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Abstract

A framework is proposed for investigating the effect of evolutionary selection
on a population where some agents learn. It is shown that learning behaviour
when aggregated has different properties than when considered at the level of
the individual and that a combination of learning and evolution has different
properties in terms of stability than when considered separately. Convergence is
shown for all 2× 2 games and a famous 3× 3 example.
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1 Introduction

Game theorists have recently shown an increasing interest in modelling both learning
and evolution. Nash equilibrium (and its refinements) place strong requirements on the
rationality and the computational ability of players and on the information they must
possess. In switching to models with boundedly-rational agents the hope has been not
only to weaken those demands but also to select between equilibria in a manner which is
more intuitive. Unfortunately, the dynamics considered do not necessarily converge and
thus fail to give clear predictions. The results here indicate that in part this failure arises
from too narrow a focus. Most research has concentrated on properties of individual
algorithms. We examine a model where there is both learning and evolution and find
quite different results from when they are considered separately. In particular, there is
convergence for a wider class of games.

There are obvious similarities between the properties of adaptive learning and evo-
lutionary dynamics. Typically, both are concerned with the development of the dis-
tribution of strategies within some large population1. As Cabrales and Sobel (1992)
show, evolutionary dynamics under certain conditions can be “consistent with adaptive
learning” in the sense of Milgrom and Roberts (1991). But this is only a condition on
the asymptotic behaviour of a selection or learning process. In the short run, although
“consistent”, different processes may behave quite differently. In particular, while se-
lection dynamics are typically smooth functions of current strategy distributions, under
fictitious play or Cournotian dynamics, where players make best responses to previous
play(s) of opponents, there can be discontinuous jumps in play. Convergence to mixed
strategies is in particular troublesome (for example, see Fudenberg and Kreps 1993;
Jordan, 1993). Here it is shown that if one aggregates such behaviour across a large
population, smoothness is obtained.

The standard evolutionary dynamic framework assumes that agents compete in
some game and then reproduce according to the success they obtain. Here I make the
(strong) assumption that the population is randomly matched an infinite number of
times in each “generation” to play the game. The population is heterogeneous in that
some agents learn. At the end of their “lifespan” agents reproduce according to the
success of the strategies they develop, or, to be precise, according to the limit of this
learning process. Thus, there are two mechanisms that can change the mix of strategies
in the population. Agents can change their own strategies, a “learning” process, and an
evolutionary mechanism also chooses between different agents, the “selection” process.

The combination of the two has quite different implications for the stability of equi-
librium than each considered in isolation. We show that the distribution of strategies
in the population converges to Nash frequencies for all 2×2 asymmetric games and also
for a famous 3×3 game first proposed by Shapley in 1964. Shapley’s original pessimistic
result has been confirmed and generalised by more recent research, (Jordan, 1993). It is

1Some papers in the first camp include Milgrom and Roberts (1991), Kandori et al. (1993), Young
(1993); in the second, Nachbar (1990) , Samuelson and Zhang (1992).
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therefore particularly striking that, even given the particular assumptions of this model,
that a population can converge to the Nash equilibrium of such a game.

2 Learning and Selection

In this section, we first set out a standard model of evolutionary dynamics. We then
explain why mixed strategies of asymmetric games are typically unstable in this setup.
We go on to modify the model by the introduction of a simple learning process.

