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This paper investigates social influences on attitudes to risk and reanalyses how risk taking 
varies with relative position and inequality. Individuals with low initial wealth, about to 
participate in a tournament with richer opponents, may take fair gambles even though 
they are risk averse in both consumption and tournament rewards. It is shown that this 
risk taking decreases in the inequality of initial endowments, but in contrast it increases in 
the inequality of tournament rewards.
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1. Introduction

There is a long tradition of treating risk attitudes as exogenous and fixed. However, there is now much empirical evidence 
that choices under uncertainty are subject both to systematic variation and to social influence. For example, recent research 
by Falk et al. (2015) finds that risk taking is higher in countries with higher inequality. Further, there is substantial evidence 
that risk taking is influenced by relative position, with those who are behind others in tournament situations willing to take 
on more risk, both in sports (Genakos and Pagliero, 2012) and in finance (Brown et al., 1996; Dijk et al., 2014).2

Theoretical explanations of social influence on risk attitude are scarce but include Robson (1992, 1996), Becker et al.
(2005), Ray and Robson (2012). However, one of the central predictions of the existing literature is that risk taking is 
increasing in wealth equality. This is both counter-intuitive and lacks empirical support. Existing models also suggest that 
the highest level of risk taking should be by those in middle of the wealth distribution. Again this runs against the evidence 
noted above for risk taking by those at the back of the field.

This paper tries to reconcile theory with the evidence by analysing the role of reward inequality in a tournament setting. 
A large population starts with different levels of wealth and compete for multiple, ranked rewards. These can be interpreted 
as representing different levels of status or different matching outcomes. In this strategic situation, an individual’s indirect 
utility function can be convex in initial wealth and thus for standard theoretical reasons he will be willing to take fair 
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gambles before the tournament. Importantly, these implied risk attitudes are not fixed but rather vary with the degree 
of competition, which itself is determined by two different forms of inequality – inequality in initial endowments and 
inequality in the tournament rewards. For example, the gap between the best and worst rewards could be small or large. 
This is the first study to study systematically the effect of reward inequality on risk taking.

Specifically, I show that under a simple symmetry condition the lowest ranked in society will be risk loving. Thus, it 
can explain why those who are behind others would be willing to take on more risk. Further, under appropriate regularity 
assumptions on the utility function related to the concept of prudence, I find that risk-taking behaviour is increasing in 
inequality of final rewards, even though it is decreasing in the inequality of initial wealth.

Finally, I consider the maximum level of sustainable wealth equality. Robson (1992) introduces the concept of a stable 
distribution of wealth, a distribution such that there is no incentive to gamble. Concentrating on the most equal stable 
distribution, I show that it depends on the distribution of rewards, with more equal distributions of rewards supporting a 
more equal distribution of wealth. Thus, in contrast to earlier findings by Becker et al. (2005) and Ray and Robson (2012), 
the most equal stable distribution of wealth can be arbitrarily equal, if rewards are sufficiently equally distributed.

The basic intuition for risk taking is that an individual who has an endowment that is low relative to his rivals can 
expect only a low reward from participating in the tournament, even if his initial wealth is high in absolute terms. Thus, 
the marginal value of doing better in the tournament can be arbitrarily high – the individual is “desperate”. Consequently, 
the individual’s indirect utility will be convex in present wealth, giving an incentive to gamble. More generally, either 
an increase in inequality of rewards or a decrease in inequality of endowments will increase the competitiveness of the 
tournament and increase the incentive to gamble.

This model can provide a theoretical mechanism which would support the apparent positive empirical relationship be-
tween inequality and risk-taking behaviour, but the causation flows in a different way than is normally assumed. High 
reward inequality induces greater risk-taking behaviour which increases the minimum level of wealth inequality that is 
compatible with stability. Thus, wealth inequality and risk taking are jointly caused by another factor – reward inequal-
ity. It remains true that, as with the previous literature, greater wealth inequality, considered in itself, reduces risk taking. 
Nonetheless, the overall relationship between risk taking and inequality of wealth can be positive if differences in reward 
inequality across societies are greater than cross-country differences in initial wealth inequality.

This paper is certainly not the first to consider the relationship between risk taking and relative concerns. However, 
while there a wider literature on status and relative concerns, the number of works considering the effect on risk taking 
is quite small, including Robson (1992, 1996), Harbaugh and Kornienko (2000), Cole et al. (2001), Becker et al. (2005), Ray 
and Robson (2012). This paper differs from this existing literature in two main ways. First, as noted above, existing models 
suggest that risk taking should be increasing in equality, a result that seems to run counter to intuition and to evidence. 
In particular, a recent and comprehensive cross-country study of risk attitudes is found in Falk et al. (2015) who examine 
data on 80,000 subjects from 76 countries surveyed using a common methodology. Risk taking was elicited both by a 
mixture of quantitative questions, a series of five binary choices between a fixed lottery and varying sure payments, and a 
self-assessment question. They find that such risk taking is higher in more unequal countries. Second, previous theoretical 
work considers only inequality in wealth but not inequality in rewards.

