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Abstract

Previous data from experiments on market entry games,N -player games where each player fac
a choice between entering a market and staying out, appear inconsistent with either mixed
Nash equilibria. Here we show that, in this class of game, learning theory predicts sortin
is, in the long run, agents play a pure strategy equilibrium with some agents permanently
market, and some permanently out. We conduct experiments with a larger number of rep
than in previous work in order to test this prediction. We find that when subjects are given m
information, only after close to 100 periods do subjects begin to approach equilibrium. In co
with full information, subjects learn to play a pure strategy equilibrium relatively quickly. Howe
the information which permits rapid convergence, revelation of the individual play of all oppon
is not predicted to have any effect by existing models of learning.
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1. Introduction

Theories of learning in games are increasingly being subjected to tests using da
controlled laboratory experiments with paid human subjects. The success or failure
ious learning models has been assessed on the basis of how well these models p
track the behavior of subjects in these experimental sessions. Given the usual sho
horizon in experiments, researchers interested in testing models of learning have
to concentrate on assessing their short-run fit. Long-run predictions have largely
ignored. One might reasonably be uncertain whether asymptotic results are likely
relevant in experiments with finite length, or simply be interested in how subjects re
to novel situations. However, the long-run behavior of different learning models is
the same, giving clear hypotheses to test.1

This paper is a first attempt to see whether thelong-run predictions of learning model
do indeed help to explain behavior in the market entry game. This much studied g
a stylized representation of a very common economic problem: a number of agent
to choose independently whether or not to undertake some activity, such as enter a
go to a bar, drive on a road, or surf the web, the utility from which is decreasing i
number of participants. Those choosing not to undertake the activity can be though
staying at home, staying out of the market, or simply not participating. Market entry g
typically admit a large number of Nash equilibria. Pure equilibria involve considerabl
ordination on asymmetric outcomes where some agents enter and some stay out. T
symmetric outcome is mixed, requiring randomization over the entry decision. Ther
exist asymmetric mixed equilibria, where some agents play pure while others rando
Given this multiplicity of equilibrium outcomes, an obvious question is: which typ
equilibrium are agents likely to coordinate upon? Many previous experiments have
conducted in an effort to address this and related questions. See, for example, R
et al. (1998, 2000, 2002), Seale and Rapoport (2000), Camerer and Lovallo (1999), S
et al. (1995), and Erev and Rapoport (1998). However, up to now, none of these stud
yielded evidence to suggest that repeated play leads to coordination on any type o
equilibrium, although in many experiments the average frequencies of entry in mark
try games look remarkably like those generated by Nash equilibrium play.2 That is, market
entry games seem to represent a case where Nash equilibrium fails as a predictor of
behavior, at least at the individual level.

Here we investigate the alternative hypothesis that, given sufficient repeated pla
adequate feedback, individuals in experimental market entry games shouldlearn equi-
librium behavior. This assertion leads naturally to further questions: what in practi
“sufficient” and what is “adequate”? How long should we expect to wait before agen
ordinate on an equilibrium? What information is necessary? How do these factors in
for example, does better information lead to faster convergence? In this paper, we a

1 See, e.g. Hopkins (2002).
2 But as Ochs (1998, p. 169) notes in a recent survey of experimental market entry game research, “. . . a com-

mon feature of all market game experiments. . . is that the aggregate distributions [of entry rates] are not produ
by Nash equilibrium profiles, that is, theindividual behavior observed in all of these experiments is at varia

with that implied by the best response conditions of a Nash equilibrium” (emphasis added).
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to answer these questions in two ways. First, we provide formal results on long-ru
havior in market entry games under two different models of learning that differ in t
of sophistication and use of information. Second, we report the results of a new se
experiments designed to test these predictions.

We show that two different models of learning predict not only that play should
verge to a Nash equilibrium, but also that it should only converge to a subset of th
number of Nash equilibria. These predictions are in clear contrast with all previous e
imental evidence on market entry games, which as noted above, has not been co
with any Nash equilibrium. There are two models of learning which have attracted p
ular interest in explaining behavior in laboratory experiments, reinforcement learnin
stochastic fictitious play.3 They differ considerably in terms of sophistication. Howev
we show that under both, play must converge to an asymmetric pure equilibrium th
volves what could be called “sorting,” where some players always enter and the rem
players always stay out. However, these are asymptotic results. Thus, even if one o
learning models accurately describes human behavior, there is no guarantee that w
see the predicted outcome in the time available for laboratory experiments. What w
to examine is whether such results are relevant in the timeframe of experiments,
implication whether they are relevant outside the laboratory.

Previous experimental investigations of market entry games have concentrated o
ing whether the symmetric mixed equilibrium or an asymmetric pure Nash equilib
characterize the behavior of experimental subjects. In fact, the data seem to su
much more heterogeneous outcome, with some subjects apparently mixing betwe
two choices and some playing pure. However, the average number of entries per p
in rough accordance with equilibrium. Erev and Rapoport (1998) report two things of
est. First, distance from the symmetric mixed equilibrium is decreasing over time. Se
speed of convergence of the average number of entries toward Nash equilibrium le
faster when more information is provided.

Learning models provide a potential explanation for the first of these experimenta
ings. For example, we show that under both reinforcement learning and stochastic fic
play the mixed equilibrium is a saddlepoint, and hence movement toward this equili
in the short run is not inconsistent with convergence to a pure strategy equilibrium
long run. In addition, Erev and Rapoport report a decrease in “alternation” over time
is, the frequency that an agent plays the strategy which she did not play the previous
which suggests individuals are getting closer to pure strategies. As to the second fi
the speed of convergence is more difficult to pin down theoretically and, in particula
hypothesis that stochastic fictitious play that uses information about forgone pay
faster than simple reinforcement learning models that do not, has been difficult to fo
ize. Indeed, the results of our experiments are at variance with theoretical predictions
the impact of information on learning.

Existing experiments on market entry games have not provided ideal data sets
the predictions of learning theory. For example, Rapoport et al. (1998) had sessions

3 There is now a very large literature. See for example Fudenberg and Levine (1998), Erev and Roth

Camerer and Ho (1999).
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100 periods, but within that time, the parameter which determined the number of entr
equilibrium was constantly altered. Erev and Rapoport (1998) kept the parameters c
in each session, but each session lasted 20 periods, which is probably not suffici
long-term behavior to emerge. As the capacity parameterc changes, the profile of strategi
necessary to support a Nash equilibrium also changes, making coordination on a
equilibrium extremely challenging. There have been other experimental investigati
learning behavior employing large numbers of repetitions, for example, in Erev and
(1998), or in single person decision problems, Erev and Barron (2002). But the inte
these studies was to fit simulated learning models rather than to test theoretical res
convergence.

The new experiments on which we report here have several new features. Firs
session involved 100 periods of play of an unchanging market entry game to give
chance for long-run behavior to be observed. Second, three different information
ments were employed. In the first “limited information” treatment, subjects were give
initial information about the game being played and each round were only told the p
they earned. In the second, “aggregate information” treatment subjects were told the
function, and then were told after each round the number of subjects who had enter
number who had stayed out, and the payoff each had earned. In the final “full inform
treatment subjects were given the same information as in the aggregate informatio
ment, but in addition after each round the choice and payoff of each individual subje
revealed.

Our results are somewhat surprising. In the limited information treatment, there is
tendency for groups of subjects to converge upon a pure equilibrium, but only to
the very end of the 100 period session. The aggregate information treatment, des
additional information provided, produced results very similar to those in the limited i
mation treatment. In the full information treatment, the tendency toward sorting was
greater than in the other two treatments. This is despite the fact that all of the le
models considered predict no effect from the additional information provided in th
information treatment.

2. The game

The market entry game is a game withN players who must decide simultaneou
and independently whether to enter a market or to stay out. One very simple formu
found for example in Erev and Rapoport (1998), is where payoffs are linear in the nu
of entrants or participants. For example, if playeri ’s strategy isδi = 0 stay out, orδi = 1
go in, then her payoff is

πi(δ) =
{

v, if δi = 0,

v + r(c − m), if δi = 1.
(1)

Here,v, r, c are positive constants and 0� m � N is the number of agents that choo
entry. The constantc, therefore, has the interpretation as the capacity of the market or
or bar. In particular, the return to entry exceeds the return to staying out, if and o

m < c. We can assume 1� c < N .
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There are many pure strategy Nash equilibria for this class of games. Ifc is an integer,
any profile of pure strategies which is consistent with eitherc or c − 1 entrants is a Nas
equilibrium. If c is not an integer, a pure strategy Nash equilibrium involves exacc̄
entrants wherēc is the largest integer smaller thanc. Moreover, ifc is not an integer the
number of Nash equilibria is finite, while ifc is an integer there is a continuum of equilibr
The latter have the form,c − 1 players enter,N − c stay out, and one player enters w
any probability. Furthermore, this implies that only whenc is not an integer are the pu
equilibria strict.

