization of the payoff function and the three information
conditions. We then explain the procedures followed.

We chose to set = 8, r = 2 andc = 2.1 resulting in the following payoff function (in
dollars):

$8, if 8 =X

7 (8) = {$8+ 221—m), ifs=v
where 0< m < 6 is the number of subjects (includiriy choosingY. We chose to be
non-integer so that, as noted, the number of Nash equilibria of the game would be finite
and the pure equilibria would be strict. Nonetheless, we chdeebe close to an integer
so that, similar to previous studies, in equilibrium there would be little difference in payoff
to those entering and those staying out. The number of players, 6, is significantly smaller
than in the previous experiments on market entry games. Our choige-06 was based
on the following considerations. We wanted a parameterization for the payoff function,
in particular, a choice for the parameterthat was similar to previous studies, and we
wanted to provide subjects with reasonable compensation for their active participation. At
the same time, we wanted to avoid any possibility that subjects eaegative payoffs
that might result in ill-defined entry probabilities under the various learning models we
examine? These considerations favored our choice of a smaller number of subjects.

7 see for example Fudenberg and Levine (1998, Chapter 4).

8 A similar result for two player games is proved in Hofbauer and Hopkins (2002). Monderer and Shapley
(1996) prove the convergence of fictitious play in this class of game.

9 Erev and Rapoport (1998) use a parameterization of the payoff function that can result in significant negative
payoffs given the larger number of subjects they consider (12). However, they adjust the propensity updating
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In the first “limited information” treatment, subjects were repeatedly asked to choose
between two actionX or Y, (which corresponded to “stay out” or “enter” respectively)
without knowing the payoff functiory; . Indeed, subjects did not even know that they were
playing a game with other subjects. In this limited information treatment, each subject was
informed only of the payoff from his own choice of action. Each subject’s history of action
choices and payoffs was reported on their computer screens, and subjects also recorded
this information on record sheets. Thus, in the limited information treatment, subjects had
all the information necessary to play according to the reinforcement learning dynamic, but
did not possess the information necessary for playing according to fictitious play.

In the second “aggregate information” treatment, subjects received feedback on the pay-
off from their action choice as in the limited information treatment, but were fully informed
of the payoff function. In particular, subjects were told the payoff function, and to insure
that their payoffs from choosing Y were as transparent as possible, the instructions also
included the following table revealing all possible payoff values from choosing action Y.
This table was also drawn on a chalkboard for all to see.

Fraction of players who choose action Y 1/6 2/6 3/6 4/6 5/6 6/6
Payoff each earns from choosing action Y $10.20 $8.20 $6.20 $4.20 $2.20 $0.20

The instructions also clearly stated that the payoff each subject earned from choosing
action X was always $8, and this fact was also written on the chalkboard. Following the
play of each round in the aggregate information treatment, subjects were further informed
of the fraction of the six players who had chosEnand the fraction of the six players
who had chosely, as well as the payoff received by all those choosihgnd all those
choosingY. The past history (last 10 rounds) of the fractions choosingnd Y, along
with the payoffs from each choice was always present on subjects’ computer screens, and
subjects were asked to record this information on record sheets as well. Hence, in the ag-
gregate information treatment, subjects had all the information necessary to play according
to fictitious play.

In a final “full information” treatment, subjects were given all the information provided
to subjects in the aggregate information treatment, and in addition, subjects were informed
of the individual actions chosen by each of the other 5 players in the session, who were
identified by their player ID numbers; this last piece of information was not available in
the aggregate (or in the limited) information treatments. For example, as noted in the full
information treatment instructions, the subject with ID nhumber 3 might see that in the just
completed round, the other 5 subjects’ choices were:

1X 2Y 4X 5X 6Y,

indicating that subject number 1 chose X, subject number 2 chose Y, subject numbers 4
and 5 both chose X and subject number 6 chose Y. The immediate past history (the last
10 rounds) of this individual action information was always present on subjects’ screens,

process of their learning model in the event that propensities become negative. It is less clear that the human
subjects would make a similar adjustment.
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thus enabling them to assess the extent to which the other 5 subjects were consistent or
inconsistent in their choice of action. Since subjects in the full information all knew the
payoffs earned each round by those choosinand those choosing, they were provided

a complete record of the actions chosen and payoffs earned by each individual subject in
every round of the session.

We conducted nine one-hour sessions: three sessions for each of the three different
information treatments. Each session involved exactly 6 subjects who had no prior experi-
ence playing the market entry game under any treatment (54 subjects total). Subjects were
recruited from the undergraduate population at the University of Pittsburgh. In each ses-
sion, the group of 6 subjects were seated at computer workstations, and were given written
instructions which were also read aloud. Subjects were isolated from one another and no
communication among subjects was allowed.

Subjects played the market entry game by entering their choice of action in each round,
X or Y, using the computer keyboard when prompted by their monitor. Once all subjects
had made their action choices, the computer program determined each subject’'s own pay-
off according to the parameterization sf given above, and reported this payoff back to
each subject. Whether additional information was provided depended on the treatment as
discussed above.

The six subjects played 100 rounds of the market entry game in an experimental ses-
sion lasting one hour. Because the predictions that follow from Propositions 1-2 are all
asymptotic, we wanted a sufficient number of repetitions to allow the predicted behavior to
develop. Simulations of the various learning models (available on request) indicated that
the 100 rounds allowed should be adequate at least for a pronounced movement toward
equilibrium, if not actual convergence. Second, these simulations also indicated that, as
learning slows over time, increasing the number of repetitions to 150, for example, would
not produce radically different behavior.

The 100 rounds were broken up into four 25-round sets. Subjects were informed that at
the end of each 25-round set, an integer from 1 to 25 would be randomly drawn from a uni-
form distribution with replacement. The chosen integer corresponded to one of the round
numbers in the just completed 25-round set. Each subject’s dollar payoff in that round was
added to their total cash earnings for the session. This design was chosen to prevent sub-
jects from becoming bored during the 100 repetitions of the market entry game. In addition
to the 4 cash payments, subjects received $5 for showing up on time and participating in
the experiment. Average total earnings were $37.87 in the limited information treatment,
$36.5% in the aggregate information treatment, and $35.33 in the full information treat-
ment?!