An infinite population is repeatedly, randomly matched to play a two-player normal-
form game, G = ({1, 2}, I, J, A,B). We develop the model and notation on the basis
that the game is asymmetric (in the evolutionary sense), in which case the players
labelled 1 are drawn from a different “population” from the players labelled 2. For
example, in the “Battle of the Sexes” game, players are matched so that a female
always plays against a male. I is a set of n strategies, available to the first population,
J , the set of m strategies of the second population. Payoffs for the first population
are determined by A, a n × m matrix of payoffs, with typical element aij, which is
the payoff a member of the first population receives when playing strategy i against a
member of the second population playing strategy j. B, with typical element bji, is the
m × n equivalent for the second population. There are n + m “types” of agent, each
associated with one strategy. The state of the system can thus be summarised by the
proportions of the population playing each strategy x = (x1, ...., xn), y = (y1, ..., ym).
That is, the state space is the Cartesian product of the simplexes, Sn × Sm where
Sn = {x = (x1, ..., xn) ∈ Rn : Σxi = 1, xi ≥ 0,for i = 1, ..., n}. Define the interior
(or, int Sn×Sm), as all states where all types have strictly positive representation, and
define the boundary as all states where at least one type has zero representation. The
symbol “·” indicates multiplication by a transpose, and the notation (Ay)i indicates
the ith element of the vector in parentheses.

The problem with which we are really concerned with here is the generic instability
of mixed strategy equilibria in asymmetric games under adaptive dynamics. Hofbauer
and Sigmund (1988) set out the reasons for this in the case of evolutionary dynamics.
In an environment where each member of the first population is randomly matched with
a member of the second, the expected payoffs for the first population are Ay and Bx
for the second. We assume that

ẋ =Q(x)Ay and ẏ = P (y)Bx (1)

where Q,P are symmetric positive semidefinite matrices. This is a very general formu-
lation for adaptive processes, including the evolutionary replicator dynamics and some
learning processes as special cases (see Hopkins, 1995; Hofbauer and Sigmund, 1990).
If we linearise the dynamics at a fully mixed fixed point ξ, we obtain

R =

(
0 Q(ξ)A

P (ξ)B 0

)
. (2)
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Because the payoffs of the first population depend only on y and not x and conversely for
the second population, the trace of this matrix (2) is zero. Consequently the eigenvalues
are either a mixture of negative and positive or they have zero real part. In discrete time
all such equilibria are always unstable. If we replace ẋ and ẏ in (1) by x(t+1)−x(t) and
y(t+ 1)− y(t) respectively, then the linearisation at a mixed equilibrium is I +R, and
has eigenvalues 1 + r, where r is the vector of eigenvalues of R. Given that, as we have
seen, R possesses either a mixture of positive and negative eigenvalues or eigenvalues
with zero real part, it is easy to show that the matrix I + R always has at least one
eigenvalue of absolute value greater than one. However, in continuous time, in the case
of eigenvalues with zero real part, the linearisation does not determine stability, this will
be determined by the equations’ higher order terms. Such equilibria are not structurally
stable in that small changes in the structure of the game or the dynamics will affect
stability. For example, equilibria can be stable in continuous time even though unstable
in discrete time.

However, many mixed equilibria in asymmetric games are saddlepoints. Saddle-
points are of course unstable and this property is structurally stable. In other words,
small variations in the specifications of the dynamic cannot make the equilibrium sta-
ble. Instability of these mixed equilibria can often make intuitive sense in that there are
games which also possess stable pure equilibria which seem more plausible outcomes
(see the discussion of asymmetric games in Maynard Smith, 1982; or in the context
of human society, Sugden, 1989). Or to put it another way, the instability allows us
to select between equilibria. However, there are many games which possess a unique
mixed equilibrium. A famous example is the following game first discussed by Shapley
(1964). This possesses a unique mixed equilibrium which is a saddle, with convergence
only occurring if the first population starts in its equilibrium state, that is, with each
of the three strategies with equal representation. From all other initial conditions, any
dynamic satisfying (1) will diverge from equilibrium.

A =
1 0 0
0 1 0
0 0 1

B =
0 0 1
1 0 0
0 1 0

(3)

Could heterogeneity help with this problem? That is, if there were a diversity in
the types of behaviour present in either one or both populations, could this change the
stability properties of mixed equilibria? In the framework we have sketched up to now,
it will not. If we require learning rules to be expressible in the manner of (1) as a
positive definite transformation of the payoffs, it does not matter how many such rules
are present in the population. It is easy to verify that the aggregation of any such rules
would itself be a positive definite function of the payoffs. To produce real qualitative
change, it is necessary to consider a wider deviation.