Fang and Noe (2016) also consider how tournaments affect risk taking but in a somewhat different framework. Hopkins 
and Kornienko (2010) introduces the distinction between endowment and reward inequality but, as with the vast majority of 
work on relative concerns, do not consider risk taking. The previous study closest to the current work is Robson (1996). He 
considers a model where men care about relative wealth because of the possibility of polygyny: high relative wealth means 
that a man can attract multiple partners. This gives men an incentive to gamble. In current terminology, men face greater 
reward inequality than women. But the general relationship between reward inequality and risk taking is not explored.

2. A status tournament

The base model is similar to that found in Frank (1985), Hopkins and Kornienko (2004) and Becker et al. (2005), but 
here is modified to allow for reward inequality to vary. A large population of agents compete in a tournament with a 
range of ranked rewards that could represent either different levels of status or of marriage opportunities. Agents make a 
strategic decision over how to allocate their endowment between performance in the tournament and private consumption. 
As BMW first discovered, this situation can lead to individuals being willing to take fair gambles if they are offered before 
the tournament. This is because the utility function implied by equilibrium behaviour in the tournament can be convex 
in initial endowments, even though an individual has preferences that are concave in both consumption and rewards. The 
model is solved backwards. This section analyses the tournament stage of the game. The next section looks at the implied 
incentives to take gambles prior to the tournament.

I assume a continuum of agents. The game begins with each being allocated a different endowment of wealth z with 
endowments being allocated according to the publicly known distribution G(z) on [z, ̄z] with z > 0. The distribution G(z) is 
twice differentiable with strictly positive density g(z).

Next, and before the tournament, individuals may have an incentive to gamble with their wealth. It is assumed that a 
range of fair gambles are offered each in the form of a continuous density over a bounded interval. As Ray and Robson
(2012) suggest, these gambles could be lotteries in the common meaning of the term or, more generally, entry into risky 
occupations or making risky investments.
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One would expect that gambles are taken until the market clears in the sense that the distribution of wealth is such 
that no-one wishes to gamble further. Stable wealth distributions that give no incentive to gamble are characterised in 
Section 4. However, in this section I analyse the tournament taking place with the initial wealth distribution G(z). The point 
is that it is the anticipation of taking part in a tournament when the distribution of wealth is not stable which gives the 
incentive to take risks. It is thus necessary to model the hypothetical possibility of playing the tournament under the initial 
non-stable wealth distribution in order to understand risk attitudes. Thus, in the rest of this section G(z) refers to the initial 
distribution of endowments.3

In the tournament itself, agents make a simultaneous decision on how to divide their wealth z between performance x
and consumption c, with x + c = z. Performance has no intrinsic utility, but rewards s are awarded on the basis of perfor-
mance, with the best performer receiving the highest reward, and in general, one’s rank in performance determining the 
rank of one’s reward. A specific interpretation in BMW and Hopkins and Kornienko (2004) is that x represents expenditure 
on conspicuous consumption, and s is the resulting status. An alternative, first due to Cole et al. (1992), is that s represents 
the quality of a marriage partner achieved. Relating this to evolutionary considerations, the range of rewards in a society 
which permits a high degree of polygyny would be wider than in a society in which strict monogamy is enforced. Whatever 
the interpretation, what is important here is that there is a schedule of rewards or status positions available, which are 
assigned by performance in the tournament. In contrast, regular consumption c is supplied by a competitive market at a 
constant price.

In any case, it is assumed that all individuals have the same preferences over consumption c and status or rewards s,

U (c, s) (1)

where U is a strictly increasing, strictly concave, three times differentiable function with Uc, Us > 0, and Ucc, Uss < 0. So, 
agents are risk averse with respect to both consumption and status. I also assume that Ucs ≥ 0, so that the case of additive 
separability Ucs = 0 and status and consumption being positive complements Ucs > 0 are both included. As BMW stress, it 
is when Ucs > 0, strict complementarity between rewards and consumption, that the results on risk taking are strongest. 
Note that x does not appear in the utility function and thus represents a pure cost to the individual. The amount spent on 
x could represent conspicuous consumption, labour effort or resources devoted to fighting or lobbying.