6. Equilibrium predictions and hypotheses

Given our parameterization of the market entry game, pure strategy Nash equilibria have
2 players always entering, each earning $8.20, and 4 players always staying out, each earn-

10 These amounts include the $5 payment and the four randomly determined payoff amounts. Average per round
payoffs are reported in Section 7.1.
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Table 1
Equilibrium predictions
Equilibrium Number of entrants
Mean Standard deviation
Pure 2 0
Symmetric mixed B2 1015
Asymmetric mixed 467 Q964
Pure QRE g =5) 1781 0512
Symmetric QRE § =5) 1457 1050
Asymmetric QRE g =5) 1525 0968

ing $8.00. The unique symmetric mixed strategy Nash equilibrium prediction is that each
player enters with probability.92 and earns an expected payoff of $8.00. In this equilib-
rium, the expected number of entrants is 1.32. Finally, as noted in Section 3, there are many
asymmetric mixed equilibria. However, play in some of the sessions seems to approach one
of these in particular. In this asymmetric mixed equilibrium, 2 players always stay out and
the remaining 4 players enter with probability 0.367, earning an expected payoff of $8.00
each. The expected number of entrants in this asymmetric mixed equilibrium is 1.467. As
noted, if subjects were to use a perturbed choice rule such as the exponential rule (3), the
steady states of the learning process would not be Nash equilibria, but perturbed equilibria
(also known as Quantal Response Equilibria (QRE) after McKelvey and Palfrey, 1995).
We report also the QRE equilibria (for a typical value of the paramg@ténat correspond
to the three Nash equilibria of interest. These equilibrium predictions are summarized in
Table 1.

Together with the theoretical results of the previous section, we can make the following
hypotheses.

Hypothesis 1. If subjects are reinforcement learners, then:

(a) play should evolve over time toward a pure strategy Nash equilibrium, and

(b) there should be no change in the speed with which play evolves toward this equilibrium
in the limited information treatment as compared with the aggregate information or full
information treatments.

Hypothesis 2. If subjects are hypothetical reinforcement learners, playing according to
stochastic fictitious play or a threshold learning rule, then

(a) play should evolve over time toward a (perturbed) pure strategy Nash equilibrium in
the aggregate and full information treatments;

(b) there should be no change in the speed with which play evolves toward a pure strategy
equilibrium in the aggregate information treatment as compared with the full informa-
tion treatment.

Note that the fictitious play requires information that was not made available to subjects
in our limited information treatment. It is therefore unclear what this model predicts in
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such circumstances. There has been more than one attempt (for example, Fudenberg and
Levine, 1998, Chapter 4; Sarin and Vahid, 1999; Anderson and Camerer, 2000) to specify
a fictitious play-like learning process for environments where opponents’ play is not ob-
servable. However, the properties of these learning processes, and in particular, their speed
with respect to fictitious play, are not well known. Therefore, we treat fictitious play as
making no predictions in the limited information treatment.

It has been suggested to us that, given that expected payoffs are similar in both the pure
and mixed equilibria, there are not sufficient incentives for subjects to learn to play a pure
equilibrium. This similarity is inevitable given that in any equilibrium of this game, both
actions must be active and expected payoffs be sufficiently close so as to give no incentive
to deviate. This observation is reflected in the learning dynamics outlined in Section 4.
As noted, although all mixed equilibria are unstable, they are saddlepoints, which implies
there is at least one stable path leading to each equilibrium. If play starts near such a
path, then the learning dynamics may take some considerable time to move away from the
neighborhood of the equilibrium. Therefore, although learning theory predicts convergence
to a pure equilibrium, such play may take a long time to emerge.

7. Experimental findings
7.1. Main results

The main findings are summarized in Tables 2—4 and Fig. 1. Table 2 reports the session—
level means and standard deviations in per round payoffs over all 100 rounds, over the last
50 rounds and over the last 10 rounds of each session. Table 3 does the same for a related
measure, the number of players choosing to enter. Figure 1 reports the round-by-round
mean number of entrants across the three sessions of each treatment, along with a one
standard deviation bound. Finally, Table 4 repamtiividual subject entry frequencies and
standard deviations.

Table 2
Mean and standard deviation in per round payoff (in dollars) over all 100 rounds, the last 50 rounds and last 10
rounds of each session

Session #1, rounds: Session #2, rounds: Session #3, rounds:
All100 Last50 Lastl0 AIlI100 Last50 Lastl0 AlI100 Last50 Last10

Limited info.
Mean 785 7.90 813 784 794 803 776 7.90 778
St. dew. 095 096 080 098 082 058 103 074 068
Aggregate info.
Mean 765 779 777 7.68 773 778 747 753 670
St. dew. 114 095 093 108 080 067 130 117 119
Full info.
Mean 783 805 807 771 7.87 807 770 775 793

St. dev. 063 024 011 109 081 010 110 090 071




44 J. Duffy, E. Hopkins / Games and Economic Behavior 51 (2005) 31-62

Table 3
Mean and standard deviation in the number of entrants over all 100 rounds, the last 50 rounds and last 10 rounds
of each session

Session #1, rounds: Session #2, rounds: Session #3, rounds:
All100 Last50 Last10 AIl100 Last50 Last10 AIl100 Last50 Last10

Limited info.
Mean 165 154 110 192 186 190 210 208 230
St. dew. 109 108 083 091 080 054 084 060 046
Aggregate info.
Mean 213 204 210 217 232 230 239 240 300
St. dev. 099 087 083 090 055 046 094 083 110
Full info.
Mean 221 200 200 218 206 200 220 222 200
St. dew. 052 020 000 083 068 000 082 067 063

Table 2 reveals that per round payoffs are similar across the three sessions of each treat-
ment!! Closer inspection reveals that over all 100 rounds, the mean per round payoffs in
the three aggregate information sessions are significantly lower (at the 5% level of signifi-
cance) than the comparable means for either the three limited or the three full information
sessions according to a nonparametric robust rank order test. However the difference in
mean payoffs between the aggregate and full information sessions becomes insignificant
once attention is restricted to the last 50 rounds of these sessions. There is no significant
difference in the mean payoffs between the limited and full information treatments over
any of the horizons reported in Table 2.