It is tempting to look in the direction of best response dynamics or fictitious play,
because they offer behaviour which is qualitatively different. Rather than offering a
smooth reaction to payoffs, there can be discrete jumps in play. It is not that this in
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itself makes convergence properties any better. For example, Krishna and Sjöström
(1995) have recently found that mixed strategy equilibria in non-zero sum games with
more than two strategies are unstable for fictitious play. Rather it is the possibilities
offered by the combination of different processes. Banerjee and Weibull (1995) consider
the case where a proportion of the population is “rational”, that is, they play a strategy
which is a best reply to the current state of the population. The result is quite striking.
Every Nash equilibrium becomes stable. It is very interesting to see rationality only
on a part of the population is enough to give results very similar to those of standard
game theory. However, given that one of the main reasons for investigating adaptive
dynamics is to select between equilibria, another approach is required.

The basic model is modified here by the addition of a type capable of inheriting
rules more complex than simply to play a fixed strategy. As noted above, Banerjee
and Weibull (1995) use a similar approach in the context of symmetric games, as does
Stahl (1993). Thus, we now have n + 1, m + 1 types, and we work in Sn+1 × Sm+1.
We can think of each generation being divided into an infinite number of subperiods
(0, 1, ..., s, ...). As a reminder, the selection process operates between generations, the
learning process within generations. We assume that the n+1th and m+1th type adjust
their strategies so that they play what is an optimum response to the strategy of their
previous opponent: the “best-response” or Cournotian dynamic. Similar behavioural
hypotheses have been employed in recent learning literature (for example, Milgrom
and Roberts, 1991; Kandori et al., 1993; Young, 1993), but here the implementation is
particularly simple. Agents do not need to know anything about the overall distribution
of strategies in the population or to have a memory longer than one subperiod. Yet, as
we will see, this is enough to ensure convergence to Nash equilibrium in a large class of
games.

Thus, at any given time, different members of the additional type may be playing
different strategies. Let p(s) = (p1(s), ..., pn(s)) and q(s) = (q1(s), ....., qm(s)) where
pi(s) and qj(s) denote respectively the proportion of this n + 1th type of population 1
playing the ith strategy, and the proportion of the m+1th type playing the jth strategy
at a given subperiod s. As I, J are finite, it is a standard result that for any pure strategy
in I, there exists at least one element of J which is a best response to that strategy.
Or ∀i ∈ I ∃ bj∗i ≥ bji. First, define I ′, J ′ as those subsets of I and J respectively of
strategies which have current positive representation in the two populations. Second,
let µj represent the number of strategies in I which are equal best responses to strategy
j. Third, let Ji = {j ∈ J ′ : i = argmaxi∈I aij} be the set of strategies to which i is the
best reply, and, equivalently, let Ij = {i ∈ I ′ : j = argmaxj∈J bji}.

The probability that an individual of type n+1, in population 1, meets an individual
of type j in the second population is yj. There is also a probability qjym+1 of meeting
an individual of type m + 1 currently playing strategy j. In either case, faced with an
opponent playing strategy j, the individual will play in the next subperiod a strategy
which is a best reply to j. Thus, within each generation, each pi evolves according to a
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mapping Sm → [0, 1]

pi(s+ 1) =
∑
j∈Ji

yj
µj

+
∑
j∈Ji

ym+1qj(s)

µj

(4)

Thus, although individual choices are made according to the best-reply dynamic, the
distribution of strategies in the population is a continuous function of the previous
subperiod’s distribution. We make the assumption that when there are alternative best
responses each agent chooses independently. Then by the law of large numbers each
alternative response is chosen by an equal number of agents. This explains the presence
of µj, denoting the number of alternative best replies. Naturally if Ji = ∅, pi = 0, and if
Ji = J ′, pi = 1. These represent respectively the cases where i is not a best reply to any
strategy, and where it is the dominant strategy. Similarly, for the second population,

qj(s+ 1) =
∑
i∈Ij

xi
µi

+
∑
i∈Ij

xn+1pi(s)

µi

. (5)

Lemma 1 If, at time t, 1 > xn+1(t), ym+1(t), the learning process represented by equa-
tions (4), (5) has an unique fixed point p∗,q∗ ∈ Sn × Sm.

