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Fictitious play and stimulus–response/reinforcement learning are examined in the
context of a large population where agents are repeatedly randomly matched. We
show that the aggregation of this learning behavior can be qualitatively different
from learning at the level of the individual. This aggregate dynamic belongs to
the same class of simply defined dynamic as do several formulations of evolutionary
dynamics. We obtain sufficient conditions for convergence and divergence which are
valid for the whole class of dynamics. These results are therefore robust to most
specifications of adaptive behavior. Journal of Economic Literature Classification
Numbers: C72, D83. © 1999 Academic Press
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1. INTRODUCTION

There has been an increasing interest in using evolutionary models to ex-
plain social phenomena, in particular, the evolution of conventions. How-
ever, evolutionary models have not achieved universal acceptance. There
has been some skepticism as to the degree to which evolutionary dynam-
ics are relevant to economic situations. In an evolutionary system, nature
chooses the individuals who embody superior strategies. In human society,
individuals learn: they choose strategies that seem superior. There is no
certainty that the dynamics generated by the two different processes are
identical. But if one insists on basing social evolution on decisions taken
by individual agents this presents its own problems. What does individual
learning behavior look like when aggregated across a population? Little
research has been done on this issue and the results that do exist, as we
shall see below, are not encouraging.
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There are a number of potential responses. One adopted by Binmore
and Samuelson (1997) is to devise a learning scheme which approximates
the dynamics generated by evolution. Thus the results of evolutionary game
theory could be recreated by learning. Another is to generalize the evolu-
tionary dynamics by abandoning particular functional forms and looking at
wide classes of dynamics which satisfy “monotonicity” or “order compati-
bility” (Nachbar, 1990; Friedman, 1991; Kandori et al., 1993). The hope is
that even if learning behavior is not identical to evolution, it is sufficiently
similar to fall within these wider categories. However, in this paper, a dif-
ferent approach is taken. Rather than designing learning models to suit
our purposes, we examine two existing models of learning behavior cur-
rent in the literature. This is done in the context of a large random-mixing
population.

The question of aggregation of learning behavior is of interest in its own
right. As can be seen in, for example, Crawford (1989) or Canning (1992),
learning behavior aggregated across a large population can be qualitatively
different from behavior at the level of the individual. Indeed, we show that
aggregation can solve many of the problems encountered in existing learn-
ing models. Secondly, the resultant dynamics are not, in general, identical
to evolutionary dynamics on a similarly defined population. They may not
even satisfy monotonicity. However, they all belong to a class of dynamics
which for reasons that will become apparent we will call “positive definite,”
and share much of their qualitative behavior.

Fictitious play, our first learning model, was, in fact, introduced as a
means of calculating Nash equilibrium, or, in the terminology of the time, in
order to “solve” games (Brown, 1951; Robinson, 1951). Play was “fictitious”
in that it was assumed to be a purely mental process by which agents would
decide on a strategy. The fictitious play algorithm selects a pure strategy
that is a best reply to the average past play of opponents. One can interpret
this as though each player uses past play as a prediction of opponents’
current actions. This is, of course, in the spirit of the adjustment process
first suggested by Cournot in the 19th century. While it might not be clear
a priori where such a naive form of behavior might lead, in fact, it has
been shown, for example, that the empirical frequencies of strategies played
approaches a Nash equilibrium profile in zero-sum games (Robinson, 1951)
and in all 2 × 2 games (Miyasawa, 1961).

More recently, fictitious play has again attracted interest, this time as
a means of modeling learning.1 This, however, is an interpretation that
is problematic. The positive results noted above are qualified by the re-

1Some of the many to have considered fictitious play or similar processes are Canning
(1992), Fudenberg and Kreps (1993), Jordan (1993), Milgrom and Roberts (1991), Monderer
and Shapley (1996), and Young (1993).
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alization that convergence of fictitious play is not necessarily consistent
with the idea of players “learning” an equilibrium. Convergence to a pure-
strategy equilibrium is relatively straightforward: after a certain time, each
player will keep to a single pure strategy. However, as Young (1993), Fu-
denberg and Kreps (1993), and Jordan (1993) all note, convergence in
empirical frequencies to a mixed Nash equilibrium may only entail that
play passes through a deterministic cycle (of increasing length) through the
strategies in its support. In one sense, players’ “beliefs” converge, even if
their actions do not, in that in the limit they will be indifferent between
the different strategies in the support of the Nash equilibrium. However,
if players’ beliefs are predictions of their opponents’ play, while correct on
average, they are consistently incorrect for individual rounds of play. Im-
plicit in fictitious play is also a strong degree of myopia. In choosing strate-
gies, players take no account of the fact that opponents are also learning.
Similarly, if as noted above, play converges to a cycle, players do not re-
spond to the correlated nature of play. Finally, apart from the case of zero-
sum games, there is no easy method of determining whether fictitious play
converges.

There are other models of learning in games. We can identify a class of
learning rules as being based on gradient algorithms. The behavior postu-
lated is perhaps even more naive than under fictitious play.2 Indeed, these
models were first developed by psychologists and animal behaviorists for
nonstrategic settings. More recently, they have been applied to game the-
ory by Harley (1981), Crawford (1985, 1989), Börgers and Sarin (1997), and
Roth and Erev (1995). Unlike fictitious playlike processes, agents do not
play a single pure strategy which is a best reply; agents play a mixed strat-
egy. If a strategy is successful the probability assigned to it is increased, or,
in the terminology of psychologists, the “behavior is reinforced.” Thus such
models are sometimes called “learning by reinforcement” or “stimulus–
response learning.” As these models’ other name “gradient” suggests, be-
havior is meant to climb toward higher payoffs. Adjustment is therefore
slower and smoother than under fictitious play. However, the results ob-
tained are not notably more positive. Crawford (1985) shows, for example,
that all mixed-strategy equilibria are unstable. Crawford (1989) finds a sim-
ilar result in a model where gradient learning is aggregated across a large
population.

As we will see, however, Crawford’s result does not tell the whole story
and aggregation does help with many of the problems outlined above. Fu-
denberg and Kreps (1993), in fact, propose the idea of a random-mixing
population of players as a justification for the myopia of fictitious play-like

2There are other models not considered here such as the more sophisticated Bayesian
learning of Kalai and Lehrer (1993).
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learning processes. If there is sufficient anonymity such that each player
cannot identify his opponent and sufficient mixing, each player has a se-
quence of different opponents, then players may have little incentive to
develop more sophisticated strategies. A population of players also offers
a different interpretation of mixed-strategy equilibrium. The distribution of
strategies in the population as a whole mimics a mixed-strategy profile. This
is an equilibrium concept familiar from evolutionary game theory. This type
of mixed equilibrium can be stable under either fictitious play or gradient
learning.

The main contribution of this paper is to demonstrate that is possible to
obtain precise results on the aggregation of learning behavior and that, fur-
thermore, the aggregate dynamics thereby obtained are qualitatively very
similar to evolutionary dynamics. In fact, we show that the replicator dy-
namics, in both pure- and mixed-strategy forms, the aggregate dynamics
generated by fictitious play, and also the aggregate dynamics generated by
gradient learning, all belong to a simply defined class of dynamics. We
then show that for all of this class that regular evolutionarily stable strate-
gies (ESSs) are asymptotically stable. Thus we show that refinements to
Nash equilibrium based on evolutionary considerations are relevant also
for learning models. Second, unlike existing models of learning in large
populations, such as Canning (1992) and Fudenberg and Levine (1993), ex-
plicit results on the stability of particular equilibria are obtained. Perhaps
most importantly we obtain results which are robust to different specifica-
tions of learning rules or evolutionary dynamics. Hence we can hope that
these results have some predictive power.