In Table 3 we see that a related aggregate statistic—the mean number of entrants over
all 100 rounds—is lower in the limited information treatment as compared with either the
aggregate or full information treatments. These differences are significant at the 5% level,
again using the robust rank order test. However, these differences becomes insignificant
once attention is restricted to the last 50 rounds of a sed$ibable 3 as well as Fig. 1 re-
veals that in all three treatments, the mean number of entrants generally lies betavebn
¢—1, orbetween 2.1 and 1.1, though there are some exceptions. In particular, over the last
50 rounds of two of the three aggregate information sessions and one of the three full infor-
mation sessions, the average number of entrants exceeded 2.1 by small amounts. Perhaps
the most interesting finding in Table 3 and Fig. 1 is that in each of the three full informa-
tion treatments, there appears to be perfect coordination on a pure Nash equilibrium for
at least one 10-round period, i.e. the standard deviation for that 10-round entry frequency
was zero (see, in particular Fig. 1). Of course, to assess whether a pure Nash equilibrium
was actually achieved requires further disaggregation of the data, which is done in Table 4.

11 Recall that subjects were only paid on the basis of four randomly chosen rounds, so the payoff means reported
in Table 2 (over 100 rounds, the last 50 rounds, and the last 10 rounds) are not the same as actual mean payoffs.
12 We also note that, according to a Kolmogorov—Smirnoff test, there is no significant difference in the distrib-
ution of the initial (i.e. first round) number of entrants between any two of the three treatments (using the three
initial distributions available for each treatment).
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Fig. 1. 10-round mean number of entrants, one-standard deviation bound.

This table reports the mean and standard deviation of the entry frequencies for each subject
in every session. Looking at the full information treatment results, we see that in two of
the three sessions (full information sessions humbers 1 and 2), subjects did indeed achieve
perfect coordination on the pure equilibrium where 2 players always enter and 4 always
stay out over the last 10 rounds of these sessions, as the standard deviation of the entry
frequencies are zero for each subject.

We note further that in full information session 1, subjects actually achieved a pure
strategy Nash equilibrium much earlier, from rounds 41-51, and another pure strategy
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Table 4
Individual entry frequencies: means and (standard deviations) over all 100 rounds, the last 50 rounds and last 10
rounds of each session

Player Session #1 Session #2 Session #3
number All100 Last50 Last10 AIl100 Last50 Last10 All100 Last50 Last10
Limited info.
1 0.07 008 000 Q076 084 100 012 002 000
(0.26) (0.27) (0.00 (0.43) (0.37) (0.00) (0.32) (0.19) (0.00)
2 0.26 036 010 058 064 080 004 000 000
(0.44) (0.48) (0.30 (0.49) (0.48) (0.40) (0.20) (0.00) (0.00)
3 0.34 032 030 004 002 000 067 076 080
0.47) (0.47) (0.46) (0.20) (0.19) (0.00) 0.47) (0.43) (0.40)
4 0.56 058 060 000 000 000 024 030 050
(0.50) (0.49) (0.49 (0.00) (0.00) (0.00) (0.43 (0.46) (0.50)
5 0.03 000 000 025 002 000 013 004 000
(0.17  (0.000 (0.000 (043 (014 (0.000 (0.34 (0.200 (0.00)
6 0.39 020 010 029 034 010 090 096 100

(0.49 (0.40 (0.30) (0.45) (0.47) (0.30) (0.30) (0.20 (0.00)
Aggregate info.

1 0.01 000 Q000 022 014 010 Q76 Q076 060
(0.10 (0.00 (0.00 (0.42) (0.35 (0.30 (0.43 (0.43 (0.49
2 0.53 046 050 049 Q74 020 010 000 000
(0.50 (0.50 (0.50 (0.50 (0.449) (0.40 (0.30 (0.00 (0.00
3 0.60 054 Q70 Q015 000 000 004 004 000
(0.49 (0.50 (0.46) (0.36) (0.00 (0.00 (0.20 (0.20 (0.00
4 061 060 020 000 000 000 029 030 050
(0.49 (0.49 (0.40 (0.00 (0.00 (0.00 (0.46) (0.46) (0.50
5 0.00 000 000 036 044 100 Q70 Q076 090
(0.00 (0.00 (0.00 (0.48) (0.50 (0.00 (0.46) (0.43 (0.30
6 0.38 044 Q070 095 100 100 050 054 100
(0.49 (0.50 (0.46) (0.22 (0.00 (0.00 (0.50 (0.50 (0.00
Full info.
1 0.35 002 000 002 000 000 073 096 100
(0.48 (0.19 (0.00 (0.1% (0.00 (0.00 (0.44) (0.20 (0.00
2 0.05 000 000 046 Q74 100 000 000 000
(0.22 (0.00 (0.00 (0.50 (0.44) (0.00 (0.00 (0.00 (0.00
3 0.81 100 100 025 008 000 000 000 000
(0.39 (0.00 (0.00 0.43 (0.27) (0.00 (0.00 (0.00 (0.00
4 0.01 000 000 051 016 000 Q070 064 Q70
(0.10 (0.00 (0.00 (0.50 (0.37) (0.00 (0.46) (0.48 (0.46)
5 0.01 000 000 067 096 100 051 052 030
(0.10 (0.00 (0.00 (0.47) (0.20 (0.00 (0.50 (0.50 (0.46)
6 0.98 098 100 027 Q12 000 026 010 000

(0.14) (0.14 (0.000 (0.49 (0.32 (0.000 (049 (0.30) (0.00

equilibrium beginning in round 54; they remained in the latter pure strategy equilibrium

for the last 46 rounds of the experiment (see Fig. 1). In full information session 2, subjects
achieved a pure strategy equilibrium in round 85 and remained in that equilibrium for the
last 15 rounds of the experiment. In full information session 3, a pure strategy equilibrium
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was achieved only briefly from rounds 63-69 (7 rouridsjiowever, we note that by the
last 10 rounds of full information session 3 four of the six players were adhering to pure
strategies; one always in and three always out.