Proof: Though they change between generations, within each generation the popu-
lation proportions x,y are fixed and are therefore constants for (4), (5). Consequently,
the equations are simple, linear difference equations. Written in matrix form, they
become

P(s+ 1) = x0 +X1P(s)

where P = (p1, ..., pn, q1..., qm), x0 is the vector of terms in xi, yj, and X1 is the matrix
of terms in xn+1 or ym+1. In equilibrium we have, P∗ = (I − X1)

−1x0. By inspection
of (4) and(5), it is possible to see that the coefficients on the pi in the first n equations
are all zero, as are the coefficients on the qj in the next m equations. Hence, (I −X1)
can be partitioned in the following manner:

I −X1 =

(
I −X12

−X21 I

)

Each column of X12 and X21 sums to ym+1 and xn+1 respectively. Thus (I − X1)
is singular if and only if neither X12 and X21 are linearly independent of I, which
can only be the case if xn+1 = ym+1 = 1. Otherwise, there is a unique fixed point,
P∗(x,y) = (p∗,q∗). Because of the linearity of these equations, this solution will be a
function of (x,y), Lipschitz continuous on the interior of Sn+1 × Sm+1. 2

The exact value of this solution depend entirely on the value of the xi, yi and not on
the value of p,q at the beginning of the learning process. Furthermore, the sufficient
condition for the existence of an unique fixed point is also a sufficient condition for
convergence.
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Lemma 2 If, at time t, 1 > xn+1(t), ym+1(t), the learning process converges to its
unique fixed point.

Proof: (4), (5) represent a system of n + m linear first order difference equations.
The xi, yi are constant within each generation, and therefore are constants for (4),
(5). In particular, the coefficients on the variables p,q on the right hand side are the
xn+1/µi, ym+1/µj, the sum of which in each equation have an upper bound in value of
either xn+1 or ym+1. By the elementary theory of difference equations if this sum is less
than unity for all equations, so are all the roots of the dynamic system. 2

It is worth remarking that here convergence is not convergence in empirical frequen-
cies, a notion of convergence that has been forcefully criticised in the recent literature
(Young, 1993; Fudenberg and Kreps, 1993; Jordan, 1993). In this case, one does not
have to take a time average. As the limit approaches, strategies are actually played at
limiting frequencies.

I make the assumption that payoffs during the learning process do not affect the rate
of reproduction. Rather it is the limit of the learning process, denoted (p∗,q∗) which
determines reproductive fitness. (Compare Harley’s assumption (e): “The learning
period is short compared to the subsequent period of stable behaviours”; 1981, p613).
This construction has some analytic convenience: if one assumes only a finite number of
plays each period, the values of p,q will be dependent on their (arbitrary) initial values.
We would have to make further assumptions about how much of the behaviour learnt
within a period is transmitted between the generations. For example, we could assume
that each generation starts from scratch: at the beginning of each period p(0),q(0) are
randomly determined. That is, “children” learn nothing from their “parents”. Or we
can assume that the initial values are some function of play by the previous generation.
However, using the limit, the value of (p∗,q∗) will be the same in either case.