Additionally, for c > 1, there is a symmetric mixed Nash equilibrium. This has the f

ȳi = c − 1

N − 1
for i = 1, . . . ,N

whereȳi is the probability of entry by theith player. Note that the expected number
entrants in the symmetric mixed equilibrium isc > N(c−1)/(N −1) > c−1. There are ad
ditional asymmetric mixed equilibria4 of the formj < c − 1 players enter with probabilit
one,k < N − c players stay out with probability one, and the remainingN − j − k players
enter with probability(c−1−j)/(N −j −k −1). In one of these asymmetric mixed Na
equilibria, the expected number of entrants isj + (c − 1− j)(N − j − k)/(N − j − k − 1)

which again is betweenc andc − 1. Note though that ask approachesN − c, the expected
number of entrants approachesc.

The common feature of all these Nash equilibria is that the expected number of en
is betweenc and c − 1. This basic fact is corroborated by the experimental evide
However, given the multiplicity of equilibria, it would be preferable if there were so
way to select among the different equilibrium possibilities.

The market entry games that we examine here can be considered as one memb
large class of coordination games, characterized by having large numbers of Nas
libria. However, unlike games of pure coordination, where players have an incenti
all to take the same action, here successful coordination involves different players
different actions: some enter and some stay out. In one-shot play of such games, giv
the players have identical incentives, one might think the symmetric equilibria is pa
larly salient, even though in this case it is mixed. In contrast, the insight from the liter
on learning and evolution is that in repeated interaction, individuals will learn to cond
their behavior on the behavior of others and hence converge to an asymmetric equil
We go on to show that, in market entry games, under some well-known learning m
agents should indeed coordinate on a pure equilibrium, if only in the long run.

3. Models of learning

Here we identify two models of learning which differ in terms of the information t
use but give the same clear prediction about how play in market entry games should d
in the long run. Imagine this game was played repeatedly by the same group of pla
4 These asymmetric equilibria have not received much attention in previous experimental studies.
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discrete time intervalsn = 1,2,3, . . . . We suppose that all players have propensities for
two possible actions. We write playeri ’s propensities as(qi

1n, q
i
2n), where here strategy

is entry and strategy 2 is staying out. Let the probability that agenti enters in periodn be
yi
n and defineyn = (y1

n, . . . , yN
n ). The probability of entry is determined by one of seve

possible mappings from propensities, for example, a linear choice rule

yi
n = qi

1n

qi
1n + qi

2n

, (2)

or the exponential rule

yi
n = exp(βqi

1n/n)

exp(βqi
1n/n) + exp(βqi

2n/n)
. (3)

The principal focus of interest, however, is what information agents use in modi
their actions.

3.1. Simple reinforcement

Simple reinforcement is what is assumed in standard reinforcement learning m
That is, changes in propensities are a function only of payoffs actually received. I
case, the change in propensity for playeri in periodn would be

qi
1n+1 = qi

1n + δi
n

(
v + r(c − mn)

)
, qi

2n+1 = qi
2n + (

1− δi
n

)
v, (4)

wheremn is the actual number of entrants in periodn. This updating rule together with th
choice rule (2) is what Erev and Roth (1998) call their basic reinforcement learning m
Note that given the choice rule (2), all propensities must remain strictly positive fo
probabilityyi to be defined. This can be assured, given the updating rule (4), if all pa
are strictly positive. This last assumption is not usually problematic in an experim
setting, as experiments are usually designed, as were the ones reported here, so
give subjects negative payoffs.

3.2. Hypothetical reinforcement

In hypothetical reinforcement, in addition to undergoing simple reinforcement, an
hypothesizes what she would have received if she had played strategies other than
she actually chose. The payoff she would have received is then added to the corresp
propensity. In this context, this implies

qi
1n+1 = qi

1n + v + r
(
c − mn − (

1− δi
n

))
, qi

2n+1 = qi
2n + v. (5)

Of course, use of this rule generally requires more information than simple reinforce
Without knowledge of the payoff structure and the actions taken by opponents, it is
difficult to know what one would have received if one had acted differently. This upd
rule together with the exponential choice rule (3) is an example of stochastic fictitiou
(see for example, Fudenberg and Levine, 1998, Chapter 4).5

5 Fictitious play is often modeled in terms of an agent having beliefs over the actions of opponents rath

in terms of propensities for his own actions. The two methods are largely equivalent (see, for example, Camerer
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4. Learning dynamics

We now investigate the dynamics of the various types of learning introduced in th
vious section. Each of these dynamics has differing requirements concerning inform
Reinforcement learning requires only information on one own’s payoff. Hypothetica
inforcement learning models such as stochastic fictitious play, require information
both the actions of others and the structure of payoffs. Thus there is an ordering
two processes in terms of information requirements, which are reflected in the inf
tion treatments in our experiments. However, as we now show, the asymptotic beha
these learning dynamics are not ordered in terms of their informational inputs. In fact
reinforcement learning and fictitious play are predicted to lead to sorting.

To obtain some analytic results on the learning processes we consider, we make
results from the theory of stochastic approximation. Simply put (see Appendix A fo
tails), this allows investigation of the behavior of a stochastic learning model by evalu
its expected motion. In the case of the classic reinforcement learning process defined
updating rule (4) and the choice rule (2), the expected motion of theith player’s strategy
adjustment can be written as

E
[
yi
n+1|yn

] − yi
n = 1

Qi
n

yi
n

(
1− yi

n

)
r

(
c − 1−

∑
j �=i

y
j
n

)
+ O

(
1

n2

)
, (6)

whereQi
n = ∑

j qi
nj > 0 is a player-specific scaling factor. Note that the right-hand

of the system of equations (6) is very close to the evolutionary replicator dynamics,
for this game would be the following system of differential equations:

ẏi = yi
(
1− yi

)
r

(
c − 1−

∑
j �=i

yj

)
(7)

for i = 1, . . . ,N .
The learning dynamics for market entry games when there are only two players ar

understood. If capacityc is between 1 and 2, the game is similar to the games know
“Chicken” or “Hawk–Dove” in that, if you believe your opponent is going to adopt
“aggressive” strategy, enter, your best response is to stay out. There are three eq
a symmetric mixed equilibrium and two pure equilibria, where one of the two pla
enters and the other stays out. In this type of game, under adaptive learning any asy
is self-reinforcing as if one player initially enters with a high probability, then the o
will move toward the best response of staying out entirely. Hence, under the rep
dynamics there will only be convergence to the mixed equilibrium if the initial condit
are entirely symmetric, that is, it is a saddlepoint, with the two asymmetric pure equ
being stable attractors. Of course, when there are more than two players, there ar
more equilibria including asymmetric equilibria where some agents randomize and
play pure and the dynamics are potentially much more complicated. However, we a
to show in Appendix A that in market entry games of arbitrary size, the behavior o

and Ho, 1999; Hopkins, 2002) for two players but may differ in games with more than two players, depend

whether beliefs allow for correlation between the play of opponents.
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replicator dynamics is similar to that in this simple case. We show, first, that the repl
dynamics (7) must converge to one of its rest points.6 Second, we find that all mixe
equilibria, symmetric or asymmetric, are saddlepoints and hence unstable.

This is a deterministic result. But this, together with stochastic approximation th
allows us to show that reinforcement learning must also converge to a rest point
replicator dynamics. The main difference is that, under the replicator dynamics (a
ministic process) if the system happened to start on the stable manifold of one the
saddlepoint mixed equilibria, then play would converge to that mixed equilibrium. H
ever, if the actual stochastic learning process were to start on such a manifold, the
zero probability of remaining in it, simply because of the noise implicit in the stoch
process. And if the learning process converges to an equilibrium but not to a mixed
librium, it must converge to a pure equilibrium. This is the intuition behind the follow
proposition, the proof of which is in Appendix A.

Proposition 1. If agents use the reinforcement learning updating rule (4) and choice
rule (2), for generic values of c, with probability one, the learning process converges to
a pure Nash equilibrium of the game. That is, Pr{limn→∞ yn ∈ Y } = 1, where Y is the set
of pure Nash equilibrium profiles.