Table 4 reveals that there is some support for Hypothesis 1(a): as the reinforcement
learning model predicts, subjects in the limited information sessions are close to coordi-
nating on a pure equilibrium by the end of each of the three limited information sessions.
Note that by the final 10 rounds of each session, three or four players choose not to enter
at least 90% of the time, and one or two players choose to enter more than 50% of the
time. Moreover we see that the standard deviations for the individual entry frequencies are
almost always lower in the last 10 rounds as compared with the last 50 rounds. On the other
hand, there does not appear to be much support for Hypothesis 1(b) as there are differences
in the speed of convergence as subjects are given more information in the aggregate infor-
mation and full information treatments. In particular, convergence toward the pure strategy
equilibrium appears to be much faster in the full information treatment as compared with
the limited or aggregate information treatments.

In the last 20 rounds of the three aggregate information sessions, subjects appear to
be somewhere between the asymmetric mixed equilibrium and the pure equilibrium. That
neither equilibrium has been reached is supported by the fact that there is excessive entry
relative to that predicted in either equilibrium (compare the mean number of entrants in
Table 3 with the predictions in Table 1). Notice also in Table 4 that in the last 50 (and last
10 rounds) of each of the three aggregate information treatments there remain four players
who are still choosing to enter with some positive frequency, and exactly two players who
(almost) purely stay out.

While Table 4 is informative about individual behavior, the individual frequencies and
standard deviations provide somewhat imprecise evidence regarding the closeness of play
by each group of 6 subjects to the pure strategy prediction. To get further at this issue,
we make use of the Gini index of inequality. L&t be the percentage of all decisions
to enter §/ = 1) made by player over R rounds, (e.g. the last 50 rounds of a session):

P, = N;/N, whereN; = Zleij. =1) andN = Z?:l N;). If two players always en-
ter and the remainder always stay out over &reound interval, the vector of; values,
sorted from least to most B = {0.0, 0.0, 0.0, 0.0, 0.5, 0.5}, and the Gini coefficient is
equal to 066714 By contrast, if all players were entering an equal percentage of the time

13 Figure 1 may give the mistaken impression that a pure strategy Nash equilibrium was obtained over rounds
61-70 of full information session 3. In fact, there were just two entrants in each round of this 10-round interval,
but in rounds 63 and 70, one subject who had been an entrant in previous rounds chose not to enter while another
subject who had been staying out simultaneously chose to enter. Hence, the standard deviation in the number of
entrants was indeed 0 over rounds 61-70, as reported in Fig. 1, but a pure equilibrium was only obtained over the
shorter interval consisting of rounds 63—69.

14 The Gini coefficient is defined as:

)

K K
1
G=352 > |WKP = A/K)P;
i=1j=1
wherek is the number of components; in our case-= 6 individuals. Note that unlike the mean squared deviation
criterion discussed below, in Section 7.2, the Gini coefficient does not require a determinatibictoplayers
are playing certain pure or mixed strategies.
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Table 5

Gini coefficient Rounds

treatment-session All 100 Last 50 Last 10
Low info.-1 0373 Q418 0591
Low info.-2 0474 Q572 0685
Low info.-3 0481 Q583 Q572
Mean (all low) 0443 Q0524 0616
Agg. info.-1 Q389 Q379 Q0468
Agg. info.-2 Q454 Q540 Q587
Agg. info.-3 Q391 Q0431 Q0433
Mean (all agg.) 011 Q0450 0496
Full info.-1 0.569 0663 0667
Full info.-2 0323 Q0552 Q0667
Full info.-3 0455 Q536 Q617
Mean (all full) 0449 0584 0650

(P; = 1/6), as in the symmetric mixed strategy equilibrium, the Gini coefficient would
be 0. As Table 5 reveals, the Gini coefficients come closest to the pure strategy predicted
value of 23 in the full information treatment and come least close to {f&@ediction in

the aggregate information treatment.

The difference in findings between the limited and full information treatments appear
to lie in the speed of convergence and not the type of equilibrium selected. In particular, it
seems that additional information may affect the speed of convergence to a pure strategy
equilibrium in violation of the notion that subjects are strictly reinforcement learners. So
reinforcement learning does reasonably well in explaining behavior in the low information
treatment, in that even there is movement toward equilibrium. But given that it fails to pick
up the effect from greater information, models that use more information might fit better
in the aggregate and full information treatments.

There is much more support for Hypothesis 2(a) than for 2(b). Whereas play does seem
to approach a pure strategy equilibrium in the aggregate and full information treatments,
it also appears that the additional information provided in the full information treatment
relative to the aggregate information treatment has a substantial effect on subject behavior;
subjects in the full information treatment are much closer to the pure strategy equilibrium
by the end of the session than are subjects in the aggregate information treatments; indeed,
as noted earlier, in two of the three full information sessions subjects had achieved and
sustained perfect coordination on a pure equilibrium by the end of the session. Finally, all
of the sessions give greater support for the Nash equilibrium of the one-shot game than
for collusive strategies aimed at maximizing joint payoffs. Indeed, such strategies, which
involve all subjects taking turns to be the sole entrant, involve an implausible level of
coordination, and have not been observed in previous experimental studies.