As stated we use these limiting values to determine fitness. At the end of the learning
process the total proportion of the first population adopting the ith strategy will be
given by zi = xi + xn+1p

∗
i , and, the proportion of the second population adopting the

jth strategy by wj = yj +ym+1q
∗
j . Given the assumption of random matching it is these

overall distributions which decide fitness. For the first n,m types this will be, given the
normal form game G,

πxi = (Aw)i, πyj = (Bz)j, (6)

and for the learners,
πxn+1 = p∗ · Aw, πym+1 = q∗ ·Bz (7)

With fitnesses defined, we can propose as a selection mechanism the following replicator
dynamics:

xi(t+1) = fxi(x,y) = xi(t)
πxi + C

z · Aw + C
, yj(t+1) = fyj(x,y) = yj(t)

πyj + C

w ·Bz + C
, (8)

where C is an arbitrary constant. Alternatively, taking the limit, as generations become
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arbitrarily short:

ẋi = Fxi(x,y) = xi(t)(πxi − z · Aw), ẏj = Fyj(x,y) = yj(t)(πyj −w ·Bz) (9)

where z ·Aw,w ·Bz are the average payoffs for the two populations. Inspection of (9)
shows that this continuous selection mechanism has the following important property:

Invariance. As
∑n+1

i=1 Fxi =
∑m+1

j=1 Fyj = 0, the interior of the simplex is invariant
under F . Starting from any interior point, the boundary is never reached in finite time.
That is, if (x(0),y(0)) ∈ int Sn+1 × Sm+1, then (x(t),y(t)) ∈ int Sn+1 × Sm+1 for all
t ∈ R.

If we impose the condition that C is sufficiently large such that both denominator
and numerator in (8) are strictly positive2 for all i, j, invariance will also hold for the
discrete dynamic f . Given that p∗,q∗ are themselves functions of the frequencies of
types in the population, fitnesses will not be linear in x,y - a usual assumption of the
replicator dynamics - and perhaps not even be defined when xn+1 and ym+1 are equal to
one. However, by Lemmas 1 and 2, fitnesses are continuous functions of x,y elsewhere.
This, combined with invariance implies that from any fully-mixed initial conditions,
(that is, xi > 0, i = 1....n+ 1 and yj > 0, j = 1...m+ 1), the learning process converges,
and fitnesses are defined, for all t ∈ R. Thus while both f and F are not continuous
on all of Sn+1×Sm+1 they are continuous on its interior. In other words, both f and F
possess a limit even along a dynamic path with an accumulation point on the boundary
of Sn+1 × Sm+1, even if that limit may be path-dependent.

What is important about this definition of fitness is that there is a fundamental
difference from the standard evolutionary model. Fitnesses for the first population, for
example, depend on w which through q∗ depends on x. Consequently dπxi/dx 6= 0 and
any linearisation at a fully mixed equilibrium does not have the same structure as (2).
That is, mixed strategy equilibria of asymmetric games could be asymptotically stable
in this framework. This possibility we now investigate.

3 Equilibrium

Equilibrium in this model consists of a population distribution which is a rest point
for both selection and learning processes. That is, a state of the system where the
limit of the learning process is such that all types present in the population earn the
same average payoff. In the standard evolutionary model, that is, in the absence of the
learners, under the selection dynamics defined by (8) or (9), denote the rest points for
the game G in the interior of Sn × Sm, (z∗,w∗). It is well known that such rest points

2An increase in the value of C is equivalent to the addition of an equal amount to the game matrices
A,B. This will not change the best response structure or Nash equilibria but may change the qualitative
behaviour of the discrete replicator dynamics. See Cabrales and Sobel (1992) for a discussion of the
issues involved.
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are Nash equilibria (Hofbauer and Sigmund, 1988; Nachbar, 1990)3. For the extended
game, the conditions for an interior rest point under the selection dynamics are

πx1 = .... = πxn+1, πy1 = .... = πym+1 (10)

Furthermore, as (x,y) are both constant if (10) holds, the limit for the learning process
is also unchanging across all subsequent generations. The consequent distribution of
strategies is a Nash equilibrium. Comparison of equations (6), (7), reveal that any
values of (x,y) that satisfy the above condition (10), also satisfy xi + p∗ixn+1 = z∗i ,
and yj + q∗i ym+1 = w∗j . That is, it is a Nash equilibrium for the original game G in
the sense that an outside observer would see, as the learning process reached its limit,
strategies being played with the Nash equilibrium frequencies, (z∗,w∗). Note that for
each population there is now one less independent equation than there are independent
variables. This means that any isolated equilibrium of the original game in the interior of
Sn×Sm will be represented by a continuum of fixed points in the interior of Sn+1×Sm+1.