The order of moves is, therefore, the following:

1. Agents receive their endowments z. Because the distribution of wealth G(z) is common knowledge, they therefore know 
their relative position in the field of competitors.

2. Agents are offered fair gambles which they are free to accept or to reject.
3. Agents commit a part x of their after gambling wealth z to performance in the tournament.
4. Each agent receives a reward s, the value of which is determined by performance in the tournament.
5. Agents consume their remaining endowment c = z − x and their reward s, receiving utility U (c, s).

To this point, the model is identical to that of BMW (and very similar to that of Hopkins and Kornienko, 2004). However, 
here I follow Hopkins and Kornienko (2010) in assuming that the rewards or status positions of value s have an arbitrary 
publicly known distribution with a twice differentiable distribution function H(s) on [s, ̄s], with s > 0, and strictly positive 
density h(s). BMW assume that H(s) is fixed as a uniform distribution on [0, 1]. As they point out, for the existence of 
equilibrium, this represents a harmless normalisation. However, this clearly prevents the major exercise here: identifying 
the change of behaviour arising from changes in the distribution of rewards.

Rewards or status are assigned assortatively according to rank in performance, with the highest performer receiving the 
highest reward and the lowest performer the lowest reward. Let F (x) be the distribution of choices of performance. One’s 
position in this distribution will determine the award achieved. Precisely, an individual who chooses a performance level x
will receive a reward

S(x, F (·)) := H−1 (
θ F (x) + (1 − θ)F −(x)

)
(2)

where F −(x) = limξ↑x F (ξ) and for some θ ∈ (0, 1). The role of the parameter θ is to break potential ties that would 
occur if a mass of agents were to choose the same level of performance. For example, if a mass of agents chose the same 
performance, this rule would be consistent with the corresponding range of rewards being equally distributed amongst 
those agents.4 However, if all contestants choose according to a continuous strictly increasing strategy x(z), then, first, 

3 If gambles are taken then the tournament may be contested with a distribution that is different from the initial distribution G(z), even if G(z) deter-
mined those risk attitudes. This is not a major concern because, first, the focus here is on risk attitudes not the tournament itself; second, the distribution 
is arbitrary and so it does not matter if it changes, because the resulting stable distribution retains suitable properties – stable distributions are continuous 
(Robson, 1992) and smooth (see the online appendix).

4 Note that F (x) and F −(x) are only distinct when a positive mass of agents choose the same performance x̂. Denote r̄ = F (x̂) and r = F −(x̂) then 
the average value of rewards ranked between r and r̄ is v = ∫ r̄

r H−1(r) dr/(H(r̄) − H(r)) and by the mean value theorem there is a θ ∈ (0, 1) such that 
H−1(θ F (x) + (1 − θ)F −(x)) = v .
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F (x) = F −(x) for all x, and, second, F (x(z)) = G(z). Together, this implies, H(s) = F (x) = G(z), one holds the same rank in 
endowments, performance and in reward achieved, or

S(x, F (x)) = H−1(F (x)) = H−1(G(z)) := S(z). (3)

We can call S(z) the reward or status function, as in a monotone equilibrium, it represents the relationship between initial 
endowment and the reward or status achieved.

Importantly, the reduced form equilibrium utility given a monotone equilibrium performance function x(z) will then be

U (z) = U (z − x(z), S(z)). (4)

We will see that this function U (z) can be convex, even given our concavity assumptions on U (c, s). Therefore, agents would 
accept a fair gamble over their endowment, if such a gamble was offered before the tournament.

If all agents follow a monotone strategy x(z), then an individual with endowment z should choose x(z). If she considers 
deviating to a different level of performance x(ẑ), she will have no incentive to do so if

−x′(ẑ)Uc(z − x(ẑ), S(ẑ)) + S ′(ẑ)Us(z − x(ẑ), S(ẑ)) = 0. (5)

Setting x(ẑ) = x(z) and rearranging, we have

x′(z) = Us(z − x(z), S(z))S ′(z)

Uc(z − x(z), S(z))
. (6)

The solution to the above differential equation with boundary condition,

x(z) = 0 (7)

will determine the equilibrium strategy. The proof (in Appendix A) shows that despite the possibility of the equilibrium 
utility function U (z) being convex, individual utility is pseudoconcave in performance x so that the first order condition (5)
above does represent a maximum.

Proposition 1. There exists a unique solution x(z) to differential equation (6) with boundary condition (7). This is the unique symmetric 
equilibrium to the tournament.

Having established the framework of the tournament, the next step is to proceed in solving backwards. The next section 
considers the risk attitudes of agents who are about to participate in the tournament.