7.2. Convergence to equilibrium

To determine how close subjects were to convergence on a particular equilibrium, we
first calculated each subject’s entry frequency over 10-period, non-overlapping samples,
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s =1,2,...,10. Denote the entry frequency of subjecver sample by yi. We then cal-
culated the mean squared deviation (msd) from a predicted equilibrium entry freciency
over each 10-period sample in sessjomsd = 1/6Y"%_, (y¢ — §/)2. This calculation is
straight—forward for the unique symmetric mixed equilibrium, whgre= 0.22 for all ;.

Since there are many pure and asymmetric mixed equilibria, we chose toseequilib-

rium of each type for each session. Each pure equilibrium was selected by determining the
two players who were closest to playing the pure strategy of always entering over the last
10 rounds of each session. The other four players were regarded as being closest to playing
the pure strategy of always staying out. This assignment of pure strategies was then used
over all periods of the session (i.e. starting from period 1). In all sessions, the assignment
of pure strategies to players based on final 10-round entry frequencies was readily apparent
from Table 41> Depending on this categorization, the predicted entry frequéhcyould

be either 1 or 0, and using these predictions, we calculated the msd from “the” pure strat-
egy for eachs in each session. Similarly for the asymmetric mixed equilibrium, we used
the final 10-round and sometimes the final 50-round entry frequencies to determine the two
players in each session who were closest to playing the pure strategy of always staying out,
3! = 0. The other four players were regarded as being closest to playing the mixed strategy
which has a predicted entry probability §f = 0.36716 Again, these assignments were in
most cases, readily apparent, and the assignment of players to pure or mixed strategies was
used over all periods of the sessidh.

Figure 2 shows the sequence of 10-period, mean squared deviations averaged over the
three sessions of each information treatmen,t;%(gjf?:1 msof). In all three information
treatments, the (average) msd from “the” pure equilibrium is initially much higher than the
msd from the other two types of equilibria, but by the final 10 rounds, the msd from the
pure equilibrium is less than the msd from these other equilibrium types. In the case of the
full information treatment, the msd from the pure equilibrium falls below the msd from the
other equilibrium types between periods 50-60, and remains there for the duration of the
full information sessions. Notice also that in the aggregate and full information treatments,
the msd from the asymmetric and the symmetric mixed equilibria appears to be rising over
time.

15 Players deemed to be playing the pure strategy of always entering were (session: player numbers): Lim. info.
#1: 3,4; Lim. info. #2: 1,2; Lim. info. #3: 3,6; Agg. info. #1: 3,6; Agg. info. #2: 5,6; Agg. info. #3: 5,6; Full info.

#1: 3,6; Full info. #2: 2,5; Full info. #3: 1,4. The rest were deemed to be playing the pure strategy of staying out.
16 Those deemed to be playing the pure strategy of staying out were (session: player numbers): Lim. info. #1:
1,5; Lim. info. #2: 3,4; Lim. info. #3: 1,2; Agg. info. #1: 1,5; Agg. info. #2: 3,4; Agg. info. #3: 2,3; Full info. #1:

4,5; Full info. #2: 1,3; Full info. #3: 2,3. The rest were deemed to be playing the mixed strategy.

17 We recognize that msd can be an imperfect measure of convergence to a mixed strategy equilibrium as it
cannot detect sequential dependencies in players’ entry choices. However, since we do not find that players
converge to a mixed strategy or asymmetric mixed equilibrium using our msd convergence criterion, it seems
unlikely that alternative convergence criteria that were capable of detecting sequential dependencies in entry
choices would alter our findings.
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Fig. 2. 10-round mean squared deviations from the three types of equilibria: averages over all 3 sessions of a
treatment.

7.3. Information and learning

While it appears that the amount of information that subjects are given affects their be-
havior, we have yet to provide direct evidence that subjects are reacting differently to the
different types of information they are given or whether subjects can be properly character-
ized as reinforcement learners or as hypothetical reinforcement learners in those treatments
where hypothetical reinforcement is possible. We begin by considering whether subjects
condition their entry decision on information concerning the number of entrants. Figure 3
shows the average frequency of entry by all six members of a group in peciacditional
on the number of entrants in that same group in petiedl, using data averaged over all
three sessions of a treatment. Attention is restricted to the case of 0—4 entrants as there
were only two periods in all 9 sessions where more than 4 players entered (both occurred
in the aggregate information treatment). The numbers on each bar indicate the fraction of
observations for that treatment falling into that bin, e.g. 25% of the observations from the
three limited information sessions were for the case where 1 player entered inperind
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Fig. 3. Frequency of entry conditional on the number of entrants in the previous period.

Figure 3 yields two interesting observations. Consider first the entry frequencies con-
ditional on 0 or 1 entrants in the previous period. In the aggregate and full information
treatments, where subjects are aware of the past number of entrants, profitable opportuni-
ties from entering do not go unexploited; the entry frequencies in perimzhditional on
0 or 1 entrants in period — 1 all lie between 30-40%. By contrast, in the limited infor-
mation treatment where subjects were not aware of the number of entrants insperibd
the entry frequencies conditional on 0 or 1 entrants in petiedl are less than 30%.

This finding suggests that individuals in the aggregate and full information treatments are
indeed conditioning on the additional information they are given concerning the number of
entrants. A second observation is that the conditional entry frequencies for the aggregate
information treatment are, with one exception (the number of entrants the previous period
was 3) greater than the conditional entry frequencies for the full information treatment.
Furthermore, the variance in the conditional entry frequencies is lowest for the full infor-
mation treatment and highest for the aggregate information treatment. One can interpret
these findings as suggesting that subjects are conditioning on the additional information
they receive in the full information treatment about precisely which players are entering
and which are staying out when making their entry decisions.

The information in Fig. 3 is further disaggregated in Fig. 4, which shows the frequency
with which players whentered in periodn — 1 also chose to enter in periagconditional
on the total number of entrants in periad- 1.18 Here we see that for three of the four
bins, the frequency of repeated entry is greatest in the full information treatment. One ex-
planation for this finding is that players in the full information treatment seek to establish
a reputation as entrants, capitalizing on the fact that the identity of the players who enter is
revealed in this treatment in contrast to the other two treatments where the actions chosen
by individual players are not revealed. We will return to the issue of repeated game strate-
gies a little later in the paper. An alternative and complementary explanation is that players
learn the pure equilibrium more quickly in the full information treatment so the frequency
of repeated entry is greater.