Furthermore, we can show that for all 2 × 2 games the system will converge to a
Nash equilibrium. (11) gives a general 2×2 game.

A =
0 a

1− a 0
B =

0 b
1− b 0

(11)

where −1 ≤ a, b ≤ 1. If 1 > |a| > 0 and 1 > |b| > 0 then there is a mixed Nash
equilibrium where the first strategy of each population are represented with frequencies
(b, a) respectively. The interesting case is when additionally ab < 0, as in this case,
the mixed Nash equilibrium is unique, yet the replicator dynamics do not converge.
However, the addition of an arbitrarily small initial population of learners is enough to
stabilise the dynamics.

We start by assuming (without loss of generality) that a < 0. We can then solve
for p∗ and q∗ and we find that (p∗,q∗) = (y1 + y3(1 − x1), 1 − x1 − x3y1)/(1 + x3y3).
Given this and the condition that in equilibrium (x1 + p1x3, y1 + q1y3) = (b, a), we have
a continuum of equilibrium points defined by the two equations

x1 = b− ax3, y1 = a− (1− b)y3.

Using x1, x3, y1, y3 as our variables, if we take the linearisation of the continuous time
dynamics F (x,y) at any point in this continuum, it gives us a Jacobian:

J =
1

1 + x3y3


−ay3 −a2y3 a a(1− b)

(1− 2a)y3 (1− 2a)ay3 2a− 1 (2a− 1)(1− b)
−b −ab −bx3 −b(1− b)x3
0 0 0 0


Some further calculation reveals that J possesses two zero eigenvalues, which reflect the
continuum of equilibrium points, and two with real part negative for 0 < x3, y3 < 1.

3All states that consists of just one type are also rest points, but not all are Nash equilibria.
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Figure 1: Continuum of equilibria x̄ and a level curve of the function V1.

Given the presence of the zero eigenvalues, the linearisation is not in itself sufficient to
determine stability. However, we can establish this by other means. Basically, the proof
follows from the example given by Hofbauer and Sigmund (1988, p131-3) who introduce
an additional type to the standard (symmetric) evolutionary model which plays a fixed
mixed strategy. In the model considered here the behaviour of the addtional type
changes over time and hence the orbits of the evolutionary dynamic will be somewhat
different. However, they all approach the continuum of mixed strategy equilibria.

The structure of the proof is illustrated in Figure 1. To draw this diagram we fix
the value of y at some arbitrary value but with 1 > y3 > 0. We can then draw in the
continuum of equilibria x̄. We define a function V1first demonstrate that all orbits stay
inside the set.

Proposition 1 If ab < 0, then the mixed equilibrium is asymptotically stable, for any
fully mixed initial conditions.

Proof: Define V1 = xb1x
1−b
2 ya1y

1−a
2 .

V̇1 = V1[(b− z1)((Aw)1 − (Aw)2) + (a− w1)((Bz)1 − (Bz)2)] = 0

or in other words V1 is a constant of motion. All orbits on the interior of Sn+1 × Sm+1

will be within the level sets of V1. This implies that all orbits either flow toward the
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interior equilibrium, or flow toward a boundary where x3 and/or y3 are zero. However,
define V2 = xa1x

1−a
2 x−13 y1−b1 y b

2 y
−1
3 , which approaches infinity as it approaches such a

boundary.