The reference to generic values ofc refers to a difficulty mentioned earlier ifc is an
integer. In this case, there are an infinite number of Nash equilibria wherec−1 agents ente
with probability one, andN − c agents stay out and with the remaining agent comple
indifferent. Our intuition here about what a reasonable outcome constitutes and the a
results available are both considerably weaker.

We now turn to hypothetical reinforcement and fictitious play. From Hopkins (20
under the hypothetical updating rule (5) and the exponential choice rule (3), the ex
motion of strategies can be written as

E
[
yi
n+1|yn

] − yi
n = β

n + 1

(
yi
n

(
1− yi

n

)
r

(
c − 1−

∑
j �=i

y
j
n

)
+ 1

β
σ
(
yi
n

))

+ O

(
1

n2

)
, (8)

whereσ(yi
n) is a noise term equal to

σ(yi) = yi
n

(
1− yi

n

)(
log

(
1− yi

n

) − logyi
n

)
.

That is, the expected motion is close but not identical to the replicator dynamics. First
is the additional noise termσ which ensures that each action will always be taken wi
positive probability. Second, the expected motion is multiplied by the factorβ. This has the
effect that learning under stochastic fictitious play is much faster than under reinforc
learning.

6 This is not as straightforward a result as it might seem. It is quite possible for dynamic systems, part

in higher dimensions, to cycle and not converge to any single point.
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The equilibrium points of such dynamics are not in general identical to Nash.7 Define
ŷ as a perturbed equilibrium which satisfies fori = 1, . . . ,N ,

r

(
c − 1−

∑
j �=i

y
j
n

)
+ 1

β

(
log

(
1− yi

) − logyi
) = 0. (9)

Note that forβ sufficiently large and in generic games there will be a perturbed equilib
for each Nash equilibrium. Second, asβ → ∞, the set of perturbed equilibriây approaches
the set of Nash equilibria. Furthermore, by similar methods to those used in Propos
we are able to establish the following result.8

Proposition 2. If all players use hypothetical reinforcement together with the exponential
choice rule (3), for generic values of c and for β sufficiently large, then Pr{limn→∞ yn ∈
Ŷ } = 1, where Ŷ is the set of perturbed equilibrium each corresponding to one of the pure
Nash equilibria of the game.

5. Experimental design

The experimental design involves repeated play of the market entry game by a
of N = 6 inexperienced subjects under one of three different information conditions
begin by discussing the parameterization of the payoff function and the three inform
conditions. We then explain the procedures followed.

We chose to setv = 8, r = 2 andc = 2.1 resulting in the following payoff function (in
dollars):

πi(δ) =
{

$8, if δi = X,

$8+ 2(2.1− m), if δi = Y.

where 0� m � 6 is the number of subjects (includingi) choosingY . We chosec to be
non-integer so that, as noted, the number of Nash equilibria of the game would be
and the pure equilibria would be strict. Nonetheless, we chosec to be close to an intege
so that, similar to previous studies, in equilibrium there would be little difference in pa
to those entering and those staying out. The number of players, 6, is significantly s
than in the previous experiments on market entry games. Our choice ofN = 6 was based
on the following considerations. We wanted a parameterization for the payoff fun
in particular, a choice for the parameterr , that was similar to previous studies, and
wanted to provide subjects with reasonable compensation for their active participati
the same time, we wanted to avoid any possibility that subjects earnednegative payoffs
that might result in ill-defined entry probabilities under the various learning model
examine.9 These considerations favored our choice of a smaller number of subjects.

7 See for example Fudenberg and Levine (1998, Chapter 4).
8 A similar result for two player games is proved in Hofbauer and Hopkins (2002). Monderer and S

(1996) prove the convergence of fictitious play in this class of game.
9 Erev and Rapoport (1998) use a parameterization of the payoff function that can result in significant n
payoffs given the larger number of subjects they consider (12). However, they adjust the propensity updating



40 J. Duffy, E. Hopkins / Games and Economic Behavior 51 (2005) 31–62

oose
ly)
ere
ct was
tion

ecorded
ts had
ic, but

e pay-
ed

sure
s also
n Y.

/6
$0.20

oosing
g the
ormed
s

ns, and
the ag-
ording

ded
ormed

were
le in
e full

e just

bers 4
he last
reens,

human
In the first “limited information” treatment, subjects were repeatedly asked to ch
between two actionsX or Y , (which corresponded to “stay out” or “enter” respective
without knowing the payoff function,πi . Indeed, subjects did not even know that they w
playing a game with other subjects. In this limited information treatment, each subje
informed only of the payoff from his own choice of action. Each subject’s history of ac
choices and payoffs was reported on their computer screens, and subjects also r
this information on record sheets. Thus, in the limited information treatment, subjec
all the information necessary to play according to the reinforcement learning dynam
did not possess the information necessary for playing according to fictitious play.

In the second “aggregate information” treatment, subjects received feedback on th
off from their action choice as in the limited information treatment, but were fully inform
of the payoff function. In particular, subjects were told the payoff function, and to in
that their payoffs from choosing Y were as transparent as possible, the instruction
included the following table revealing all possible payoff values from choosing actio
This table was also drawn on a chalkboard for all to see.

Fraction of players who choose action Y 1/6 2/6 3/6 4/6 5/6 6
Payoff each earns from choosing action Y $10.20 $8.20 $6.20 $4.20 $2.20

The instructions also clearly stated that the payoff each subject earned from ch
actionX was always $8, and this fact was also written on the chalkboard. Followin
play of each round in the aggregate information treatment, subjects were further inf
of the fraction of the six players who had chosenX and the fraction of the six player
who had chosenY , as well as the payoff received by all those choosingX and all those
choosingY . The past history (last 10 rounds) of the fractions choosingX andY , along
with the payoffs from each choice was always present on subjects’ computer scree
subjects were asked to record this information on record sheets as well. Hence, in
gregate information treatment, subjects had all the information necessary to play acc
to fictitious play.

In a final “full information” treatment, subjects were given all the information provi
to subjects in the aggregate information treatment, and in addition, subjects were inf
of the individual actions chosen by each of the other 5 players in the session, who
identified by their player ID numbers; this last piece of information was not availab
the aggregate (or in the limited) information treatments. For example, as noted in th
information treatment instructions, the subject with ID number 3 might see that in th
completed round, the other 5 subjects’ choices were:

1X 2Y 4X 5X 6Y,

indicating that subject number 1 chose X, subject number 2 chose Y, subject num
and 5 both chose X and subject number 6 chose Y. The immediate past history (t
10 rounds) of this individual action information was always present on subjects’ sc

process of their learning model in the event that propensities become negative. It is less clear that the

subjects would make a similar adjustment.
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thus enabling them to assess the extent to which the other 5 subjects were consi
inconsistent in their choice of action. Since subjects in the full information all knew
payoffs earned each round by those choosingX and those choosingY , they were provided
a complete record of the actions chosen and payoffs earned by each individual sub
every round of the session.

We conducted nine one-hour sessions: three sessions for each of the three d
information treatments. Each session involved exactly 6 subjects who had no prior e
ence playing the market entry game under any treatment (54 subjects total). Subjec
recruited from the undergraduate population at the University of Pittsburgh. In eac
sion, the group of 6 subjects were seated at computer workstations, and were given
instructions which were also read aloud. Subjects were isolated from one another
communication among subjects was allowed.

Subjects played the market entry game by entering their choice of action in each
X or Y , using the computer keyboard when prompted by their monitor. Once all sub
had made their action choices, the computer program determined each subject’s ow
off according to the parameterization ofπi given above, and reported this payoff back
each subject. Whether additional information was provided depended on the treatm
discussed above.

The six subjects played 100 rounds of the market entry game in an experiment
sion lasting one hour. Because the predictions that follow from Propositions 1–2 a
asymptotic, we wanted a sufficient number of repetitions to allow the predicted beha
develop. Simulations of the various learning models (available on request) indicate
the 100 rounds allowed should be adequate at least for a pronounced movement
equilibrium, if not actual convergence. Second, these simulations also indicated t
learning slows over time, increasing the number of repetitions to 150, for example,
not produce radically different behavior.