18 The case of 0 entrants in periad- 1 is therefore excluded.
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Fig. 4. Frequency of repeated entry conditional on the number of entrants in the previous period.

In a further effort to verify that subjects are responding to the information they are given
and to also address the question of whether subjects can be regarded as reinforcement or
hypothetical reinforcement learners, we conducted a number of conditional (fixed effects)
logit regressions where the dependent variable is the action chosen by s$uhjeetiod
n, a’ € {0, 1}, where 1 denotes entry. These logit regressions are of the form:

expla’ + 10}, + B2H)
1+expa + 10} + B2H))

Here,o! is an individual fixed effect specific to playeroO! is individuali’s own marginal
payoff from entry at the start of perioddefined by

n—1 n—1
O,i:rZS;(c—mj)/Zéli, (11)
j=1 j=1

whereaj. is an indicator function equal to 1 if playéentered in period, and 0 otherwise.

Similarly, the variabIeH,’; is individuali’s hypothetical marginal payoff from entry at the
start of period: defined by

n—1 n—1
Hy=rY (1=8)c—m; -1/ (1-5). (12)
j=1 j=1

We estimated this conditional logit regression specification for each of the three treat-
ments using pooled data from three sessions of a given treatment. We purged those ob-
servations where there was little variation in the entry decision, specifically, where the
frequency of entry was less than 0.05, or greater than ¥.9%e regression results are
reported in Table 6.

(10)

Pld, =1] =

19 |n cases where a player (nearly) always enters or (nearly) always stays out, there is a (near) perfect colinearity
between the player’s action and the individual fixed effect.



Table 6
Estimates from a conditional logit model of the probability of entry

Treatment: Limited information Aggregate information Full information
Specification: 1 2 3 1 2 3 1 2 3
On 0.743™ 0.578™ - 0.081 0.090 - 0.156 0.246 -
(0.132) (0.123) (0.111) (0.111) (0.139) (0.139)
H, -0.335™ - -0.166" 0.234" - 0.239" 0.617™ 0.640™
(0.090) (0.083) (0.117) (0.117) (0.146) (0.145)
—InL 689.6 696.9 706.4 750.7 752.7 750.9 655.4 664.6 656.0
L.r. test)(2 14.57 33.55 4.10 0.54 18.43 1.27
p> XZ 0.00 0.00 0.04 0.46 0.00 0.26
No. obs. 1386 1386 1386 1386 1386 1386 1287 1287 1287

Note: Standard errors in parentheses.

* Significantly different from zero at the 10% level.
* Idem., 5%.
" 1dem., 1%.
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For both the aggregate and full information treatments, we find that subjects are sig-
nificantly more likely to enter the higher is the margimspothetical payoff from entry.
Subjects’own marginal payoff from entry appears not to matter in these two treatments.
Indeed, a likelihood ratio test suggests that we cannot reject the null hypothesis of no sig-
nificant difference between specification 1, which includes @thand H,, as regressors
and specification 3, which purges, as a regressor. We conclude that subjects act as hy-
pothetical reinforcement learners in the environments where hypothetical reinforcement is
possible.

In the limited information treatment, we find that specification 1 is preferred to both
specifications 2 and 3 which purge one of the two explanatory variables. While we would
expect the coefficient om, to be significantly positive in the limited information case as
indeed it is, contrary to our expectations, we find that the coefficie,pis significantly
different from zero though it has a negative sign. The significancH,0fn explaining
entry decisions in the limited information case may seem puzzling, as subjects in this
treatment did not have access to the information necessary to construct this hypothetical
payoff variable. The puzzle is easily resolved by noting tHatand O,, are negatively
related; indeed, one can rewrite (12) as

n—1

n—1 n—1 n—1
w={-ot s Sem-vi T || [Ta-s).
j=1 j=1 j=1 j=1

S0 a negative coefficient oH,, may simply reflect the positive association betwe&gn

and the probability of entering. We conclude that in the limited information treatment, it
is primarily the subjects’ own marginal payoff from entry that is significant in explaining
their probability of entering, a conclusion that is consistent with the notion that players are
reinforcement learners in this environment.

Our logit model specification assumes that players are playing a sequence of indepen-
dent one-shot games and are not employing dynamic, repeated game strategies that become
possible when players are made aware of the payoff function and their repeated interaction
with the same group of players (as in our aggregate and full information treatments). As
a check on the reasonableness of this assumption, we searched for evidence that players
were employing dynamic, repeated game strategies. We can think of at least two types of
dynamic strategies for the market entry game (we recognize there are many possibilities).
The most obvious is a collusive strategy, e.g. where each player takes a turn as the sole
entrant for a period, that yields payoffs that exceed those obtained in the static equilibria.
Tables 2—3, which report the mean payoffs and number of entrants suggest that there is no
evidence that players adopted such collusive strategies. A second type of dynamic strategy
is a reputation-building or “teaching” one where an individual repeatedly enters without
regard to the decisions of others and bears any associated cost so as to build a reputation
as an entrant. Such a strategy might be supported by the belief that the short-term costs
(e.g. due to excess entry) are more than outweighed by the long-term (equilibrium) gain to
being one of two entrants and earning a premium of $0.20 per round relative to the pay-
off of non-entrants. To check whether subjects were playing such teaching strategies we
examined individual payoffs over time looking for evidence of a long sequence of losses
followed by a long sequence of gains. Figure 5 reports the sequence of 10-round average
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payoffs for every subject in our experiment. The only instance we found in support of the
second type of dynamic strategy described above is in full information session #1 (see the
upper rightmost panel of Fig. 5). There we see that three players, numbers 1, 3 and 6, ap-
pear to compete for the two entry slots at some cost in terms of average payoff: notice that
their average payoff falls to $6.20 over the fourth 10-round period. The other three play-
ers always stay out following the first two 10-round periods. Player number 1 eventually
stops entering and the pure equilibrium obtains beginning with round 54. No other clear
instances were found of this teaching or reputation-building strategy.