V̇2 = V2[(a− p1)((Aw)1 − (Aw)2) + (q1 − b)((Bz)1 − (Bz)2)] ≤ 0

Evidently, orbits flow away from the boundary to the equilibrium, which must attract
all the interior. 2

In the case of discrete time, it is not possible to construct similar Liapunov functions,
but we can note the following. The equivalent discrete system has linearisation I + J ′,
where J ′ is identical to J except that the first two rows are divided by z · Aw + C,
and the third and fourth by w · Bz + C. Hence, J ′ also has eigenvalues with real part
nonpositive, whose absolute value decreases to zero as C →∞. Thus, there is a C for
which the eigenvalues of I + J ′ are less than or equal to one in absolute value. We can
therefore be reasonably confident that also in discrete time the mixed equilibrium is
asymptotically stable.

Note that not all mixed strategies are stable. That is, the dynamics can still be used
to select between equilibria. If ab > 0 then this interior equilibrium is a saddle. Similar
arguments to those employed in Proposition 1, can be used to show that in this case,
the system behaves in much the same way as standard evolutionary dynamics and flows
toward the Nash equilibria located on the boundaries of the simplex.

The mixed equilibrium when ab < 0 is non-hyperbolic (that is, the linearisation has
eigenvalues with zero real part) for the continuous time replicator dynamics and hence
not structurally stable. In this sense, a modification of the dynamics would be expected
to change their qualitative behaviour. However, for the discrete time dynamics, the
equilibrium is hyperbolic and hence robustly unstable. We have seen that even in this
case, the addition of learning can stabilise the equilibrium. We go on to show that it
can drive convergence to an equilibrium which seems to be unstable under every form
of adaptive dynamic.

4 A 3×3 Example

The famous example given by Shapley (1964) to demonstrate non-convergence of ficti-
tious play is shown in (3). The only Nash equilibrium of this game is interior, where
both row and column play each of their strategies with equal probability. As we have
seen, interior (mixed) equilibria of asymmetric games are never asymptotically stable
under the replicator dynamics. Thus this game does not converge for the replicator
dynamics, just as it does not for fictitious play. Recent research on learning and evolu-
tion has only served to confirm the robustness of this result (see for example, Jordan,
1993). However, under this modified system this game converges to the unique Nash
equilibrium.
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Starting from a fully-mixed initial state, the proportions of type 4 playing each
strategy evolve according to:

p(s+ 1) =

 y1
y2
y3

+ y4q(s), q(s+ 1) =

 x3
x1
x2

+ x4

 p3(s)
p1(s)
p2(s)

 (12)

This is a system of six linear difference equations. By Lemma 2 we know that the
fixed point of this system is the limit of the learning process. This can be calculated
using standard methods. It would be possible to eliminate p,q by substitution using
these results. However, it is easier to work in the other direction. We construct zi(t) =
xi(t)+x4(t)p

∗
i (t), wj(t) = yj(t)+y4(t)q

∗
j (t); i, j = 1, 2, 3, where zi is the total number of

the first population playing strategy i, and wj is the total number of the second playing
strategy j. Note that (12) here implies that z(t) = (q∗2(t), q∗3(t), q∗1(t)), that w = p
and that q·B = z·A. There is an interior equilibrium for this system: the plane such
that x1 = x2 = x3, y1 = y2 = y3, which we denote (x̄, ȳ). In such an equilibrium, (12)
in turn implies that p = q = (1/3, 1/3, 1/3). I now prove that the limit point of all
solutions under f , given fully-mixed initial conditions, is on this plane (normally for
the discrete dynamics the interior equilibrium is a repellor).

Proposition 2 The plane of equilibria (x̄, ȳ) under f attracts all other points on the
interior of S4 × S4.