2. LEARNING AND EVOLUTIONARY DYNAMICS

We will examine learning in the context of two-player normal-form
games, G = ��1; 2�; I; J;A;B�. I is a set of n strategies available to
player 1, J a set of m strategies for player 2. Payoffs are determined by
A, an n × m matrix of payoffs, and B, which is m × n: A has typical
element aij , which is the payoff an agent receives when playing strat-
egy i against an opponent playing strategy j. However, we will largely
be dealing with games that are “symmetric” in the evolutionary sense,
that is, games for which A = B.3 Generalizations to the asymmetric case
are briefly discussed in Section 7. We will often be dealing with a pop-
ulation of players, each playing a single pure strategy. In this case, the

3And all players are drawn from the same population. For a fuller discussion of the differ-
ence between symmetric and asymmetric contests, see van Damme (1991) or Hofbauer and
Sigmund (1988).
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distribution of strategies within the population will be described by a vec-
tor x ∈ Sn = �x = �x1; : : : ; xn� ∈ Rnx 6xi = 1, xi ≥ 0 for i = 1; : : : ; n�.
As, in this paper, vectors will be treated ambiguously as either rows or
columns, to avoid any further confusion, the inner product will be carefully
distinguished by the symbol “·”; that is, the result of x · x is a scalar.

We follow Shapley (1964) and implement the fictitious play algorithm in
the following way. A player places a weight on each of her strategies (we
can think of these as beliefs as to the relative effectiveness of the differ-
ent strategies) which we can represent as a vector w = �w1; w2; : : : ; wn�
and at any given time plays the strategy which is given the highest weight.
Each player updates these weights after each round of play so that if her
opponent played strategy j,

wi�t + 1� = wi�t� + aij for i = 1; : : : ; n: (1)

Players can also be modeled as maintaining a vector of relative frequencies
of opponents’ past play (as in Fudenberg and Kreps, 1993; Young, 1993).
They then choose strategies that maximize expected payoffs as though this
vector represented the current (mixed) strategy of their opponents. The
two methods are entirely equivalent. Note that the weights here are (less
initial values) simply the relative frequencies multiplied by payoffs.

Up to now we have contrasted learning and evolution purely on the ba-
sis of their origins, one being a social, the other a natural process. How-
ever, they are also often modeled in contrasting fashion. Fictitious play and
Cournotian dynamics both assume that agents play some kind of best re-
sponse. This can involve discontinuous jumps in play. Taking as an example
the following game which is variously known as “chicken,” “hawk–dove,”
or “battle of the sexes,”

A = B =
0 a

1− a 0
1 > a > 0: (2)

Figure 1a gives a simple best-reply map for (2), where each agent in a large
population plays a best reply to the current distribution of strategies.4 Here
x represents the proportion of the population playing the first strategy.
If x is greater than (respectively less than) a, then the whole population
switches to strategy 2 (strategy 1). Hence there is a discontinuity at the
point (x = a) where the players are indifferent between their two strategies
(there is no particular consensus in the literature about how players should
behave when indifferent between two or more strategies).

4This is a dynamic as used by, for example, Kandori et al. (1993). This is fictitious play with
a one-period memory.
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FIG. 1. Dynamics: (a) best response, (b) replicator dynamics.

In contrast, the evolutionary replicator dynamics, whether in continuous
or discrete time, are derived on the basis that the proportional rate of
growth of each strategy is equal to the difference between its payoff �Ax�i
(the ith element of the vector in parentheses) and the average payoff in
the population5 x ·Ax. D is a positive constant.

ẋi = xi��Ax�i − x ·Ax� or xi�t + 1� = xi�t�
�Ax�i +D
x ·Ax+D: (3)

Clearly, both dynamics are continuous, the system moving smoothly to-
ward the strategies earning the highest payoff. The replicator dynamic (in
discrete time) for the game (2) is drawn in Fig. 1b. The interior mixed equi-
librium is a global attractor, the pure equilibria at x = 0; 1 being unstable.

Important in evolutionary theory is the idea of an evolutionarily stable
strategy, that is, “a strategy such that, if all members of a population adopt
it, then no mutant strategy could invade the population under the influence
of natural selection” (Maynard Smith, 1982, p. 10). For a large random-
matching population the conditions are

Definition. An evolutionarily stable strategy (ESS) is a strategy profile
q that satisfies the Nash equilibrium condition

q ·Aq ≥ x ·Aq (4)

for all x ∈ Sn and for all x such that equality holds in (4), q must also satisfy
the stability condition

q ·Ax > x ·Ax: (5)

5In a biological context, this arrives from relative reproductive success (see Hofbauer and
Sigmund, 1988) but may also be an appropriate assumption in modeling learning in a human
population (for example, Binmore and Samuelson, 1997).
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The first condition states that to be an ESS, a strategy must be a best
reply to itself. Were it not so, a population playing that strategy could easily
be invaded by agents playing the best reply. The second condition demands
that if there are a number of alternative best replies, than the ESS must
be better against them than they are against themselves. Thus if a mutant
strategy which was an alternative best reply were to enter the population,
those agents playing it would on average have a lower payoff than those
playing the ESS and therefore would not grow in number.

There is a strong connection between stability under evolutionary dynam-
ics and the static concept of ESS.

Proposition 1. Every ESS is an asymptotically stable equilibrium for the
continuous time replicator dynamics but the converse is not true. That is, there
are asymptotically stable states for the replicator dynamics which are not ESSs.

Proof. See, for example, van Damme (1991, Theorem 9.4.8).

Fictitious play can also converge on the mixed equilibrium of (2), but
in a rather different manner. Setting a = 0:5, imagine two players both
with initial weights of �0:25; 0�. That is, they both prefer their first strategy
for the first round of play. Both consequently receive a payoff of 0. Each
player observes which strategy the opponent chooses. They then update
the weights/beliefs according to the payoffs that they would receive against
that strategy. Thus, according to (1), weights now stand at �0:25; 0:5�. They
now both prefer the second strategy. One can infer that player 1 believes
that her opponent will continue to play her first strategy, and likewise for
player 2. After the second round of play, in which again both players receive
0, the vectors stand at �0:75; 0:5�. It can be shown that, first, the players
continually miscoordinate, always receiving a payoff of 0, and that, second,
in the limit, both play their first strategy with relative frequency 0:5 and
their second with frequency 0:5. This corresponds to the mixed-strategy
equilibrium of (2). However, the players’ behavior seems to correspond
only tangentially with the idea of a mixed-strategy equilibrium.

The concept of a mixed-strategy equilibrium in use in evolutionary game
theory seems more intuitive. It is also an average but not across time but
across the differing behavior of a large population: the aggregate strategy
distribution is a mixed-strategy equilibrium. One might hope that if each in-
dividual used a learning rule that like the replicator dynamics was a contin-
uous function of payoffs, similarly well-behaved results could be obtained.
However, Crawford (1985, 1989) demonstrates that, in fact, mixed-strategy
equilibria, and hence many ESSs, are not stable for a model of this kind.
However, while these results are correct, they do not tell the whole story in
the context of a random-mixing population. The mixed strategy of individ-
uals will not approach the equilibrium of the two-player game; nonetheless,
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we are able to prove convergence for the mean strategy in the population
for all regular ESSs.

What we are going to show is that with a large population of players who
are continually randomly matched, this type of outcome is possible even
under fictitious play. Clearly, for such states to be stable, we will need a
dynamic that is smooth like Fig. 1b and not discontinuous like Fig. 1a. Such
smoothness does not follow automatically from aggregation. In particular,
if all players in the population have the same initial beliefs, the time path
for the evolution of strategies will be the same as for fictitious play with
two players.6 Imagine in the above example, there is an entire population
of players with initial weights of �0:25; 0�. No matter with whom they are
matched they will meet an opponent playing strategy 1. Hence all players
will update their beliefs at the same rate, and the same cycle is reproduced.
However, this is only possible given the concentration of the population on
a single point. If instead there is a nondegenerate distribution of weights
across the population, it may be that not all the population will change
strategy at once.

Imagine now that the players have initial weights or beliefs �b; 0� where b
is uniformly distributed on �0; 1�. Only those in the population with b ≤ 0:5,
that is half the population, will change strategy after the first round of play.
In fact, we have arrived immediately at the population state equivalent to
the mixed-strategy equilibrium with half the population playing each strat-
egy. It is easy to check that under random matching, in such a state, there
is no expected change in each player’s strategy. In this case, aggregation
has had a smoothing effect because there was sufficient heterogeneity in
the population. We will go on to make a somewhat more precise statement
about convergence of fictitious play in a random-matching environment. A
necessary first step is to consider the modeling of random matching itself
in more detail.