The 100 rounds were broken up into four 25-round sets. Subjects were informed
the end of each 25-round set, an integer from 1 to 25 would be randomly drawn from
form distribution with replacement. The chosen integer corresponded to one of the
numbers in the just completed 25-round set. Each subject’s dollar payoff in that roun
added to their total cash earnings for the session. This design was chosen to preve
jects from becoming bored during the 100 repetitions of the market entry game. In ad
to the 4 cash payments, subjects received $5 for showing up on time and participa
the experiment. Average total earnings were $37.87 in the limited information treat
$36.53 in the aggregate information treatment, and $35.33 in the full information
ment.10

6. Equilibrium predictions and hypotheses

Given our parameterization of the market entry game, pure strategy Nash equilibri
2 players always entering, each earning $8.20, and 4 players always staying out, ea

10 These amounts include the $5 payment and the four randomly determined payoff amounts. Average p

payoffs are reported in Section 7.1.
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Table 1
Equilibrium predictions

Equilibrium Number of entrants

Mean Standard deviation

Pure 2 0
Symmetric mixed 1.32 1.015
Asymmetric mixed 1.467 0.964
Pure QRE (β = 5) 1.781 0.512
Symmetric QRE (β = 5) 1.457 1.050
Asymmetric QRE (β = 5) 1.525 0.968

ing $8.00. The unique symmetric mixed strategy Nash equilibrium prediction is that
player enters with probability 0.22 and earns an expected payoff of $8.00. In this equ
rium, the expected number of entrants is 1.32. Finally, as noted in Section 3, there ar
asymmetric mixed equilibria. However, play in some of the sessions seems to approa
of these in particular. In this asymmetric mixed equilibrium, 2 players always stay ou
the remaining 4 players enter with probability 0.367, earning an expected payoff of
each. The expected number of entrants in this asymmetric mixed equilibrium is 1.46
noted, if subjects were to use a perturbed choice rule such as the exponential rule
steady states of the learning process would not be Nash equilibria, but perturbed eq
(also known as Quantal Response Equilibria (QRE) after McKelvey and Palfrey, 1
We report also the QRE equilibria (for a typical value of the parameterβ) that correspond
to the three Nash equilibria of interest. These equilibrium predictions are summari
Table 1.

Together with the theoretical results of the previous section, we can make the foll
hypotheses.

Hypothesis 1. If subjects are reinforcement learners, then:

(a) play should evolve over time toward a pure strategy Nash equilibrium, and
(b) there should be no change in the speed with which play evolves toward this equil

in the limited information treatment as compared with the aggregate information o
information treatments.

Hypothesis 2. If subjects are hypothetical reinforcement learners, playing accordin
stochastic fictitious play or a threshold learning rule, then

(a) play should evolve over time toward a (perturbed) pure strategy Nash equilibri
the aggregate and full information treatments;

(b) there should be no change in the speed with which play evolves toward a pure s
equilibrium in the aggregate information treatment as compared with the full info
tion treatment.

Note that the fictitious play requires information that was not made available to su

in our limited information treatment. It is therefore unclear what this model predicts in
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such circumstances. There has been more than one attempt (for example, Fudenb
Levine, 1998, Chapter 4; Sarin and Vahid, 1999; Anderson and Camerer, 2000) to s
a fictitious play-like learning process for environments where opponents’ play is no
servable. However, the properties of these learning processes, and in particular, the
with respect to fictitious play, are not well known. Therefore, we treat fictitious pla
making no predictions in the limited information treatment.

It has been suggested to us that, given that expected payoffs are similar in both th
and mixed equilibria, there are not sufficient incentives for subjects to learn to play a
equilibrium. This similarity is inevitable given that in any equilibrium of this game, b
actions must be active and expected payoffs be sufficiently close so as to give no in
to deviate. This observation is reflected in the learning dynamics outlined in Sect
As noted, although all mixed equilibria are unstable, they are saddlepoints, which im
there is at least one stable path leading to each equilibrium. If play starts near
path, then the learning dynamics may take some considerable time to move away fr
neighborhood of the equilibrium. Therefore, although learning theory predicts conver
to a pure equilibrium, such play may take a long time to emerge.

7. Experimental findings

7.1. Main results

The main findings are summarized in Tables 2–4 and Fig. 1. Table 2 reports the se
level means and standard deviations in per round payoffs over all 100 rounds, over
50 rounds and over the last 10 rounds of each session. Table 3 does the same for a
measure, the number of players choosing to enter. Figure 1 reports the round-by
mean number of entrants across the three sessions of each treatment, along wit
standard deviation bound. Finally, Table 4 reportsindividual subject entry frequencies an
standard deviations.

Table 2
Mean and standard deviation in per round payoff (in dollars) over all 100 rounds, the last 50 rounds and
rounds of each session

Session #1, rounds: Session #2, rounds: Session #3, rounds:

All 100 Last 50 Last 10 All 100 Last 50 Last 10 All 100 Last 50 Last

Limited info.
Mean 7.85 7.90 8.13 7.84 7.94 8.03 7.76 7.90 7.78
St. dev. 0.95 0.96 0.80 0.98 0.82 0.58 1.03 0.74 0.68

Aggregate info.
Mean 7.65 7.79 7.77 7.68 7.73 7.78 7.47 7.53 6.70
St. dev. 1.14 0.95 0.93 1.08 0.80 0.67 1.30 1.17 1.19

Full info.
Mean 7.83 8.05 8.07 7.71 7.87 8.07 7.70 7.75 7.93
St. dev. 0.63 0.24 0.11 1.09 0.81 0.10 1.10 0.90 0.71
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Table 3
Mean and standard deviation in the number of entrants over all 100 rounds, the last 50 rounds and last 1
of each session

Session #1, rounds: Session #2, rounds: Session #3, rounds:

All 100 Last 50 Last 10 All 100 Last 50 Last 10 All 100 Last 50 Last

Limited info.
Mean 1.65 1.54 1.10 1.92 1.86 1.90 2.10 2.08 2.30
St. dev. 1.09 1.08 0.83 0.91 0.80 0.54 0.84 0.60 0.46

Aggregate info.
Mean 2.13 2.04 2.10 2.17 2.32 2.30 2.39 2.40 3.00
St. dev. 0.99 0.87 0.83 0.90 0.55 0.46 0.94 0.83 1.10

Full info.
Mean 2.21 2.00 2.00 2.18 2.06 2.00 2.20 2.22 2.00
St. dev. 0.52 0.20 0.00 0.83 0.68 0.00 0.82 0.67 0.63

Table 2 reveals that per round payoffs are similar across the three sessions of eac
ment.11 Closer inspection reveals that over all 100 rounds, the mean per round pay
the three aggregate information sessions are significantly lower (at the 5% level of s
cance) than the comparable means for either the three limited or the three full inform
sessions according to a nonparametric robust rank order test. However the differe
mean payoffs between the aggregate and full information sessions becomes insig
once attention is restricted to the last 50 rounds of these sessions. There is no sig
difference in the mean payoffs between the limited and full information treatments
any of the horizons reported in Table 2.

In Table 3 we see that a related aggregate statistic—the mean number of entran
all 100 rounds—is lower in the limited information treatment as compared with eithe
aggregate or full information treatments. These differences are significant at the 5%
again using the robust rank order test. However, these differences becomes insig
once attention is restricted to the last 50 rounds of a session.12 Table 3 as well as Fig. 1 re
veals that in all three treatments, the mean number of entrants generally lies betweec and
c − 1, or between 2.1 and 1.1, though there are some exceptions. In particular, over
50 rounds of two of the three aggregate information sessions and one of the three ful
mation sessions, the average number of entrants exceeded 2.1 by small amounts.
the most interesting finding in Table 3 and Fig. 1 is that in each of the three full info
tion treatments, there appears to be perfect coordination on a pure Nash equilibri
at least one 10-round period, i.e. the standard deviation for that 10-round entry freq
was zero (see, in particular Fig. 1). Of course, to assess whether a pure Nash equ
was actually achieved requires further disaggregation of the data, which is done in T

11 Recall that subjects were only paid on the basis of four randomly chosen rounds, so the payoff means
in Table 2 (over 100 rounds, the last 50 rounds, and the last 10 rounds) are not the same as actual mean
12 We also note that, according to a Kolmogorov–Smirnoff test, there is no significant difference in the d
ution of the initial (i.e. first round) number of entrants between any two of the three treatments (using th

initial distributions available for each treatment).
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Fig. 1. 10-round mean number of entrants, one-standard deviation bound.

This table reports the mean and standard deviation of the entry frequencies for each
in every session. Looking at the full information treatment results, we see that in t
the three sessions (full information sessions numbers 1 and 2), subjects did indeed
perfect coordination on the pure equilibrium where 2 players always enter and 4 a
stay out over the last 10 rounds of these sessions, as the standard deviation of th
frequencies are zero for each subject.