Proof: Define V (x,y) = x4y4. Given that x4(t + 1) = x4(t)
p·Aw

z·Aw
, and that

y4(t+ 1) = y4(t)
q·Bz

w·Bz
, it follows that V (t+ 1)− V (t) > 0 if and only if

p·Aw q·Bz− z·Aw w·Bz = w ·w z · z− z ·w w · z∗ > 0 (13)

where z∗ = (z3, z1, z2). Divide through by w ·w z · z to obtain:

1− cos θzw cos θwz∗ ≥ 0

It follows that V (t+ 1) ≥ V (t) with equality only at (x̄, ȳ). V (x,y) is therefore a strict
Liapunov function on all of the interior of S4 × S4 less (x̄, ȳ). It is therefore unclear
whether the system will have its limit at V = 1, or whether it will come to rest at another
point on (x̄, ȳ). However, in either case limt→∞ p = limt→∞ q = (1/3, 1/3, 1/3). 2

Note that a similar result holds in continuous time. Again defining V (x,y) = x4y4,
we have V̇ > 0 if and only if w ·w + z · z− z ·w −w · z∗ > 0. It is easy to show given
the above proof that this inequality holds on all of the interior of S4 × S4 less (x̄, ȳ).

One other question needs to be answered. Obviously the fact that the Liapunov
function V is increasing implies that the population share of the learners is increasing
also. But as x4 and y4 approach 1, the convergence of the learning process slows,
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and further convergence really does become dependent on our assumption that learners
play infinitely often. However, simulation reveals that in fact the limit of V is not,
in general, 1, and equilibrium can be reached with the proportion of learners in the
population remaining quite low.

We consider briefly two other examples. The first (14) is the familiar rock-
scissors-paper game, the second (15) is a game proposed by Dekel and Scotchmer
(1992). They show that the dumb strategy survives in the limit under the discrete
replicator dynamics although it is never a best response and therefore not rationaliz-
able.

A = B =
rock b a c
scissors c b a
paper a c b

a > b > c (14)

rock-scissors-paper is well-known as a problem game. While it does converge for
fictitious play, it does so only in empirical frequencies. It only converges for the discrete
replicator dynamics if ac > b2. As for the first example, the limit of these games when
learners are also present is the unique Nash equilibrium. As both these two additional
examples have a similar structure, it is not surprising that they elicit similar behaviour.
The function, xn+1ym+1, will again work as a Liapunov function and shows that in both
cases there is convergence in population frequencies to the unique Nash equilibrium.

A = B =

rock 1 2.35 0 0.1
scissors 0 1 2.35 0.1
paper 2.35 0 1 0.1
dumb 1.1 1.1 1.1 0

(15)

5 Discussion

Games such as (3) cause problems for conventional models because they possess cycles
of best responses. For example, in Young (1993), cyclic games are excluded from the
results on the convergence of a stochastic learning process. The fundamental reason
that this model gives qualitatively different behaviour is that there are two distinct
processes determining the change in the distribution of strategies, working at different
speeds. By changing strategies, the learners anticipate the next stage of the cycle and
“damp” the non-convergent tendencies of the original model. The dependence is two-
way. Without the non-learners, the best-response process would not converge for this
game.

One might argue that the simple learning rule considered here would be displaced by
more sophisticated behaviour. However, this is an argument that does not find support
in more recent work (Banerjee and Weibull, 1995; Blume and Easley, 1992; Stahl, 1993),
where rational agents do not necessarily displace less rational ones. There is no claim
that the learning rule considered here is the “correct” one. However, there is also no
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strong evidence that evolution will select for more complex or sophisticated behaviour
in a strategic environment.

Learning and evolution are ostensibly similar processes. However, while evolution
is defined at the level of a population, learning is carried out by individuals. Crawford
(1989) demonstrates that even when agents’ learning is modelled in a similar manner
to the replicator dynamics, an aggregation of their behaviour does not have the same
properties in terms of stability as evolutionary dynamics. Similarly, in this paper even
the most elementary learning behaviour gives increased stability when considered at
the level of the population. This opens up the possibility of further research about the
aggregate properties of populations where a number of different classes of behaviour are
present.
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