3. MATCHING SCHEMES

Any study of the recent literature on learning and evolution will reveal,
first, that random matching within a large population of players is a com-
mon assumption and, second, that there are several ways of modeling such
interaction. This diversity is, in fact, important both in terms of what it
implies for theoretical results and in what cases such results are applica-
ble. For example, there are some economic or social situations where ran-
dom matching might seem a reasonable approximation of actual interaction,

6A fact which Fudenberg and Kreps (1993) exploit. They do not consider the case where,
within a population of players, individuals possess differing beliefs.
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others where it will not. Only in some cases will agents be able to obtain
information about the result of matches in which they were not involved,
and so on.

Fudenberg and Kreps (1993, p. 333) suggest three alternative schemes.
Assuming a large population of potential players (they suggest 5000 as a
reasonable number), they propose the following:

Story 1. At each date t, one group of players is selected to play the
game : : : . They do so and their actions are revealed to all the potential
players. Those who play at date t are then returned to the pool of
potential players.

Story 2. At each date t there is a random matching of all the play-
ers, so that each player is assigned to a group with whom the game
is played. At the end of the period, it is reported to all how the en-
tire population played : : : . The play of any particular player is never
revealed.

Story 3. At each date t there is a random matching of the players,
and each group plays the game. Each player recalls at date t what
happened in the previous encounters in which he was involved, without
knowing anything about the identity or experiences of his current rivals.

It is worth drawing out the implications of these different matching
schemes. Story 3 is the “classic” scheme assumed as a basis for the replica-
tor dynamics. The population is assumed to be infinite and hence, despite
random matching, the dynamics are deterministic (this has been rigorously
analyzed by Boylan, 1992). It is also decentralized and does not require, as
do Stories 1 and 2, any public announcements of results by some auctioneer-
like figure. However, there are other procedures similar to Story 2 which
do not require such a mechanism. These include:

Story 2a. In each round,7 the players are matched according to
Story 1 or Story 3 an infinite number of times.

Story 2b. In each round there is a “round-robin” tournament, where
each player meets each of his potential opponents exactly once.

Stories 2a and 2b have been used in the learning literature principally
for reasons of tractability.8 They ensure a deterministic result to the match-
ing procedure even when population size is finite. The infinite number of
matchings in Story 2a, by the law of large numbers, ensures that a propor-
tion equal to the actual frequency over the whole population of opponents

7The “round” is the time unit of, in evolutionary models, reproduction; in learning models,
decision. That is, strategy frequencies are constant within a round, even if the round contains
many matches.

8See, for example, Kandori et al. (1993) and Binmore and Samuelson (1997).
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playing each strategy will be drawn to play. What Stories 2, 2a, and 2b have
in common is that all players know the exact distribution of strategies in
the population when choosing their next strategy. There is little room for
the diversity of beliefs one might expect in a large population.

In contrast, under Story 3, as the overall distribution of strategies is not
known, it makes more sense to use past matches to estimate the current
distribution. Furthermore, depending upon with which opponent they are
matched, different players will receive different impressions about the fre-
quency of strategies in the population of opponents. Under Story 3, if the
population is finite, even if players use a deterministic rule to choose their
strategy, such as the fictitious play algorithm, the evolution of the aggregate
strategy distribution is stochastic. In this paper, however, we concentrate on
the case of an infinite population. We show that in this case both Story 2
and Story 3 produce the same continuous time limit.

4. POPULATION FICTITIOUS PLAY

The next stage is to examine population fictitious play (PFP) where learn-
ing takes place in a large random-mixing population. We concentrate on the
case where this population is taken to be a continuum of nonatomic agents
(an assumption familiar from evolutionary game theory). We develop the
theory on the assumption that agents are matched according to Story 2 (or
one of its variants). Story 3–type matching will be considered later.

As shown in Section 2, for the purposes of fictitious play the beliefs or
weights of a given individual can be represented by point w ∈ Rn. The
beliefs of the population will be represented by a distribution over the
same space. We investigate how the distribution of beliefs, and therefore
how the distribution of strategies, changes over time. It will help to create
some new variables. Let pij = wj − wi, j 6= i. Thus pi is a vector of length
n − 1. We will use this to work in Rn−1 instead of Rn. For example, if a
player has to choose between two strategies, we can summarize her beliefs
by the variable p12. If p12 < 0 she prefers her first strategy, if p12 > 0
her second, and if p12 = 0 she is indifferent. A player’s decision rule or
reaction function can then be considered as a mapping from her beliefs, a
grand name for the vector pi, to strategies (i.e., Rn−1 → Sn), that is, the
n-simplex. This mapping will not, in general, be continuous for individual
players: the fictitious play assumption limits players to pure strategies. See
also Fig. 1a.

Let Fi be the population distribution function of pi over Rn−1: Agents will
play a strategy if it is the strategy given the highest weight in their beliefs. In
other words, the beliefs of those playing strategy i must be in Rn−1

− = �pi ∈
Rn−1x pij ≤ 0 ∀j 6= i�. What if agents are indifferent between two or more
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strategies, that is, if their beliefs for some j are such that pij = 0? At this
stage we assume that agents choose arbitrarily between the strategies over
which they are indifferent. In the next section, however, we will the need the
stronger assumption that beliefs are given by a continuous distribution on
Rn−1. In the second case, Fi will be continuous at the origin 0, and therefore
the proportion of agents playing strategy i is given unambiguously by Fi�0�.
But at present, given the possibility of a mass point of indifferent agents, if
the proportions of the population playing each of the n strategies is given
by the vector x ∈ Sn, then xi ≤ Fi�0�. However, for example, if all agents
have the beliefs pij < 0 ∀j then xi = Fi�0� = 1.

At the basis of this model of PFP is the assumption that agents update
their beliefs as if they knew x ∈ Sn, the true current distribution of strategies
in the population. This can be supported by Story 2 in a finite or infinite
population. We are, however, going to treat each xi as a continuous variable
and assume that the probability of meeting an opponent playing strategy
i is xi. For example, over a period of length 1t, each agent is matched
within a single large population. If this matching is repeated an arbitrarily
large number of times in each period (Story 2a), each agent will meet a
proportion xi of opponents playing strategy i. We assume that in a period
of length 1t, players adjust their beliefs by 1t as much as they would in
a period of length 1. According to (1), which describes the fictitious play
algorithm, we have for each agent

w�t + 1t� = w�t� + 1t Ax: (6)

Similarly, we can derive a system of difference equations for p; the vector
of the agent’s beliefs,

pi�t + 1t� = 0�pi; x� = pi�t� + 1t��Ax�j 6=i − �Ax�i�; (7)

where �Ax�j 6=i is a vector of length n− 1, constructed of all the elements of
Ax except �Ax�i. We will be interested in the properties of the inverse of
the function 0 with respect to pi to be written as 0−1�pi�. Given that 0�·�
is a simple linear function, the existence of 0−1 is therefore guaranteed. In
fact, we have

0−1�pi� = pi�t� + 1t��Ax�i − �Ax�j 6=i�: (8)

To illustrate the properties of the model with a simple example, we con-
sider 2× 2 symmetric games, that is, games where every player must choose
between the same two strategies. Let Ft�p� be the cumulative distribution
of p = p12 = −p21 on R. This distribution of beliefs determines the dis-
tribution of strategies. As the t subscript indicates, this distribution will
change endogenously over time, as the beliefs of each agent are updated
according to (7). This is shown in Fig. 2 (in the figure, a density function
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FIG. 2. Change in the distribution of beliefs.

f = dF/dp is assumed; its existence is not necessary to the analysis of this
section). In particular,

0−1�p� > px Ft+1t�p� = Ft�p� +
∫ 0−1�p�

p
dF = Ft�0−1�p��;

0−1�p� < px Ft+1t�p� = Ft�p� −
∫ p
0−1�p�

dF = Ft�0−1�p��:
(9)

Any agents possessing beliefs equal to 0−1�0� will update their beliefs to
p = 0. If 0−1�0� > 0, as is the case in Fig. 2, F�0� will increase by the
proportion of agents who possessed beliefs on the interval �0; 0−1�0��. The
linear nature of (7) implies that the whole distribution simply shifts to the
left or to the right. This in turn will have an effect on the distribution
of strategies. For example, an agent whose beliefs change from p = 1 to
p = −1 will change from her second to her first strategy. By definition,
x1 ≤ F�0� and hence

x1�t + 1t� ≤ Ft�0−1�0�� = Ft�1t��Ax�1 − �Ax�2��: (10)

That is, in Fig. 2, x1 increases by an amount equal to the shaded area. It
is not difficult to extend this analysis to games of n strategies. In a time
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interval of length 1t, the change in xi is given by

xi�t + 1t� ≤ Fit�0−1�0�� = Fit�1t��Ax�i − �Ax�j 6=i��; (11)

where Fi is the joint cumulative distribution function of pi on Rn−1. Clearly,
if a strategy i currently has a higher expected payoff than any other strategy,
then the proportion of the population playing that strategy xi is increasing.