We note further that in full information session 1, subjects actually achieved a

strategy Nash equilibrium much earlier, from rounds 41–51, and another pure strategy
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Individual entry frequencies: means and (standard deviations) over all 100 rounds, the last 50 rounds an
rounds of each session

Player
number

Session #1 Session #2 Session #3

All 100 Last 50 Last 10 All 100 Last 50 Last 10 All 100 Last 50 Last

Limited info.
1 0.07 0.08 0.00 0.76 0.84 1.00 0.12 0.02 0.00

(0.26) (0.27) (0.00) (0.43) (0.37) (0.00) (0.32) (0.14) (0.00)
2 0.26 0.36 0.10 0.58 0.64 0.80 0.04 0.00 0.00

(0.44) (0.48) (0.30) (0.49) (0.48) (0.40) (0.20) (0.00) (0.00)
3 0.34 0.32 0.30 0.04 0.02 0.00 0.67 0.76 0.80

(0.47) (0.47) (0.46) (0.20) (0.14) (0.00) (0.47) (0.43) (0.40)
4 0.56 0.58 0.60 0.00 0.00 0.00 0.24 0.30 0.50

(0.50) (0.49) (0.49) (0.00) (0.00) (0.00) (0.43) (0.46) (0.50)
5 0.03 0.00 0.00 0.25 0.02 0.00 0.13 0.04 0.00

(0.17) (0.00) (0.00) (0.43) (0.14) (0.00) (0.34) (0.20) (0.00)
6 0.39 0.20 0.10 0.29 0.34 0.10 0.90 0.96 1.00

(0.49) (0.40) (0.30) (0.45) (0.47) (0.30) (0.30) (0.20) (0.00)
Aggregate info.

1 0.01 0.00 0.00 0.22 0.14 0.10 0.76 0.76 0.60
(0.10) (0.00) (0.00) (0.42) (0.35) (0.30) (0.43) (0.43) (0.49)

2 0.53 0.46 0.50 0.49 0.74 0.20 0.10 0.00 0.00
(0.50) (0.50) (0.50) (0.50) (0.44) (0.40) (0.30) (0.00) (0.00)

3 0.60 0.54 0.70 0.15 0.00 0.00 0.04 0.04 0.00
(0.49) (0.50) (0.46) (0.36) (0.00) (0.00) (0.20) (0.20) (0.00)

4 0.61 0.60 0.20 0.00 0.00 0.00 0.29 0.30 0.50
(0.49) (0.49) (0.40) (0.00) (0.00) (0.00) (0.46) (0.46) (0.50)

5 0.00 0.00 0.00 0.36 0.44 1.00 0.70 0.76 0.90
(0.00) (0.00) (0.00) (0.48) (0.50) (0.00) (0.46) (0.43) (0.30)

6 0.38 0.44 0.70 0.95 1.00 1.00 0.50 0.54 1.00
(0.49) (0.50) (0.46) (0.22) (0.00) (0.00) (0.50) (0.50) (0.00)

Full info.
1 0.35 0.02 0.00 0.02 0.00 0.00 0.73 0.96 1.00

(0.48) (0.14) (0.00) (0.14) (0.00) (0.00) (0.44) (0.20) (0.00)
2 0.05 0.00 0.00 0.46 0.74 1.00 0.00 0.00 0.00

(0.22) (0.00) (0.00) (0.50) (0.44) (0.00) (0.00) (0.00) (0.00)
3 0.81 1.00 1.00 0.25 0.08 0.00 0.00 0.00 0.00

(0.39) (0.00) (0.00) (0.43) (0.27) (0.00) (0.00) (0.00) (0.00)
4 0.01 0.00 0.00 0.51 0.16 0.00 0.70 0.64 0.70

(0.10) (0.00) (0.00) (0.50) (0.37) (0.00) (0.46) (0.48) (0.46)
5 0.01 0.00 0.00 0.67 0.96 1.00 0.51 0.52 0.30

(0.10) (0.00) (0.00) (0.47) (0.20) (0.00) (0.50) (0.50) (0.46)
6 0.98 0.98 1.00 0.27 0.12 0.00 0.26 0.10 0.00

(0.14) (0.14) (0.00) (0.44) (0.32) (0.00) (0.44) (0.30) (0.00)

equilibrium beginning in round 54; they remained in the latter pure strategy equilib
for the last 46 rounds of the experiment (see Fig. 1). In full information session 2, su
achieved a pure strategy equilibrium in round 85 and remained in that equilibrium f

last 15 rounds of the experiment. In full information session 3, a pure strategy equilibrium
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was achieved only briefly from rounds 63–69 (7 rounds).13 However, we note that by th
last 10 rounds of full information session 3 four of the six players were adhering to
strategies; one always in and three always out.

Table 4 reveals that there is some support for Hypothesis 1(a): as the reinforc
learning model predicts, subjects in the limited information sessions are close to c
nating on a pure equilibrium by the end of each of the three limited information ses
Note that by the final 10 rounds of each session, three or four players choose not t
at least 90% of the time, and one or two players choose to enter more than 50%
time. Moreover we see that the standard deviations for the individual entry frequenc
almost always lower in the last 10 rounds as compared with the last 50 rounds. On th
hand, there does not appear to be much support for Hypothesis 1(b) as there are diff
in the speed of convergence as subjects are given more information in the aggregat
mation and full information treatments. In particular, convergence toward the pure st
equilibrium appears to be much faster in the full information treatment as compared
the limited or aggregate information treatments.

In the last 20 rounds of the three aggregate information sessions, subjects ap
be somewhere between the asymmetric mixed equilibrium and the pure equilibrium
neither equilibrium has been reached is supported by the fact that there is excessiv
relative to that predicted in either equilibrium (compare the mean number of entra
Table 3 with the predictions in Table 1). Notice also in Table 4 that in the last 50 (an
10 rounds) of each of the three aggregate information treatments there remain four
who are still choosing to enter with some positive frequency, and exactly two player
(almost) purely stay out.

While Table 4 is informative about individual behavior, the individual frequencies
standard deviations provide somewhat imprecise evidence regarding the closeness
by each group of 6 subjects to the pure strategy prediction. To get further at this
we make use of the Gini index of inequality. LetPi be the percentage of all decisio
to enter (δi = 1) made by playeri over R rounds, (e.g. the last 50 rounds of a sessio
Pi = Ni/N , whereNi = ∑R

j=1 δi
j = 1) andN = ∑6

i=1 Ni ). If two players always en
ter and the remainder always stay out over theR-round interval, the vector ofPi values,
sorted from least to most isP = {0.0, 0.0, 0.0, 0.0, 0.5, 0.5}, and the Gini coefficient is
equal to 0.667.14 By contrast, if all players were entering an equal percentage of the

13 Figure 1 may give the mistaken impression that a pure strategy Nash equilibrium was obtained over
61–70 of full information session 3. In fact, there were just two entrants in each round of this 10-round in
but in rounds 63 and 70, one subject who had been an entrant in previous rounds chose not to enter whil
subject who had been staying out simultaneously chose to enter. Hence, the standard deviation in the n
entrants was indeed 0 over rounds 61–70, as reported in Fig. 1, but a pure equilibrium was only obtained
shorter interval consisting of rounds 63–69.
14 The Gini coefficient is defined as:

G = 1

2

K∑
i=1

K∑
j=1

∣∣(1/K)Pi − (1/K)Pj

∣∣,
whereK is the number of components; in our caseK = 6 individuals. Note that unlike the mean squared devia
criterion discussed below, in Section 7.2, the Gini coefficient does not require a determination ofwhich players

are playing certain pure or mixed strategies.
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Table 5

Gini coefficient
treatment–session

Rounds

All 100 Last 50 Last 10

Low info.-1 0.373 0.418 0.591
Low info.-2 0.474 0.572 0.685
Low info.-3 0.481 0.583 0.572
Mean (all low) 0.443 0.524 0.616

Agg. info.-1 0.389 0.379 0.468
Agg. info.-2 0.454 0.540 0.587
Agg. info.-3 0.391 0.431 0.433
Mean (all agg.) 0.411 0.450 0.496

Full info.-1 0.569 0.663 0.667
Full info.-2 0.323 0.552 0.667
Full info.-3 0.455 0.536 0.617
Mean (all full) 0.449 0.584 0.650

(Pi = 1/6), as in the symmetric mixed strategy equilibrium, the Gini coefficient wo
be 0. As Table 5 reveals, the Gini coefficients come closest to the pure strategy pre
value of 2/3 in the full information treatment and come least close to the 2/3 prediction in
the aggregate information treatment.