Using the 10-round average payoff data for individual subjects presented in Fig. 5, we
calculated the autocorrelation in individual payoffs. A negative autocorrelation in payoffs
might indicate teaching behavior by that individual. We found that among players who
did not always stay out or always enter, the autocorrelation coefficient was significantly
different from zero for only three individuals (accordingtatatistics for a significance
level of 0.05)2° Of course, it may be that teaching occurs at frequencies other than the
10-round averages that we examined.

We conclude that the logit model specification, which posits that players simply look at
round-by-round changes in payoff information, is not unreasonable.

Regarding the individual behavior in full information session #1, the interpretation that
players employed dynamic strategies is not inconsistent with our learning hypothesis that
players eventually learn the pure strategy equilibrium. Indeed, in this particular session
players did learn the pure strategy equilibrium. Learning is, after all, a dynamic process by
itself. One could argue that the behavior of the individuals in full information session #1 is
not due to their use of dynamic strategies but is instead due to heterogeneity in the belief
updating processes. Without resorting to heterogeneity, one can ask whether learning theo-
ries, static equilibrium predictions, or repeated game strategies provide the most consistent
explanation for the outcomes we observe across all three treatments of our experiment. The
evidence we have reported suggests that predictions based on learning theory are the most
relevant to understanding our findings.

8. Conclusions

We have derived new results on learning behavior in market entry games and have car-
ried out an experiment to test our predictions. The theoretical predictions appear to have
some support. In most sessions, toward the end of 100 rounds, play was at or close to the
pure equilibrium outcome predicted by the reinforcement and fictitious play learning mod-
els. These findings suggest that it may take a substantial number of repetitions before the
play of experimental subjects in market entry games (and possibly other games as well)
approaches the asymptotic predictions of learning models. Consequently, caution appears
called for in using asymptotic results for learning models to predict or characterize behav-
ior in economic decision-making experiments, which are typically conducted for relatively
shorter lengths of time.

20 |t was found to be significantly negative for player #1 of low information session #1, and significantly positive
for player #2 of low information session #3 and player # 3 of aggregate information session #2.
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Our experimental design also enabled us to investigate subjects’ use of information.
Our main conclusion here is that individuals are adaptable in ways that are not captured
by current learning models. When individuals possess the minimal amount of information
assumed by reinforcement learning models, as in our limited information treatment, such
that they do not even know that they are playing a game, they are still capable of learn-
ing equilibrium behavior. However, reinforcement learning does not capture the change in
behavior that occurs when more information is provided. Similarly, belief based learning
models, such as fictitious play, do not capture the qualitative difference in play between
our aggregate and full information treatments.

One possible explanation for the differences we observe is that individuals are using re-
peated game (dynamic) strategies that are not captured by the learning models considered.
The most common class of repeated game strategies are collusive strategies that permit
players to gain greater payoffs than they would in a static equilibrium. There is no evi-
dence for that type of behavior here. We are left to speculate what other objectives the
subjects might have had, and what dynamic strategies, out of an infinite class, might have
been employed. Identification of these different alternatives is not easy. A second possibil-
ity, in line with the work of Camerer et al. (2002), is that certain “sophisticated” players
are using the repeated nature of the game and the information about individual actions that
is available in the full information treatment to teach other, less sophisticated agents how
to play (e.g. to stay out). We found only weak evidence in support of this teaching hypoth-
esis, but perhaps that is because we do not examine strategic behavior across a variety of
different repeated games as Camerer et al. (2002) do.

In any case, no single learning model appears to capture the behavior observed across
our three experimental treatments. We hope that our analysis has shed some light on the
shortcomings of existing learning models, and spurs other researchers to provide further
improvements.
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Appendix A

This appendix gives the proofs behind the results in the text. We analyze stochastic
processes of the form

Xn+1 = Xn = Yo f (Xn) + VYalln (Xn) + O(Vnz) (A1)

for x, € R". We can think ofy as the random component of the process \&ith, |x,,] = O.
yn IS the step size of the process. For all the learning models we considela strictly
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decreasing sequence, wih, y, = oo and)_, ynz < 00. This follows from the assumption
that the players place an equal weight on every observation.

To obtain results on the asymptotic behavior of these stochastic learning processes,
we examine the behavior of the mean or averaged ordinary differential equations (ODES)
derived from the stochastic process above as follows:

i=f(x). (A.2)

We show that in fact the averaged ODEs arising from both reinforcement learning and sto-
chastic fictitious play are both closely related to the evolutionary replicator dynamics (7).

In particular, we apply two classic results from the theory of stochastic approximation.
First, Corollary 6.6 of Benaim (1999) states that if the dynamic (A.2) admits a strict Lia-
punov function and possesses a finite number of equilibrium points, then with probability
one the stochastic process (A.1) must converge to one of these points. We show below
that suitable Liapunov functions exist for this class of games for all learning models we
consider. Second, Theorem 1 of Pemantle (1990) establishes that the stochastic process
(A.1) will converge to an unstable equilibrium point of (A.2) with probability zero. This
is important in that we can show that all mixed strategy equilibria in this class of market
entry game are unstable under the replicator dynamics (Lemma 1 below). This combined
with the application of Corollary 6.6 of Benaim (1999) implies that for both reinforcement
learning and stochastic fictitious play, convergence must be to a pure strategy equilibrium.

First we examine reinforcement learning. Using the results of Hofbauer and Hopkins
(2002) it is possible to establish that the mean ODE associated with the model of rein-
forcement learning given by choice rule (2) and updating rule (4) will be given by the
following equations orf0, 1]V :

;i zuiyi(l_yi)r<c_l_zyj>' (A3)

JF#

If each ! were exactly one then we would have the standard replicator dynamics. The
additional factoru! arises because in the original stochastic learning process there is a
different step size, equal to @', for each player. We take the step sjzeof the whole
system to be An, and introduceu’ =n/Q’ > 0 to keep track of the relative speed of
learning of the different players. Because eachis not constant over time, strictly, we
also require a further set of equations,

[Li=ui<1—ui<v+yir<c—1—Zy~/>>), (A.4)

J#1
fori=1,2,...,N.