While the state variable of the PFP process is the distribution of agents’
beliefs, our main focus of interest is the distribution of strategies. We there-
fore define a fixed point for the PFP process as a population strategy pro-
file which is unchanging under the dynamic specified by (7), even though
beliefs may continue to change. We find a one-to-one correspondence be-
tween fixed points and strategy distributions that are Nash equilibria of the
game. Mixed strategies are supported by the appropriate distribution of
pure strategies across the population. For the proof of the following propo-
sition, we assume that if an agent is indifferent between two or more strate-
gies the choice of which of these strategies to play can be made according
to any method. However, once that choice is made, no further change in
strategy will be made as long as the agent remains indifferent.

Proposition 2. A strategy profile q in the simplex Sn is a fixed point for
the PFP dynamic if and only if it is a Nash equilibrium.

Proof. We can start by observing that if q is a Nash equilibrium then
from (4) above, if I0 ⊆ I is the set of strategies in the support of q, then

∀i; j ∈ I0 �Aq�i = �Aq�j ≥ �Aq�k ∀k /∈ I0: (12)

(a) If. If an agent plays i, she must prefer it. That is, wi ≥ wj ∀j. From
(7) and (12), no agent will change preference either between the strategies
in the support of q or toward any other strategy.

(b) Only if. Let q now denote a rest point which is not a Nash equi-
librium. Let I0 ⊆ I be the set of strategies in its support. If q is not
a Nash equilibrium then there must be a set of strategies Ik such that
∃i ∈ I0 �Aq�i < �Aq�k ∀k ∈ Ik. From (7), for each agent playing strategy
i, wi −wk must be decreasing at a constant rate as long as the system is at
q. Within finite time, a positive measure of agents playing i must switch to
a strategy in Ik. Hence the system is no longer at q.

The following proposition is also an immediate consequent.

Proposition 3. All strict Nash equilibria are asymptotically stable.

Proof. A strict Nash equilibrium is a state q ∈ Sn with one strategy i
in its support such that there exists an α < 1 such that for all x satisfying
xi > α, �Ax�i > �Ax�j ∀j 6= i. Define the set B = �x ∈ Snx xi > α�. Clearly,
if the system enters B, it cannot leave. While in B, for all agents, each
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pij ∀j 6= i is decreasing at a nonvanishing rate. Each agent plays i after a
finite time.

Proposition 4. If a strategy is strictly dominated, then it is eliminated in
finite time.

Proof. If a strategy i is strictly dominated by another strategy j, then for
all agents pij is increasing at a nonvanishing rate. Any agent playing i will
cease to do so after a finite time.

These results are hardly surprising given that we have a population of
agents that play only best replies, but they are sufficient to show con-
vergence for many games. However, because mixed-strategy equilibria are
never strict, to deal with them we will need to change our approach.

5. POSITIVE DEFINITE DYNAMICS

We will now modify our existing model in two important ways. First, we
will move from discrete to continuous time. This is not a neutral step. Our
defense is that a discrete time model implies that all players are matched
and hence update their behavior simultaneously, a degree of coordination
unlikely in a large population. Second, it is necessary to impose additional
assumptions to ensure that the distribution of beliefs is continuous. For
example, if there were mass points, discontinuous jumps in the value of x
would be possible as positive measures of players switched beliefs. As we
have seen the deterministic cycles of normal fictitious play are possible even
in the large population model, but only with extreme restrictions on initial
beliefs. Indeed, any perturbation to the distribution of beliefs will change
the dynamic behavior substantially.

Zeeman (1981) faced a similar problem in modeling mixed-strategy evo-
lutionary dynamics. We follow the same strategy of assuming that the distri-
butions we consider are subject to noise. For Zeeman, who was considering
a biological model, this was caused by mutations. Here, we can either as-
sume that players make idiosyncratic, independently distributed mistakes
in updating their beliefs, or, in the spirit of purification (see also Fuden-
berg and Kreps, 1993), we can imagine that individual payoffs are subject
to idiosyncratic shocks. More formally, we imagine a once-off shock of the
form:

w�t + 1t� = w�t� + η; (13)

where η is a vector of normally distributed independent random variables
each with zero mean and finite variance. This would rule out the possibil-
ity of mass points of agents holding exactly the same beliefs. For example,
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in the two-strategy case, if p = −1 for all agents, that is, they all prefer
their first strategy, with the addition of the noise, beliefs would instead be
normally distributed with mean −1. We can choose the variance of η suffi-
ciently small such that the new distribution approximates the old arbitrarily
closely. Indeed, as Zeeman notes, distributions which satisfy our conditions
are open dense in the set of all distributions. We state these conditions in
more detail:

Assumption of Continuity. The distribution of beliefs is such that Fi is
absolutely continuous with respect to pi. There exist continuously differ-
entiable density functions fij = fji = dFi/dpij on Rn−1 such that fij > 0
everywhere on Rn−1.

It is important to emphasize that this assumption implies significant
changes from the PFP model considered in the previous section. The last
inequality, for example, implies that xi�t� > 0 ∀i; t. That is, only dynamics
on the interior of the simplex are considered. However, it is possible for the
system to approach the boundary of the simplex asymptotically. Consider
the case where there is a single strictly dominant strategy i. In the previous
section, we saw that, without noise, within a finite time only that strategy
would be played. Here, the noise means that some agents will always pre-
fer other strategies, but over time the numbers doing so will drop away to
0. The reason is that, from (6), we have pij�t + 1t� − pij�t� < 0 ∀j 6= i,
the strength of preference for the dominated strategies is always de-
creasing. The result is that limt→∞ Pr�wj + ηj > wi + ηi� = 0. Hence
limt→∞ xj�t� = 0 and limt→∞ Fit�0� = 1.

We are now going to take the continuous time limit. Returning to Fig. 2,
in discrete time, all agents with beliefs in the interval �0; 0−1�0�� changed
strategy. As we will see, moving to continuous time is equivalent of taking
the limit 0−1�0� → 0. That is, the rate of change at any given point in time
is going to depend on the number of agents who are, at that instant, passing
from preference of one strategy to preference of another. In other words,
the rate of change will be proportional to the density of agents at the point
of indifference, in Fig. 2, f �0�. Subtracting xi from both sides of (11), we
obtain

xi�t + 1t� − xi�t� = Fit�p∗i �1t�� − Fit�0�; (14)

where p∗i �1t� = 1t��Ax�i − �Ax�j 6=i� = 0−1�0�. Note that p∗i �0� = 0. Given
the presence of a random disturbance in (13), the reader may be surprised
to see none in the above formula. The errors, however, have been subsumed
in the distribution function Fi.

Proposition 5. The continuous time limit of (14) is given by

ẋi =
∑
j 6=i
fij�0� ��Ax�i − �Ax�j�: (15)
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Proof. We divide both sides of (14) by 1t. By definition, lim1t→0�xi�t +
1t� − xi�t��/�1t� = ẋi. We now find the limit of the right-hand side as
1t → 0. The assumption of continuity above enables us to differentiate
Fi with respect to pi. In particular, if we differentiate at p∗i �1t�, we have
dFi/dpij = fij�p∗�1t��. One way to express the chain rule is, for any two
differentiable functions g; h, that limz→0�g�h�z�� − g�h�0���/z = g′�h�0�� ·
h′�0�. Thus

lim
1t→0

�Fit�p∗i �1t�� − Fit�p∗i �0���
1t

=∑
j 6=i
fij�p∗i �0�� ·

dp∗ij
d 1t

∣∣∣∣
1t=0

:

We need to evaluate the last term, but this is simple as dp∗ij/d 1t = �Ax�i −
�Ax�j . The result follows.