The difference in findings between the limited and full information treatments ap
to lie in the speed of convergence and not the type of equilibrium selected. In partic
seems that additional information may affect the speed of convergence to a pure s
equilibrium in violation of the notion that subjects are strictly reinforcement learner
reinforcement learning does reasonably well in explaining behavior in the low inform
treatment, in that even there is movement toward equilibrium. But given that it fails to
up the effect from greater information, models that use more information might fit b
in the aggregate and full information treatments.

There is much more support for Hypothesis 2(a) than for 2(b). Whereas play does
to approach a pure strategy equilibrium in the aggregate and full information treatm
it also appears that the additional information provided in the full information treat
relative to the aggregate information treatment has a substantial effect on subject be
subjects in the full information treatment are much closer to the pure strategy equili
by the end of the session than are subjects in the aggregate information treatments;
as noted earlier, in two of the three full information sessions subjects had achieve
sustained perfect coordination on a pure equilibrium by the end of the session. Fina
of the sessions give greater support for the Nash equilibrium of the one-shot gam
for collusive strategies aimed at maximizing joint payoffs. Indeed, such strategies,
involve all subjects taking turns to be the sole entrant, involve an implausible lev
coordination, and have not been observed in previous experimental studies.

7.2. Convergence to equilibrium

To determine how close subjects were to convergence on a particular equilibriu

first calculated each subject’s entry frequency over 10-period, non-overlapping samples,
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s = 1,2, . . . ,10. Denote the entry frequency of subjecti over samples by yi
s . We then cal-

culated the mean squared deviation (msd) from a predicted equilibrium entry frequenŷi ,
over each 10-period sample in sessionj , msdjs = 1/6

∑6
i=1(y

i
s − ŷi )2. This calculation is

straight–forward for the unique symmetric mixed equilibrium, whereŷi = 0.22 for all i.
Since there are many pure and asymmetric mixed equilibria, we chose to selectone equilib-
rium of each type for each session. Each pure equilibrium was selected by determin
two players who were closest to playing the pure strategy of always entering over t
10 rounds of each session. The other four players were regarded as being closest to
the pure strategy of always staying out. This assignment of pure strategies was the
over all periods of the session (i.e. starting from period 1). In all sessions, the assig
of pure strategies to players based on final 10-round entry frequencies was readily a
from Table 4.15 Depending on this categorization, the predicted entry frequency,ŷi , would
be either 1 or 0, and using these predictions, we calculated the msd from “the” pure
egy for eachs in each session. Similarly for the asymmetric mixed equilibrium, we u
the final 10-round and sometimes the final 50-round entry frequencies to determine t
players in each session who were closest to playing the pure strategy of always stay
ŷi = 0. The other four players were regarded as being closest to playing the mixed s
which has a predicted entry probability ofŷi = 0.367.16 Again, these assignments were
most cases, readily apparent, and the assignment of players to pure or mixed strateg
used over all periods of the session.17

Figure 2 shows the sequence of 10-period, mean squared deviations averaged
three sessions of each information treatment, (1/3

∑3
j=1 msdjs ). In all three information

treatments, the (average) msd from “the” pure equilibrium is initially much higher tha
msd from the other two types of equilibria, but by the final 10 rounds, the msd from
pure equilibrium is less than the msd from these other equilibrium types. In the case
full information treatment, the msd from the pure equilibrium falls below the msd from
other equilibrium types between periods 50–60, and remains there for the duration
full information sessions. Notice also that in the aggregate and full information treatm
the msd from the asymmetric and the symmetric mixed equilibria appears to be risin
time.

15 Players deemed to be playing the pure strategy of always entering were (session: player numbers): L
#1: 3,4; Lim. info. #2: 1,2; Lim. info. #3: 3,6; Agg. info. #1: 3,6; Agg. info. #2: 5,6; Agg. info. #3: 5,6; Full in
#1: 3,6; Full info. #2: 2,5; Full info. #3: 1,4. The rest were deemed to be playing the pure strategy of stayi
16 Those deemed to be playing the pure strategy of staying out were (session: player numbers): Lim. i
1,5; Lim. info. #2: 3,4; Lim. info. #3: 1,2; Agg. info. #1: 1,5; Agg. info. #2: 3,4; Agg. info. #3: 2,3; Full info.
4,5; Full info. #2: 1,3; Full info. #3: 2,3. The rest were deemed to be playing the mixed strategy.
17 We recognize that msd can be an imperfect measure of convergence to a mixed strategy equilibri
cannot detect sequential dependencies in players’ entry choices. However, since we do not find tha
converge to a mixed strategy or asymmetric mixed equilibrium using our msd convergence criterion, it
unlikely that alternative convergence criteria that were capable of detecting sequential dependencies

choices would alter our findings.
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Fig. 2. 10-round mean squared deviations from the three types of equilibria: averages over all 3 sessi
treatment.

7.3. Information and learning

While it appears that the amount of information that subjects are given affects the
havior, we have yet to provide direct evidence that subjects are reacting differently
different types of information they are given or whether subjects can be properly cha
ized as reinforcement learners or as hypothetical reinforcement learners in those tre
where hypothetical reinforcement is possible. We begin by considering whether su
condition their entry decision on information concerning the number of entrants. Fig
shows the average frequency of entry by all six members of a group in periodn conditional
on the number of entrants in that same group in periodn − 1, using data averaged over
three sessions of a treatment. Attention is restricted to the case of 0–4 entrants a
were only two periods in all 9 sessions where more than 4 players entered (both oc
in the aggregate information treatment). The numbers on each bar indicate the frac
observations for that treatment falling into that bin, e.g. 25% of the observations fro

three limited information sessions were for the case where 1 player entered in periodn−1.
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Fig. 3. Frequency of entry conditional on the number of entrants in the previous period.

Figure 3 yields two interesting observations. Consider first the entry frequencies
ditional on 0 or 1 entrants in the previous period. In the aggregate and full inform
treatments, where subjects are aware of the past number of entrants, profitable opp
ties from entering do not go unexploited; the entry frequencies in periodn conditional on
0 or 1 entrants in periodn − 1 all lie between 30–40%. By contrast, in the limited inf
mation treatment where subjects were not aware of the number of entrants in periodn − 1,
the entry frequencies conditional on 0 or 1 entrants in periodn − 1 are less than 30%
This finding suggests that individuals in the aggregate and full information treatmen
indeed conditioning on the additional information they are given concerning the num
entrants. A second observation is that the conditional entry frequencies for the agg
information treatment are, with one exception (the number of entrants the previous
was 3) greater than the conditional entry frequencies for the full information treat
Furthermore, the variance in the conditional entry frequencies is lowest for the full
mation treatment and highest for the aggregate information treatment. One can in
these findings as suggesting that subjects are conditioning on the additional inform
they receive in the full information treatment about precisely which players are en
and which are staying out when making their entry decisions.

The information in Fig. 3 is further disaggregated in Fig. 4, which shows the frequ
with which players whoentered in periodn−1 also chose to enter in periodn, conditional
on the total number of entrants in periodn − 1.18 Here we see that for three of the fo
bins, the frequency of repeated entry is greatest in the full information treatment. O
planation for this finding is that players in the full information treatment seek to esta
a reputation as entrants, capitalizing on the fact that the identity of the players who e
revealed in this treatment in contrast to the other two treatments where the actions
by individual players are not revealed. We will return to the issue of repeated game
gies a little later in the paper. An alternative and complementary explanation is that p
learn the pure equilibrium more quickly in the full information treatment so the frequ
of repeated entry is greater.
18 The case of 0 entrants in periodn − 1 is therefore excluded.
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Fig. 4. Frequency of repeated entry conditional on the number of entrants in the previous period.

In a further effort to verify that subjects are responding to the information they are
and to also address the question of whether subjects can be regarded as reinforce
hypothetical reinforcement learners, we conducted a number of conditional (fixed e
logit regressions where the dependent variable is the action chosen by subjecti in period
n, ai

n ∈ {0, 1}, where 1 denotes entry. These logit regressions are of the form:

Pr
[
ai
n = 1

] = exp(αi + β1O
i
n + β2H

i
n)

1+ exp(αi + β1Oi
n + β2Hi

n)
. (10)

Here,αi is an individual fixed effect specific to playeri, Oi
n is individuali ’s own marginal

payoff from entry at the start of periodn defined by

Oi
n = r

n−1∑
j=1

δi
j (c − mj)

/ n−1∑
j=1

δi
j , (11)

whereδi
j is an indicator function equal to 1 if playeri entered in periodj , and 0 otherwise

Similarly, the variableHi
n is individual i ’s hypothetical marginal payoff from entry at th

start of periodn defined by

Hi
n = r

n−1∑
j=1

(
1− δi

j

)
(c − mj − 1)

/ n−1∑
j=1

(
1− δi

j

)
. (12)

We estimated this conditional logit regression specification for each of the three
ments using pooled data from three sessions of a given treatment. We purged th
servations where there was little variation in the entry decision, specifically, wher
frequency of entry was less than 0.05, or greater than 0.95.19 The regression results a
reported in Table 6.