3. Implied risk attitudes

The main focus of this paper is to examine the risk attitudes implied by participation in the status tournament. As 
described in the previous section, an individual with initial endowment z will anticipate equilibrium utility U (z) = U (z −
x(z), S(z)), where x(z) is the equilibrium choice of performance and S(z) = H−1(G(z)) is the reward function. If this function 
is convex for some range of endowments z, then individuals with endowments in that range would take fair bets if such 
bets were offered to them prior to the tournament. The analysis in this section focuses on the question as to when in fact 
this function will be convex.

We have by the envelope theorem U ′(z) = Uc(z − x(z), S(z)) and

U ′′(z) = Ucc(z − x(z), S(z))(1 − x′(z)) + Ucs(z − x(z), S(z))S ′(z), (8)

on (z, ̄z), where x′(z) is as given in the differential equation (6). Perhaps more usefully, to clarify the different potential 
effects on risk attitudes, one can decompose the expression (8) into (suppressing arguments)

U ′′(z) = Ucc + Ucs S ′(z) − x′(z)Ucc = Ucc + S ′(z)

(
Ucs − UccUs

Uc

)
(9)

which not only separates the negative and positive elements, but also the traditional and non-traditional parts. The first 
part Ucc is negative and reflects risk aversion towards regular consumption. The second and third give the competitive 
aspect which is positive. By inspection one can immediately see that U ′′(z) will be positive, even though the traditional 
term Ucc < 0, if either x′(z) or S ′(z) is sufficiently large.5 Note that S ′(z) = g(z)/h(S(z)). Thus, BMW’s result that equality 
in endowments would lead agents to be willing to accept lotteries follows quite directly. If the distribution of endowments 

5 One might think that risk taking would be related to S ′′(z), specifically whether the distribution of rewards is convex. But, because of the envelope 
theorem, U ′(z) does not depend on S ′(z) and so U ′′(z) does not depend on S ′′(z) but on S ′(z).
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G(z) is strongly unimodal, then its density g(z) will have a very high value at and around its mode. Thus, BMW’s focus on 
wealth alone predicts risk taking typically will be highest at middling levels of wealth.

Turning to the impact of rewards on risk attitudes, one can immediately see that the effect will largely be opposite 
to that of endowments. An increase in inequality of rewards will tend to lower its density h(s) which lead to more risk 
taking, because as noted above risk taking is increasing in S ′(z) = g(z)/h(S(z)). Reward inequality thus leads to risk taking, 
endowment inequality to risk aversion.

However, the problem in obtaining unambiguous global results on risk attitudes is that changes in either rewards or en-
dowment inequality have additional effects. First, there are wealth effects, having a higher or lower reward or endowment 
in itself may change one’s risk attitude. Second, changes in inequality affect everyone’s incentives to compete in the tour-
nament, and higher performance in the tournament means lower consumption. This tends to increase risk aversion through 
the conventional channel, lowering Ucc if (plausibly) Uccc is positive.

I start with a basic characterisation result. Because risk attitudes depend both on the distribution of rewards and of initial 
endowments, a natural benchmark is where the two distributions are equal, so that S(z) = H−1(G(z)) = z and S ′(z) = 1. 
It is also relatively a plausible case as if both distributions are unimodal (as is typical for many empirical distributions) 
then this assumption would be approximately correct. What is important about equal distributions for the results below is 
that it implies that S ′(z) = 1. Thus, differences in means or scale between the distributions would not change the result. 
However, previewing results from the next section, if the distribution of endowments were significantly more unequal 
than the distribution of rewards so that S ′(z) < 1, risk taking would be less likely to hold. Unfortunately, even with equal 
distributions, it is not possible to obtain a global result on risk attitudes except for the two special cases considered here – 
precisely because of the opposing effects of endowments and rewards.

Proposition 2. Let the distribution of endowments G(·) and the distribution of rewards H(·) be identical. Assume either that prefer-
ences are separable so that Ucs = 0 or that preferences are Cobb–Douglas so that U (c, s) = cαsβ , then there is at most one such point 
ẑ such that U ′′(ẑ) = 0. If there is such a crossing point ẑ, then U ′′(z) > 0 for z ∈ (z, ̂z) and U ′′(z) < 0 for z ∈ (ẑ, ̄z). If preferences are 
symmetric so that Uc(y, y) = Us(y, y), then, the poorest individuals will be risk loving. That is, there will be a ẑ ∈ (z, ̄z] such that 
U ′′(z) > 0 on (z, ̂z).