This is also a well-known problem in the physical sciences where the ob-
ject is to calculate the flow of fluid (in this case, beliefs) with a known
density (here fi) subject to a vector field (here Ax� across a surface, which,
by careful choice of parameters, is here simply the origin. The textbook
treatment of this topic assumes that the density of the liquid is fixed and
exogenous. The disappearance of the time subscript on fij�0� in (15) might
suggest that this is what assumed here. However, the distribution of be-
liefs is endogenous and changing. Given that our main interest is in what
strategies agents play, rather than the beliefs that support this behavior, we
capture the time dependency of fij simply by treating it as a function of
x�t�, which, in fact, it is (we make this explicit in Proposition 7 below). As
x changes, payoffs change, beliefs are updated, and the distribution of be-
liefs shifts. For clarity, here is one striking example where we can find the
exact relation between fij and x.

Example. Consider the game (2) and assume a > 0:5 and that beliefs at
time t = 0 are given by a distribution F�p� = 1/�1+ eµ�0�−p�. If the mean
at time 0, µ�0�, is 0, then x1�0� = 0:5. Note that for this game �Ax�1 −
�Ax�2 = a − x1 and so with x1 = 0:5 the return to the first strategy is
higher and beliefs move uniformly to the left. In fact, considering (7) in
continuous time, we have, at any point p, ṗ = x1 − a. So as time progresses
the distribution retains its shape, the only change being that its mean µ
will also move such that the behavior of the system is determined by the
following two equations:

µ̇ = x1 − a ẋ1 = f �0��a− x1� =
eµ

�1+ eµ�2 �a− x1�: (16)

But we can reduce these two equations to one by realizing that Ft�0� =
x1�t� = 1/�1 + eµ�t��. Solving for µ, we find that µ�t� = log �1− x1�/x1.
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Substituting this back into the second equation in (16), we obtain

ẋ1 = x1�1− x1��a− x1�; (17)

which is identical to (3), the continuous time replicator dynamics!

This is a remarkable result. Indeed, although we have a population of
“fictitious players,” agents who base their actions on all past play, the dy-
namics are entirely driven by the current population state x. However, the
exact equivalence to the replicator dynamics is quite specific to the exact
distribution of beliefs specified. What can we say in other cases? First, for
this game the distribution of strategies in the population would converge
smoothly to the mixed equilibrium as it would do under the replicator dy-
namics as long as the distribution of beliefs satisfied our continuity assump-
tion. Of course, the value of f �0� would change over time in response to
changes in x1. But whatever the timepath of f �0�, as long as f �0� contin-
ues to exist and remain positive, x1 will reach a. We will go on to prove
this formally, and extend our analysis to games with n strategies, using only
the assumption that the density of beliefs f is a differentiable function of
x, the distribution of strategies (in this example, that is, with two strategies,
we have df/dx1 = �df/dp� · �dp/dF� = f ′/f ).

We have developed the theory up to now using the convenient if unre-
alistic assumption that agents respond to the population state x. However,
it is possible to show that the same results can be obtained when agents
are only aware of the results of the matchings in which they have been
personally involved. That is, it is possible to decentralize the population
learning process. Under Story 2, all agents’ beliefs responded to the popu-
lation state x and moved in an identical way. There was a single updating
function 0. Under Story 3, how an individual updates her beliefs depends
on the strategy of the opponent met in her particular matching. There are
therefore n different ways of updating beliefs, one for each strategy in the
population, and we need n different updating functions to take account of
this.

It is easier to consider an example. Take again the game (2). If an op-
ponent plays strategy 1, an agent will increase p12 by 1t�1 − a�, but, in
response to strategy 2, will decrease p12 by 1t a. There are therefore two
ways in which x1 can change. Agents with beliefs on �−1t�1 − a�; 0� who
meet an opponent playing strategy 1 will themselves switch to strategy 2,
and agents with beliefs on �0; 1t a� will switch to strategy 1 if they encounter
an opponent playing strategy 2. Note that the latter event has probability
1− x1, and, given the infinite population, we assume exactly 1− x1 of the
agents on the interval �0; 1t a� will change strategy. This gives us

x1�t + 1t� − x1�t� = �1− x1�F1t�1t a� + x1F1t�−1t�1− a�� − F1t�0�:
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Taking the limit 1t → 0 as before, we obtain from the right-hand side of
the above equation f12�0���1− x1�a− x1�1− a��. Stated more formally, and
also covering the case of n strategies, we have the following proposition:

Proposition 6. The continuous time limit of population fictitious play
with an infinite population under matching Story 3 is also given by (15).

Proof. Each individual meets an opponent playing strategy j with prob-
ability xj . In this case, each wi will change by 1t aij . More generally, the
individual’s beliefs change in the following way:

pi�t + 1t� = 0j�pi; x� = pi�t� − 1t�a�k 6=i�j − aij�;
where �a�k 6=i�j − aij� is the vector of length n − 1, of form �a1j − aij; : : : ;
anj − aij�. Define p∗ijk�1t� = 0−1

jk �0� = 1t�aij − akj�. We assume a propor-
tion x1 of the population change beliefs according to 01, a proportion x2
according to 02, etc. Therefore, the change in xi is given by

xi�t + 1t� − xi�t� =
n∑
j=1

xjFit��0−1
j �0��� − Fit�0�:

Again we divide both sides by 1t and take the limit 1t → 0. From the
right-hand side, again by use of the chain rule, we obtain

n∑
j=1

xj

(∑
k 6=i
fik�p∗ijk�0���aij − akj�

)
;

which we can reassemble to form (15).

Whatever the derivation of (15), clearly it is very close to the continuous
time replicator dynamics (3) and the linear dynamics proposed by Friedman
(1991):

ẋi =
1
n

∑
j 6=i
��Ax�i − �Ax�j�: (18)

We now define a class of dynamics. We then go on to show that the
continuous time PFP dynamic is a member of this class.

Definition. Any dynamic of the form ẋ = Q�x�Ax, where the matrix
Q�x� for any x on the interior of Sn satisfies the following five conditions,
we call a positive definite dynamic.9

1. Every element of Q is continuously differentiable in x.
2. limxi→0Qij = 0 ∀j.

9Josef Hofbauer has brought to my attention Hofbauer and Sigmund (1990) in which there
is a similar formulation under the name “adaptive dynamics.”
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3. Qu = 0, where u denotes the vector �1; 1; : : : ; 1�.
4. Q is otherwise positive definite. That is, for any z ∈ Rn which is not

a multiple of u or 0, z ·Qz > 0.

5. Q is symmetric.

Condition 1 is a sufficient condition for a unique solution to the differen-
tial equation ẋ = QAx. Condition 2 ensures that the dynamic remains upon
the simplex. Geometrically, the operator Q maps the vector of payoffs Ax
from Rn to the subspace Rn

0 = �z ∈ Rnx u · z = 0� (if the vector QAx did
not add to 0 then x would cease to add to 1). It has nullspace u. That is, at
a mixed Nash equilibrium where payoffs are equal (Ax is a multiple of u),
ẋ = 0. Because Q is positive definite the angle between Ax and QAx is less
than 90◦. This last property is what Friedman (1991) calls “weak compat-
ibility.” It is easy to see that both the replicator dynamics and Friedman’s
linear dynamics satisfy the above conditions,10 but we can also establish a
further result.

Proposition 7. The continuous time PFP dynamic (15) is a positive def-
inite dynamic.

Proof. If we write (15) in matrix form then ẋ = QfAx, where the f sub-
script is for “fictitious play.” Qf has a diagonal

∑
j 6=i fij and off-diagonal

−fij = −fji. Satisfaction of Conditions 1 and 2 is guaranteed by the Con-
tinuity Assumption. In particular, dfij/dxk = �dfij/dpi� · �dpi/dxk� =
�dfij/dpi� · �dpi/dFk�. Clearly, Qfu = u · Qf = 0. However, x · Qf x =∑
j 6=i fij�xi − xj�2 ≥ 0.