19 In cases where a player (nearly) always enters or (nearly) always stays out, there is a (near) perfect co

between the player’s action and the individual fixed effect.
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Full information

1 2 3

0.156 0.246* –
(0.139) (0.139)

39** 0.617*** – 0.640***

0.117) (0.146) (0.145)
750.9 655.4 664.6 656.0
.54 18.43 1.27
.46 0.00 0.26
1386 1287 1287 1287
Table 6
Estimates from a conditional logit model of the probability of entry

Treatment: Limited information Aggregate information

Specification: 1 2 3 1 2 3

On 0.743*** 0.578*** – 0.081 0.090 –
(0.132) (0.123) (0.111) (0.111)

Hn -0.335*** – -0.166** 0.234** – 0.2
(0.090) (0.083) (0.117) (

− lnL 689.6 696.9 706.4 750.7 752.7
L.r. testχ2 14.57 33.55 4.10 0
p > χ2 0.00 0.00 0.04 0
No. obs. 1386 1386 1386 1386 1386

Note: Standard errors in parentheses.
* Significantly different from zero at the 10% level.

** Idem., 5%.
*** Idem., 1%.
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For both the aggregate and full information treatments, we find that subjects ar
nificantly more likely to enter the higher is the marginalhypothetical payoff from entry.
Subjects’own marginal payoff from entry appears not to matter in these two treatm
Indeed, a likelihood ratio test suggests that we cannot reject the null hypothesis of n
nificant difference between specification 1, which includes bothOn andHn as regressor
and specification 3, which purgesOn as a regressor. We conclude that subjects act a
pothetical reinforcement learners in the environments where hypothetical reinforcem
possible.

In the limited information treatment, we find that specification 1 is preferred to
specifications 2 and 3 which purge one of the two explanatory variables. While we w
expect the coefficient onOn to be significantly positive in the limited information case
indeed it is, contrary to our expectations, we find that the coefficient onHn is significantly
different from zero though it has a negative sign. The significance ofHn in explaining
entry decisions in the limited information case may seem puzzling, as subjects
treatment did not have access to the information necessary to construct this hypo
payoff variable. The puzzle is easily resolved by noting thatHn andOn are negatively
related; indeed, one can rewrite (12) as

Hi
n =

{
−Oi

n

n−1∑
j=1

δi
j + r

[
n−1∑
j=1

(c − mj − 1) +
n−1∑
j=1

δi
j

]}/
n−1∑
j=1

(
1− δi

j

)
, (13)

so a negative coefficient onHn may simply reflect the positive association betweenOn

and the probability of entering. We conclude that in the limited information treatme
is primarily the subjects’ own marginal payoff from entry that is significant in explain
their probability of entering, a conclusion that is consistent with the notion that playe
reinforcement learners in this environment.

Our logit model specification assumes that players are playing a sequence of in
dent one-shot games and are not employing dynamic, repeated game strategies that
possible when players are made aware of the payoff function and their repeated inte
with the same group of players (as in our aggregate and full information treatment
a check on the reasonableness of this assumption, we searched for evidence that
were employing dynamic, repeated game strategies. We can think of at least two ty
dynamic strategies for the market entry game (we recognize there are many possib
The most obvious is a collusive strategy, e.g. where each player takes a turn as t
entrant for a period, that yields payoffs that exceed those obtained in the static equ
Tables 2–3, which report the mean payoffs and number of entrants suggest that the
evidence that players adopted such collusive strategies. A second type of dynamic s
is a reputation-building or “teaching” one where an individual repeatedly enters wi
regard to the decisions of others and bears any associated cost so as to build a re
as an entrant. Such a strategy might be supported by the belief that the short-term
(e.g. due to excess entry) are more than outweighed by the long-term (equilibrium) g
being one of two entrants and earning a premium of $0.20 per round relative to th
off of non-entrants. To check whether subjects were playing such teaching strateg
examined individual payoffs over time looking for evidence of a long sequence of l

followed by a long sequence of gains. Figure 5 reports the sequence of 10-round average
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payoffs for every subject in our experiment. The only instance we found in support
second type of dynamic strategy described above is in full information session #1 (s
upper rightmost panel of Fig. 5). There we see that three players, numbers 1, 3 and
pear to compete for the two entry slots at some cost in terms of average payoff: noti
their average payoff falls to $6.20 over the fourth 10-round period. The other three
ers always stay out following the first two 10-round periods. Player number 1 even
stops entering and the pure equilibrium obtains beginning with round 54. No other
instances were found of this teaching or reputation-building strategy.

Using the 10-round average payoff data for individual subjects presented in Fig.
calculated the autocorrelation in individual payoffs. A negative autocorrelation in pa
might indicate teaching behavior by that individual. We found that among players
did not always stay out or always enter, the autocorrelation coefficient was signific
different from zero for only three individuals (according tot-statistics for a significanc
level of 0.05).20 Of course, it may be that teaching occurs at frequencies other tha
10-round averages that we examined.

We conclude that the logit model specification, which posits that players simply lo
round-by-round changes in payoff information, is not unreasonable.

Regarding the individual behavior in full information session #1, the interpretation
players employed dynamic strategies is not inconsistent with our learning hypothes
players eventually learn the pure strategy equilibrium. Indeed, in this particular se
players did learn the pure strategy equilibrium. Learning is, after all, a dynamic proce
itself. One could argue that the behavior of the individuals in full information session
not due to their use of dynamic strategies but is instead due to heterogeneity in the
updating processes. Without resorting to heterogeneity, one can ask whether learnin
ries, static equilibrium predictions, or repeated game strategies provide the most con
explanation for the outcomes we observe across all three treatments of our experime
evidence we have reported suggests that predictions based on learning theory are t
relevant to understanding our findings.

8. Conclusions

We have derived new results on learning behavior in market entry games and ha
ried out an experiment to test our predictions. The theoretical predictions appear t
some support. In most sessions, toward the end of 100 rounds, play was at or clos
pure equilibrium outcome predicted by the reinforcement and fictitious play learning
els. These findings suggest that it may take a substantial number of repetitions bef
play of experimental subjects in market entry games (and possibly other games a
approaches the asymptotic predictions of learning models. Consequently, caution a
called for in using asymptotic results for learning models to predict or characterize b
ior in economic decision-making experiments, which are typically conducted for rela
shorter lengths of time.

20 It was found to be significantly negative for player #1 of low information session #1, and significantly po

for player #2 of low information session #3 and player # 3 of aggregate information session #2.
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Our experimental design also enabled us to investigate subjects’ use of inform
Our main conclusion here is that individuals are adaptable in ways that are not ca
by current learning models. When individuals possess the minimal amount of inform
assumed by reinforcement learning models, as in our limited information treatment
that they do not even know that they are playing a game, they are still capable of
ing equilibrium behavior. However, reinforcement learning does not capture the cha
behavior that occurs when more information is provided. Similarly, belief based lea
models, such as fictitious play, do not capture the qualitative difference in play be
our aggregate and full information treatments.

One possible explanation for the differences we observe is that individuals are us
peated game (dynamic) strategies that are not captured by the learning models con
The most common class of repeated game strategies are collusive strategies tha
players to gain greater payoffs than they would in a static equilibrium. There is no
dence for that type of behavior here. We are left to speculate what other objectiv
subjects might have had, and what dynamic strategies, out of an infinite class, migh
been employed. Identification of these different alternatives is not easy. A second po
ity, in line with the work of Camerer et al. (2002), is that certain “sophisticated” pla
are using the repeated nature of the game and the information about individual actio
is available in the full information treatment to teach other, less sophisticated agen
to play (e.g. to stay out). We found only weak evidence in support of this teaching hy
esis, but perhaps that is because we do not examine strategic behavior across a v
different repeated games as Camerer et al. (2002) do.