21 There is an alternative hypothesis, for which there is considerable empirical support, that experimental sub-
jects “discount” experience and place greater weight on more recent observations. This would give rise to a
constant not decreasing step size. Benaim and Hirsch (1999) have a result for a class of games that included the
current one that if the rate of discount is small then asymptotically play will be close to that generated by learning
with a decreasing step size.
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Lemma 1. For market entry games with generic values of ¢, the only equilibria of the
replicator dynamics (A.3) together with (A.4) which are asymptotically stable are pure
Nash equilibria. All other equilibria are unstable.

Proof. For generic, that is, non integer valuescotthis class of market entry games has
only a finite number of Nash equilibria each of which is isolated. The fixed points of the
replicator dynamics consist of these equilibria and in addition all pure strategy profiles. It
can be verified that any equilibrium point of the standard replicator dynamics is an equi-
librium point for the joint system (A.3), (A.4%

We first show that the local stability of any such equilibrium is entirely determined by
the replicator dynamics and not by the additional equations (A.4). The linearization at any
fixed point will be of the form

J 0
(d;l/dy d;l/du> : (A.5)

where J is the Jacobian of the linearized replicator dynamics. Because of the block of
zeros to the upper right, it can be shown that every eigenvalue of a matrix of the above
form is an eigenvalue for eithef or di/du. The latter matrix is diagonal and has only
negative elements. Hence Jjifhas one or more positive eigenvalues, the equilibrium point
is unstable for the joint dynamics, if it ha negative eigenvalues, the equilibrium point is
asymptotically stable for the joint dynamics.

We now investigate the structure &f At any fully mixed equilibrium where all players
enter with probabilityy, the Jacobiary of the linearized replicator dynamics has the form
Jii = (L=2y")r(c—1-,; y/) which equals zero i’ =y fori =1,..., N. That
is, J has a zero trace. The off-diagonal elements willge= —u'3(1 — y)r. Now, as all
players earn the same payoff in a mixed equilibrium, therefdre 1/ for all i, j andJ
will be symmetric. Thus, it has no complex eigenvalues, and with a zero trace, these real
eigenvalues sum to zero. Hence, we have a saddlepoint.

At any asymmetric mixed equilibrium let the firdt — j — k players randomize over
entry and the remaining + & players play pure. Then one can calculate that in this case
that the Jacobian evaluated at this equilibrium has the form

A B
=[5 ¢)

whereA isa(N — j — k) x (N — j — k) block of the form found at a symmetric mixed
equilibrium as described above, andis a diagonal matrix. It is easy to show that the
eigenvalues off consist of the eigenvalues 6f, which are negative, and of, which by
the above argument are a mixture of positive and negative.

At any pure profile, one can calculate that the Jacobian is diagonal. Furthermore, if this
profile is not a Nash equilibrium then at least one diagonal element is positive. In con-

22 |n fact, for each equilibrium point of the standard replicator dynamics, there are two for the joint system,
one with i positive and the other with equal to zero. However, the latter is always unstable and is never an
asymptotic outcome for the reinforcement learning process.
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trast, at a pure Nash equilibrium which must be strict & non-integer, all elements are
negative. O

Proof of Proposition 1. As outlined above, the proof is in two steps. We identify a suitable
Liapunov function which ensures convergence of the stochastic process. Then, we show
that the stochastic process cannot converge to a mixed equilibrium. First, define

Vo(y)—rZy (C—l——Zy> (A6)

J#
Note that

BVo_C_l Zy

JF#

This function has a local maximum at each pure Nash equilibrium and a local minimum at
each pure state which is not Nash.

dVoy(y) 5= Zuy (1- y)(r(c—l Z))z

JF

with equality only wherey = 0. Hence Vo(y) is a strict Liapunov function in the sense of
Corollary 6.6 of Benaim (1999). Second, for generic values, tfiis class of game pos-
sesses a finite number of equilibria. Hence, by that Corollary, the stochastic process must
converge to an equilibrium point. It is shown in Hopkins and Posch (2002) that this form of
reinforcement learning converges to unstable fixed points of the replicator dynamics with
probability zero. Hence, play must converge to a pure equilibrium.

Vo(y) =

Proof of Proposition 2. In the case of the exponential version of stochastic fictitious play,
given the expected motion (8), (see Hopkins, 2002 for details), the associated ODE will be

y'f=,3< i1y r(c— Zy>+ “yi(1- y)(|og(1—yf)-|ogyf)>.(A.7)

J#
Now consider the modified Liapunov function

1y . .
) =Vo) ~ 2 > (¥'logy + (1—y')log(1 - y')).
i=1
Note that
a‘;ly(iy) < —-1-— Zy ) |Og 1 y) |Ogyi).
JF#

This implies that, first, the critical points df; correspond to perturbed equilibria of the
dynamics (A.7), and second,
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dvi(y) .
dy Y

2

—Zyn 1-y, (V(C—l Zﬁ) —(log(1 - y)—IOQyI)) >0

JF#

with equality only wherey = 0. Hence V1(y) is a strict Liapunov function in the sense of
Corollary 6.6 of Benaim (1999). Second, for generic values, tfiis class of game pos-
sesses a finite number of equilibria. Hence, by that Corollary, the stochastic process must
converge to an equilibrium point. With the exponential dynamics (A.7)3 d®comes
large, the dynamics approach a positive scalar transformation of the replicator dynam-
ics (7). So forB large enough the results of Lemma 1 will hold. Therefore, by Theorem 1
of Pemantle (1990), convergence to any equilibrium other than a pure Nash equilibrium is
impossible. O

Vi(y) =
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