This allows us to demonstrate that evolutionary concepts are important in
the context of population fictitious play. In particular, we can show that all
regular ESSs are asymptotically stable. First we need a preliminary result,

Lemma 1. Any ESS q is negative definite with respect to the strategies in
its support. That is, �x− q� ·A�x− q� < 0 for all x with the same support as
q (see van Damme, 1991, Theorem 9.2.7).

The following lemma and proposition are based upon work of Hines
(1980), Hofbauer and Sigmund (1988), and Zeeman (1981). However, the
result obtained here generalizes the above results and indeed extends be-
yond the continuous time PFP process to any dynamics which are symmetric
positive definite transformations of the vector of payoffs Ax.

10The linear dynamics do not satisfy condition 2 and it is necessary to impose some other
kind of boundary condition.
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Lemma 2. If A is negative definite when constrained to Rn
0 (that is, z ·

Az < 0 ∀z ∈ Rn
0 ), then QA is a stable matrix (i.e., all its eigenvalues have

negative real parts when QA is constrained to Rn
0 ).

Proof. The eigenvalue equation is QAz = µz for some z ∈ Cn0 = �z =
z1 + z2i ∈ Cnx z1; z2 ∈ Rn

0�. We can construct a vector y such that z = Qy,
where z ∈ Cn0 . By the symmetry of Q, we have yc ·Q = zc where zc is the
conjugate of the complex vector z. This gives us

yc ·QAz = zc ·Az = µyc · z = µyc ·Qy: (19)

As Q is symmetric positive definite, yc · Qy is real and positive. The real
part of zc ·Az is negative, hence the real part of µ is negative. Since all its
eigenvalues are negative or have negative real part for eigenvectors in Rn

0 ,
QA is a stable matrix on that space.

A strategy profile q is a regular ESS if it is an ESS that satisfies the
additional requirement that all strategies that are a best reply to q are in
its support. We are now able to prove

Proposition 8. All regular ESSs are asymptotically stable for any positive
definite dynamic.

Proof. Let q be a fully mixed ESS. Differentiating Q�x�Ax with respect
to x and evaluating at q, we obtain Q�q�A + dQ/dx Aq. At a Nash equi-
librium QAx = 0. It follows that, for each xi, dQ/dxi Aq = 0. Thus the
Jacobian of the system at q is given by Q�q�A. By Lemma 2 all its eigen-
values have real part negative.

If a regular ESS q is on a face Sq ⊂ Sn, that is, qi > 0 if and only if i ∈ Iq
⊂ I, then it is also asymptotically stable under the continuous time positive
definite dynamic. Because it is an ESS, A is a negative definite form on
Sq, and so QA is stable on Sq. It remains to show that the dynamic will
approach Sq from the interior of Sn.

We adapt the proof of Zeeman (1981). Define λ = uq ·Aq−Aq. This is
a vector whose ith element is 0 for i ∈ Iq and positive for i /∈ Iq. Hence we
can define the function 3 = λ · x ≥ 0, with equality on Sq, and 3̇ = λ ·QAx.
We choose an ε such that, for all x in some neighborhood of q, x = q + ξ
with � ξi �< ε; and � Qij �< ε for i /∈ Iq by conditions 1 and 2 of the
definition of a positive definite dynamic. Then

ẋi =
∑
j

Qij�Aq�j +
∑
j; k

QijAjkξk:

Now, if i /∈ Iq then the first term of the above is of order ε, the second
is of order ε2. Thus, in the neighborhood of q, we can approximate 3̇ by
λ ·Q�uq ·Aq − λ� = −λ ·Qλ < 0:
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What is particularly attractive about this result is that to determine sta-
bility one no longer has to examine the potentially complicated function
Q�x�. Instead, one can confine attention to the properties of A alone. For
example, for the PFP dynamics it is not necessary to know the shape of
the distribution of beliefs. The last two conditions on Q are the substan-
tive ones. Positive definiteness seems a minimal condition to place upon a
dynamic. Nonetheless, it becomes a sufficient condition for stability when
combined with symmetry. Why this should lead to asymptotic stability for
ESSs can be seen in the traditional economic terms of convexity and con-
cavity. A “positive definite” dynamic is a gradient climber. The negative
definiteness of ESSs, of course, implies concavity. This is illustrated in
Fig. 3a. This represents part of the vector field Ax (projected onto R2)
from a game with n = 3 and which possesses a fully mixed ESS at the cen-
ter of the vector field depicted. The arrows of vector field points upward
and inward. Any positive definite dynamic will move “uphill” toward the
ESS.

The role of symmetry in the results is more complex. First, note that
the second half of the proof of Proposition 8 does not require symmetry
and indeed it is easy to show that positive definiteness alone (or, equiva-
lently, Friedman’s (1991) “weak compatibility”) is sufficient for the asymp-
totic stability of pure-strategy ESSs. Symmetry is, however, essential in the
first part of the proof and in ensuring the stability of mixed ESSs. The
symmetry requirement works by ruling out matrix functions Q�x� that rep-
resent rotations. The importance of this is illustrated by the example given
in Friedman (1991, p. 655) where he constructs a dynamic which diverges
from a mixed ESS. The dynamic constructed is effectively an anticlockwise
rotation of the vector field Ax. This is illustrated in Fig. 3b. This repre-
sents a positive definite but asymmetric transformation of the vector field
shown in Fig. 3a. The arrows have been rotated (by less than 90◦) so that
they now point outward. This illustrates the fact that if Q is positive defi-
nite but not symmetric, even if A is negative definite, the matrix QA can
be positive definite.

Symmetry is also what differentiates positive definite dynamics from
Friedman’s (1991) concept of order compatibility or the monotonicity of
Nachbar (1990) and Samuelson and Zhang (1992). Monotonicity requires
that ẋi/xi > ẋj/xj iff �Ax�i > �Ax�j , and order compatibility, ẋi > ẋj iff
�Ax�i > �Ax�j . One other important difference is that the usual definition
of monotonicity requires only Lipschitz continuity rather than the differen-
tiability we have specified for positive definite dynamics. It is easy to check
that both monotonicity and order compatibility imply the positive defi-
niteness of Q (as Friedman points out, order compatibility implies weak
compatibility which is equivalent to positive definiteness). However, mono-
tonicity and order compatibility do not imply symmetry. Conversely, there
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FIG. 3. Vector fields: (a) negative definite, (b) positive definite.

are positive definite dynamics which are not monotone or order compat-
ible. This is easy to show by example. Take n = 3 and �Ax�1 = �Ax�2 >
�Ax�3 = 0. Order compatibility requires that Q11 + Q12 = Q21 + Q22 > 0,
monotonicity �Q11 + Q12�/x1 = �Q21 + Q22�/x2 > 0, whereas the con-
straints on a positive definite dynamic in this context are Q11 > 0,
Q11Q22 > Q12Q21, and Q12 = Q21. Clearly, they are not equivalent.
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6. MIXED-STRATEGY DYNAMICS

The replicator dynamics do not allow individuals the use of mixed strate-
gies. As van Damme (1991) notes, it would be preferable to examine
mixed-strategy dynamics which permit this possibility. The problem is that
they are less tractable than the replicator dynamics which they general-
ize. In this section, we are able to show that they also fall within the class
of positive definite dynamics. Furthermore, we show that the aggregation
of stimulus–response/reinforcement learning can be treated in a similar
manner.

Zeeman (1981, Sect. 5) examines the properties of the mixed-strategy
replicator dynamics (see also Hines, 1980). The main assumption is that
there is an infinite random-mixing (Story 3) population whose individuals
play mixed strategies. Thus each individual can be represented by a vector
y ∈ Sn. The population is summarized by a distribution F on Sn. The mean
strategy in the population is given by x = ∫ y dF and the symmetric covari-
ance matrix Qm =

∫ �x − y��x − y�dF (m is for mixed-strategy dynamic).
Zeeman worked only with distributions that were full, that is, distributions
for which Qm has maximal rank amongst those populations having the same
mean x. As noted above, Zeeman justified this restriction by appealing to
mutations. Summarizing his results, we have

Lemma 3. If x is in the interior of Sn then z ·Qmz > 0 for any z which is
not a multiple of u (Zeeman, 1981, p. 265).