In any case, no single learning model appears to capture the behavior observed
our three experimental treatments. We hope that our analysis has shed some ligh
shortcomings of existing learning models, and spurs other researchers to provide
improvements.
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Appendix A

This appendix gives the proofs behind the results in the text. We analyze stoc
processes of the form

xn+1 − xn = γnf (xn) + γnηn(xn) + O
(
γ 2
n

)
(A.1)

for xn ∈ R
n. We can think ofη as the random component of the process withE[ηn|xn] = 0.
γn is the step size of the process. For all the learning models we considerγn is a strictly
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∑

n γ 2
n < ∞. This follows from the assumptio

that the players place an equal weight on every observation.21

To obtain results on the asymptotic behavior of these stochastic learning proc
we examine the behavior of the mean or averaged ordinary differential equations (O
derived from the stochastic process above as follows:

ẋ = f (x). (A.2)

We show that in fact the averaged ODEs arising from both reinforcement learning an
chastic fictitious play are both closely related to the evolutionary replicator dynamics

In particular, we apply two classic results from the theory of stochastic approxima
First, Corollary 6.6 of Benaïm (1999) states that if the dynamic (A.2) admits a strict
punov function and possesses a finite number of equilibrium points, then with proba
one the stochastic process (A.1) must converge to one of these points. We show
that suitable Liapunov functions exist for this class of games for all learning mode
consider. Second, Theorem 1 of Pemantle (1990) establishes that the stochastic
(A.1) will converge to an unstable equilibrium point of (A.2) with probability zero. T
is important in that we can show that all mixed strategy equilibria in this class of m
entry game are unstable under the replicator dynamics (Lemma 1 below). This com
with the application of Corollary 6.6 of Benaïm (1999) implies that for both reinforcem
learning and stochastic fictitious play, convergence must be to a pure strategy equil

First we examine reinforcement learning. Using the results of Hofbauer and Ho
(2002) it is possible to establish that the mean ODE associated with the model o
forcement learning given by choice rule (2) and updating rule (4) will be given by
following equations on[0,1]N :

ẏi = µiyi
(
1− yi

)
r

(
c − 1−

∑
j �=i

yj

)
. (A.3)

If eachµi were exactly one then we would have the standard replicator dynamics
additional factorµi arises because in the original stochastic learning process ther
different step size, equal to 1/Qi

n, for each player. We take the step sizeγn of the whole
system to be 1/n, and introduceµi = n/Qi > 0 to keep track of the relative speed
learning of the different players. Because eachµi is not constant over time, strictly, w
also require a further set of equations,

µ̇i = µi

(
1− µi

(
v + yir

(
c − 1−

∑
j �=1

yj

)))
, (A.4)

for i = 1,2, . . . ,N .

21 There is an alternative hypothesis, for which there is considerable empirical support, that experimen
jects “discount” experience and place greater weight on more recent observations. This would give r
constant not decreasing step size. Benaïm and Hirsch (1999) have a result for a class of games that inc
current one that if the rate of discount is small then asymptotically play will be close to that generated by le

with a decreasing step size.
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Lemma 1. For market entry games with generic values of c, the only equilibria of the
replicator dynamics (A.3) together with (A.4) which are asymptotically stable are pure
Nash equilibria. All other equilibria are unstable.

Proof. For generic, that is, non integer values ofc, this class of market entry games h
only a finite number of Nash equilibria each of which is isolated. The fixed points o
replicator dynamics consist of these equilibria and in addition all pure strategy profi
can be verified that any equilibrium point of the standard replicator dynamics is an
librium point for the joint system (A.3), (A.4).22

We first show that the local stability of any such equilibrium is entirely determine
the replicator dynamics and not by the additional equations (A.4). The linearization
fixed point will be of the form(

J 0
dµ̇/dy dµ̇/dµ

)
, (A.5)

whereJ is the Jacobian of the linearized replicator dynamics. Because of the blo
zeros to the upper right, it can be shown that every eigenvalue of a matrix of the
form is an eigenvalue for eitherJ or dµ̇/dµ. The latter matrix is diagonal and has on
negative elements. Hence, ifJ has one or more positive eigenvalues, the equilibrium p
is unstable for the joint dynamics, if it hasN negative eigenvalues, the equilibrium poin
asymptotically stable for the joint dynamics.

We now investigate the structure ofJ . At any fully mixed equilibrium where all player
enter with probabilityȳ, the JacobianJ of the linearized replicator dynamics has the fo
Jii = µi(1 − 2yi)r(c − 1 − ∑

j �=i y
j ) which equals zero ifyi = ȳ for i = 1, . . . ,N . That

is, J has a zero trace. The off-diagonal elements will beJij = −µiȳ(1− ȳ)r . Now, as all
players earn the same payoff in a mixed equilibrium, thereforeµi = µj for all i, j andJ

will be symmetric. Thus, it has no complex eigenvalues, and with a zero trace, thes
eigenvalues sum to zero. Hence, we have a saddlepoint.

At any asymmetric mixed equilibrium let the firstN − j − k players randomize ove
entry and the remainingj + k players play pure. Then one can calculate that in this
that the Jacobian evaluated at this equilibrium has the form

J =
(

A B

0 C

)
,

whereA is a (N − j − k) × (N − j − k) block of the form found at a symmetric mixe
equilibrium as described above, andC is a diagonal matrix. It is easy to show that t
eigenvalues ofJ consist of the eigenvalues ofC, which are negative, and ofA, which by
the above argument are a mixture of positive and negative.

At any pure profile, one can calculate that the Jacobian is diagonal. Furthermore,
profile is not a Nash equilibrium then at least one diagonal element is positive. In

22 In fact, for each equilibrium point of the standard replicator dynamics, there are two for the joint sy
one withµ positive and the other withµ equal to zero. However, the latter is always unstable and is nev

asymptotic outcome for the reinforcement learning process.
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Proof of Proposition 1. As outlined above, the proof is in two steps. We identify a suita
Liapunov function which ensures convergence of the stochastic process. Then, w
that the stochastic process cannot converge to a mixed equilibrium. First, define

V0(y) = r

N∑
i=1

yi

(
c − 1− 1

2

∑
j �=i

yj

)
. (A.6)

Note that

∂V0

∂yi
= c − 1−

∑
j �=i

yj .

This function has a local maximum at each pure Nash equilibrium and a local minim
each pure state which is not Nash.

V̇0(y) = dV0(y)

dy
· ẏ =

N∑
i=1

µiyi
(
1− yi

)(
r

(
c − 1−

j∑
j �=i

))2

� 0

with equality only wherėy = 0. Hence,V0(y) is a strict Liapunov function in the sense
Corollary 6.6 of Benaïm (1999). Second, for generic values ofc, this class of game pos
sesses a finite number of equilibria. Hence, by that Corollary, the stochastic proces
converge to an equilibrium point. It is shown in Hopkins and Posch (2002) that this fo
reinforcement learning converges to unstable fixed points of the replicator dynamic
probability zero. Hence, play must converge to a pure equilibrium.�
Proof of Proposition 2. In the case of the exponential version of stochastic fictitious p
given the expected motion (8), (see Hopkins, 2002 for details), the associated ODE

ẏi = β

(
yi

(
1− yi

)
r

(
c − 1−

∑
j �=i

yj

)
+ 1

β
yi

(
1− yi

)(
log(1− yi

) − logyi
))

. (A.7)

Now consider the modified Liapunov function

V1(y) = V0(y) − 1

β

N∑
i=1

(
yi logyi + (

1− yi
)
log

(
1− yi

))
.

Note that

∂V1(y)

∂yi
= r

(
c − 1−

∑
j �=i

yj

)
+ 1

β

(
log

(
1− yi

) − logyi
)
.

This implies that, first, the critical points ofV1 correspond to perturbed equilibria of th

dynamics (A.7), and second,
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V̇1(y) = dV1(y)

dy
· ẏ

=
N∑

i=1

yi
n

(
1− yi

n

)(
r

(
c − 1−

∑
j �=i

y
j
n

)
+ 1

β

(
log

(
1− yi

) − logyi
))2

� 0

with equality only wherėy = 0. Hence,V1(y) is a strict Liapunov function in the sense
Corollary 6.6 of Benaïm (1999). Second, for generic values ofc, this class of game pos
sesses a finite number of equilibria. Hence, by that Corollary, the stochastic proces
converge to an equilibrium point. With the exponential dynamics (A.7), asβ becomes
large, the dynamics approach a positive scalar transformation of the replicator d
ics (7). So forβ large enough the results of Lemma 1 will hold. Therefore, by Theore
of Pemantle (1990), convergence to any equilibrium other than a pure Nash equilibr
impossible. �
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