Assuming as for the pure-strategy replicator dynamic that the propor-
tional growth rate of a strategy is equal to the difference between its and
the average payoff gives

ḟ �y� = f �y��y ·Ax− x ·Ax�
and hence

Lemma 4. The dynamic for the mean mixed strategy satisfies ẋ = QmAx
(Zeeman, 1981, p. 266).

We can find similar results for the dynamics, variously called gradient,
stimulus–response, or reinforcement learning, considered by Harley (1981),
Börgers and Sarin (1997), Crawford (1989), and Roth and Erev (1995).
This may seem strange in that, first, Börgers and Sarin rightly point out
this learning process when aggregated across a population of players is not
identical to the replicator dynamics for either pure or mixed strategies,
and that, second, Crawford proves that in such a large population, under
such dynamics the mixed-strategy equilibrium of a simple game like (2) is
unstable. However, Crawford’s definition of a mixed-strategy equilibrium
is the state where every agent plays the equilibrium mixed strategy; that
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is, in game (2), they all play their first strategy with probability a. How-
ever, I would argue that in a random-mixing population this definition is
overstrict. It is possible to have a state where the average strategy in the
population, and hence the expected strategy of an opponent, is equal to
the mixed-strategy equilibrium, although no agent plays the exact mixed-
strategy equilibrium profile. For example, the ith member of the population
could play her first strategy with probability a+ εi with

∑
εi = 0.

We assume, as for fictitious play, that each player has a vector w, each
element representing the “confidence” placed on each strategy. However,
rather than choosing the strategy with the highest weight, each player plays
strategy i with probability

yi =
wi∑n
i=1wi

= wi
W
:

Thus, here, in a similar way to the model of Zeeman, we can represent
each individual as a point y ∈ Sn, distributed according to a function F:
However, here we have to take account of the magnitude of W , the sum
of an agent’s weights. We assume that they are distributed on R according
to a function G, and let H be the joint distribution function (incorporat-
ing F and G) on Sn × R: And again, in a large random-mixing population,
the probability of meeting an opponent playing strategy i will be xi, where
again we define the population mean as x = ∫ y dF . However, rather than
strategy distributions being changed according to an evolutionary process,
each individual learns by adjusting the probability that she plays each strat-
egy in relation to the payoff that the strategy earns. If a strategy is chosen
and playing that strategy yields a positive payoff, then the probability of
playing that strategy is “reinforced” by the payoff earned. In particular, if
an individual plays strategy i against an opponent playing strategy j, then
the ith element of w is increased by the resulting payoff, again scaled by
the length of the period 1t,

wi�t + 1t� = wi�t� + 1t aij:
However, all other elements of w remain unchanged. This is the “Basic
Model” of Roth and Erev (1995), who give a number of reasons why this
may be a reasonable approximation of human learning. Thus the expected
change is given by

E�wi�t + 1t�� = yi�wi�t� + 1t�Ax�i� + �1− yi�wi�t�: (20)

There are three important differences between this learning rule and fic-
titious play. First, it is stochastic, not deterministic. Second, while, under
fictitious play, agents have a limited capacity for assessing what they might
have received if they had used some other strategy, here agents only con-
sider what actions they actually play and what payoffs they actually receive
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(this type of learning model was developed to analyze animal behavior).
Third, for the probabilities to remain well defined, we must require all pay-
offs to be nonnegative,11 and that all agents start with all elements of their
vector w strictly positive. From (20), we can obtain

E�yi�t + 1t� − yi�t�� =
1t yi��Ax�i − y ·Ax�

W + 1t y ·Ax
+O��1t�2�: (21)

This is a special case12 of the RPS rule of Harley (1981). Crawford (1989)
characterizes individual behavior in a large population of players by the
deterministic continuous time equation

ẏi = yi��Ax�i − y ·Ax�: (22)

To obtain a deterministic result, again some form of Story 2 matching is
assumed. Börgers and Sarin (1997) show that by using a slightly different
specification of the updating rule one can obtain a continuous time limit
similar to Crawford’s equation (22).13 The advantage of the approach of
Börgers and Sarin and Crawford is that learning behavior is easier to char-
acterize, but only at the cost of additional assumptions.

In any case, the next step is to derive an expression for the evolution
of the population mean. Under Story 3–type matching, the changes made
in each agent’s beliefs will depend on the strategy chosen by that agent
and by his opponent (both random variables). Nonetheless, if we think
of the change made by each agent as a draw from the distribution that
describes the population, xi�t +1t� − xi�t� is then the sample mean. Hence
the variance of the change in xi is decreasing in the number of agents. Thus,
if the population is infinite, then the evolution of the population mean will
be deterministic. We have from (21), leaving out the higher-order terms
(which would disappear anyway when we take the limit 1t → 0),

xi�t + 1t� − xi�t� =
∫
E�yi�t + 1t� − yi�t��dH

=
∫
1t yi��Ax�i − y ·Ax�/�W + 1t y ·Ax�dH

=
∫
1t yi�ei − y�/�W + 1t y ·Ax�dH ·Ax; (23)

11Either we consider only games with positive payoffs or we add a positive constant to all
payoffs sufficiently large to make them positive. Clearly, such a transformation would make
no difference to a game’s strategic properties, though, in a dynamic context, it can change the
rate of adjustment. See the discussion of discrete time processes in the next section.

12Equation (21) can be obtained by setting what Harley calls the “memory factor” to 1.
13It would be the same if Börgers and Sarin considered as did Crawford a single random-

mixing population.
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where ei is a vector of 0s except for a 1 in the ith position and W + 1t y ·
Ax > 0 (by the assumption of nonnegative payoffs). We divide through by
1t and take the continuous time limit. This in turn gives us

ẋ = QrAx; (24)

where the r subscript is for reinforcement learning. The diagonal of Qr has
the form

∫
yi�1− yi�/W dH, the off-diagonal, − ∫ yiyj/W dH. Hence Qr is

symmetric and Qru = 0. Clearly, z ·Qrz =
∑
i 6=j
∫
yiyj/W dH�zi − zj�2 ≥ 0.

Consequently, Qr is positive semidefinite. To obtain the model of either
Börgers and Sarin (1997) or Crawford (1989), it is simply necessary to set
W = 1 for all agents. Clearly, this would not change the conclusion that,
although Qr 6= Qm,

Proposition 9. The mean of the mixed-strategy replicator dynamic and
the mean of the stimulus–response/reinforcement learning process are positive
definite dynamics.

This, together with Proposition 8, extends the existing results on rein-
forcement learning.

Example. Take the game (2), assume a = 0:5, F�y1� = y2
1 , and hence

x1 = 2/3. Under the mixed-strategy replicator dynamics, we have ḟ �y1� =
2y1�1/9− y1/3�. That is, those agents playing the first strategy with probabil-
ity less than 1/3, and hence far from the equilibrium strategy, are increasing
in number. For the gradient dynamics, under, for example, the version sug-
gested by Crawford (22), we have for each agent ẏ1 = −y1�1 − y1�/6. In
words, all agents are decreasing the weight they place on their first strat-
egy. This also demonstrates the difference between the two mixed-strategy
dynamics. The evolutionary dynamic replaces badly performing agents by
better performers14; under the gradient dynamics, all agents respond to the
situation by changing strategy. As Crawford (1989) discovered, the state
where all agents have y1 = 0:5 is not going to be stable. In this exam-
ple, the agents who are currently playing the “equilibrium” mixed strategy
(y1 = 0:5) are respectively dying off and moving away from it. However, for
both dynamics we have ẋ1 = Q11�1/2 − x1�, and hence the mean strategy
clearly approaches the equilibrium.15

14Though perhaps this type of dynamic could be reproduced in a population that learns by
imitation.

15Harley (1981, p. 624) reproduces two graphs of the results he obtained from simulations
of a similar game using his learning model. Two things are apparent: the population mean
approaches the mixed-strategy equilibrium; the strategy of individual players (typically) does
not.
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7. EXTENSIONS

Since the concept of an ESS is a strong refinement on Nash equilibrium
and, consequently, there are many games which do not possess any equilib-
rium which satisfies its conditions, one might wonder how positive definite
dynamics perform in these cases. For any constant-sum game for any x ∈ Sn,
x ·Ax = v, where v is the value of the game. It follows, if the game has a
fully mixed equilibrium q, that �x− q� ·A�x− q� = 0. From Lemma 2 and
in particular (19) we have that

Corollary 1. The eigenvalues of the linearization of any positive definite
dynamic at a fully mixed Nash equilibrium of a zero-sum game have zero real
part.

This result unfortunately is of the “anything can happen” type. For the
linear dynamics (18), because they are linear, the corollary implies that such
an equilibrium must be a neutrally stable center (it is easy to check that
V = 1

2 �x− q� · �x− q� is a constant of motion in this case). For nonlinear
dynamics the fact that their linearizations have zero eigenvalues may hide
asymptotic stability or instability.

Second, there are games which possess equilibria which are positive defi-
nite. It is an obvious corollary of Proposition 8 that positive definite dynam-
ics diverge from such equilibria. This can prove useful in terms of equilib-
rium selection. Unstable positive definite equilibria can be rejected in favor
of stable ESSs. This works well in games with both ESSs and positive defi-
nite equilibria:

A =

0 a1 −b1

−b2 0 a2

a3 −b3 0

ai; bi > 0 i = 1; 2; 3: (25)

But the game (25) has a unique equilibrium which, for example, for ai = 1,
bi = 3, i = 1; 2; 3, is positive definite. In this case, the vector field Ax
will be similar to that illustrated in Fig. 3b, where the payoff gradient
points away from equilibrium. Gradient-climbing behavior will thus lead
away from equilibrium and no positive definite dynamic can converge.

This might seem problematic, but, in fact, it offers a strong empirical
prediction. For rational players under the full-information assumptions of
conventional game theory, for a game with a unique Nash equilibrium it
should not matter whether it is positive or negative definite. However, we
can conjecture that in a random-matching environment under experimen-
tal conditions, the strategy frequencies of human subjects would converge
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if, for example, ai = 3 and bi = 1 but not if ai = 1 and bi = 3. We can
make this conjecture with a degree of confidence because so many differ-
ent specifications of adaptive learning are consistent with positive definite
dynamics. Such divergence is not necessarily “irrational” or “myopic.” In-
deed, if ai = 1, bi = 3, i = 1; 2; 3, average payoffs are at a minimum at the
mixed equilibrium. Divergence increases average payoffs.

The robustness of these results, however, does depend on the property
of positive or negative definiteness. For equilibria which are neither posi-
tive nor negative definite, it is possible for stability properties to vary ac-
cording to the exact specification of the dynamics. Such equilibria can be
attractors or repellors. Using (25) again as an example, the pure-strategy
replicator dynamics converge iff a1a2a3 > b1b2b3, the linear dynamics iff
a1 + a2 + a3 > b1 + b2 + b3, while simulation suggests that the PFP dy-
namics will converge to any equilibrium of the game which is not positive
definite.

We conclude this section with discussion of the extension of the above re-
sults to discrete time and to asymmetric games. Consider a positive definite
dynamic such that

x�t + 1� = x�t� +QAx; (26)

where Q again satisfies the five conditions outlined above (examples would
be the discrete time replicator dynamics (3) or the discrete dynamic spec-
ified in (23)). In this case, pure strategies which are regular ESSs will be
asymptotically stable, the second part of the proof of Proposition 8 apply-
ing equally well in discrete time. The problem is, as always, with mixed
strategies. From (26), the linearization at a fully mixed fixed point q will be

I +Q�q�A: (27)

As we have shown, the eigenvalues of QA are negative. If, however, they
are too “large,” the absolute values of the eigenvalues of I + QA will be
greater than 1. So it is possible for a discrete time positive definite process
to diverge from a mixed ESS. This is going to depend on the magnitude of
the change in strategy distribution made each period. In the case of a pure-
strategy equilibrium, the dynamic cannot jump over the fixed point and out
of the simplex. In contrast, unless the rate of change is sufficiently slow, it
is possible to shoot right past a mixed-strategy equilibrium. Note that, for
example, for the discrete time replicator dynamics given in (3), the rate of
adjustment is decreasing in the constant D. Hence the stability of ESSs can
be assured if D is sufficiently large. In the case of gradient learning, the
rate of change is decreasing over time as the size of individuals’ weights
(W in the notation of the last section) increases. Furthermore, in the case
of positive definite equilibria, where QA has positive eigenvalues, then all
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the eigenvalues of the linearization (27) are clearly greater than 1 and the
equilibrium will most certainly be unstable.

In the case of asymmetric games, it is well known that no mixed-strategy
equilibria are ESSs. Furthermore, it is also well known that mixed-strategy
equilibria are either saddles or centers for the replicator dynamics (Hof-
bauer and Sigmund, 1988). It is easy to show that this result generalizes to
all positive definite dynamics. In particular, let x give the strategy frequen-
cies in the first population and y in the second, and ẋ = QAy, ẏ = PBx,
where Q and P are positive definite matrices satisfying the conditions out-
lined above. Then the argument outlined in Hofbauer and Sigmund (1988,
pp. 142–143) goes through unchanged in that the linearization around a
mixed equilibrium q will be given by(

0 Q�q�A
P�q�B 0

)
:

The zero trace implies eigenvalues that are either a mix of positive and
negative or have real part zero. In the latter case, we would call the equi-
librium a center, but, depending on higher-order terms, it may nonetheless
be stable or unstable (again see Hofbauer and Sigmund, 1988, pp. 273–283).

8. CONCLUSION

There has been some debate as to whether the replicator dynamics, in
spite of their biological origins, can serve as a learning dynamic for human
populations. The results obtained here on one level give some support to
the skeptics. The aggregation of learning behavior across a large population
is not, in general, identical to the replicator dynamics, in either their pure-
or mixed-strategy formulation. However, it is clear that all these dynamics,
whether of learning or evolution, share many of the same properties.

This is valuable in that, as the literature on learning and evolution has
been growing at a significant rate over the past few years, there has been
a proliferation of different models and consequently different results. The
hope here is that we have obtained a result that is reasonably robust: ESSs
are asymptotically stable for many apparently different adaptive processes
when these processes are aggregated across a large random-mixing pop-
ulation. An ESS is quite a strong refinement on Nash equilibrium. Fur-
thermore, it has been discredited in the eyes of some because it does not
correspond exactly to asymptotic stability under pure strategy replicator
dynamics (Proposition 1). However, these are not the only dynamics of in-
terest, and for results on stability that are robust to different specifications,
the concept of ESS is the one that is relevant. In extending existing results
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on fictitious play, stimulus–response learning, and mixed-strategy replica-
tor dynamics, it has been the negative definiteness of ESSs which has been
essential.

Researchers have begun to test the predictions of models of learning and
evolution by carrying out experiments. The results presented in this paper
may be relevant in several ways. First, they are broadly in accordance with
the results reported by Friedman (1996), who reproduced in the laboratory
the anonymous random matching environment considered here. In what
he terms “Type 1 Games,” Friedman found convergence in average strat-
egy to a mixed ESS although most subjects tended to stick to a single pure
strategy. Second, Mookherjee and Sopher (1994), for example, attempt to
determine whether fictitious play or gradient-type rules best describe the
learning behavior of their subjects. As we have shown, the differences be-
tween these two types of models, in a random-matching environment at
least, are smaller than previously thought. Our results would also point to
a reason why Gale et al. (1995), using replicator dynamics, and Roth and
Erev (1995), using a stimulus–response learning process, obtain similar re-
sults in trying to simulate the behavior of experimental subjects playing the
ultimatum bargaining game. Third, there has been some debate (Brown
and Rosenthal, 1990; Binmore et al. 1994) about what constitutes conver-
gence to equilibrium in experimental games. What we show here is that it
may be foolish to expect more than convergence in the average strategy
in a population of players. Last, we offer further predictions to be tested.
ESSs should be locally stable. For games which possess positive definite
equilibria, our predictions are equally clear. Learning processes should not
converge to such equilibria.

Finally, as we noted in Section 1, under fictitious play for some mixed-
strategy equilibria there is convergence in beliefs without convergence in
play. In the random-mixing models considered here, the opposite is pos-
sible. The distribution of strategies in the population matches exactly the
equilibrium strategy profile. However, individual agents play any mix over
the strategies in its support, including a single pure strategy. One might
say that none has “learnt” the mixed-strategy equilibrium, but equally,
given the assumption of random matching none has an incentive to change
strategy.
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