This result implies that, under these utility specifications, there are only three possible configurations for risk preferences. 
Either everyone is risk taking or all are risk averse, or the poor are risk taking and the rich are risk averse (see the function 
U A in Fig. 1 in Section 3.1 below for example). Example 1 below shows that all three such configurations are possible. In 
the last case, then the mass of middle-ranked individuals will be risk loving with respect to losses, and risk averse with 
respect to gains, which is reminiscent of prospect theory. The final part of the proposition is a sufficient condition for low 
status individuals to be risk loving – that is, to rule out the less interesting case where all are risk averse.6

It is worth remarking that our finding that the poorest can be the most risk taking is contrast to the results of BMW, 
Robson (1992) and Ray and Robson (2012) who find support for the Friedman–Savage conjecture that risk taking is greatest 
at middle incomes. However, an empirical study of demand for lottery tickets in the United States, one example of risk 
taking, found that demand is highest at low incomes (Clotfelter et al., 1999). Haisley et al. (2008) in a laboratory study find 
that demand for lottery tickets increases when subjects perceived their incomes to be relatively low.

3.1. Effects of greater inequality: rewards vs endowments

Let us now move to a principal question in this paper, the relationship between risk attitudes and inequality in rewards. 
Specifically, it is possible to show that making rewards more unequal leads to more risk-taking behaviour. With more 
inequality, low-ranked competitors face lower rewards and all face higher incentives to compete in the tournament. Both 
factors encourage risk taking. It is also important to verify BMW’s claim that in contrast increases in the dispersion of initial 
wealth should reduce the desire to gamble. The basic thrust of their claims are supported in a new result given below.

Suppose that the distributions of rewards differ across two societies A and B for exogenous reasons, giving rise to 
the distributions H A(s) and H B(s) respectively. I then see how these differences affect risk attitudes. Some notion of a 
distribution being more dispersed than another is needed. I use a strong version of the dispersive order. Specifically, I say 
that a distribution H A is strictly larger in the dispersive order than a distribution H B , or H A >d H B if

hA(H−1
A (r)) < hB(H−1

B (r)) for all r ∈ [0,1]. (10)

The original definition of this stochastic order (Shaked and Shanthikumar, 2007, pp. 148–149) has the same condition but 
with a weak inequality, and on (0, 1). A simple example of distributions satisfying this stronger condition would be any 
two uniform distributions where one distribution has support on a strictly longer interval than the other (see Hopkins and 
Kornienko (2010) for further examples and discussion). This is consistent with a form of mean preserving spread on rewards. 
For example, two uniform distributions having the same mean but with H A having a wider support would be suitable.

6 Another sufficient condition for risk taking (but which does not require the two distributions to be equal) is that the minimum reward is sufficiently 
low.
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Fig. 1. Illustration of Proposition 3: A’s reward function S A is steeper than S B leading to A’s equilibrium utility function U A being convex at low levels of 
wealth. Typically, U A is lower and performance xA is higher with more unequal rewards.

Further, to see how risk attitudes vary with changes in initial endowments and in rewards some additional assumptions 
on the third derivatives of the utility function are necessary. This should not be surprising. In the standard theory of risk 
attitudes, such assumptions are often necessary for comparative statics. For example, for an individual to have declining 
absolute risk aversion (DARA), the third derivative of the utility function must be positive (“prudence”). Thus, I introduce a 
set of assumptions which are related to having DARA with respect to consumption risk.7

A1: Uccc(c, s) ≥ 0 and Uccs(c, s), Ucss(c, s) ≤ 0.
A2: The ratio Ucc(c, s)/Uc(c, s) is non-decreasing in c and in s; equivalently Uccc(c, s)Uc(c, s) − U 2

cc(c, s) ≥ 0 and 
Uccs(c, s)Uc(c, s) − Ucs(c, s)Ucc(c, s) ≥ 0.

A3: The ratio Ucc(c, s)/Ucs(c, s) is non-decreasing in c; equivalently Uccc(c, s)Ucs(c, s) − Ucc(c, s)Uccs(c, s) ≥ 0.

Note that all these properties are satisfied by Cobb–Douglas, cαsβ , and CES, (cρ + sρ)1/ρ , utility functions for α, β, ρ ∈
(0, 1). In terms of the economic interpretation of these conditions, clearly, A1 represents “prudence”, that is a positive 
third derivative, with respect to consumption. Similarly, A2 mirrors the DARA assumption for risk preferences with a single 
variable (that in current notation −U ′′(z)/U ′(z) is decreasing in z). That is, conventional absolute risk-aversion with respect 
to consumption Ucc/Uc approaches risk neutrality (becomes less negative) as consumption or rewards rise. A3 is similar 
in that risk aversion with respect to consumption does not grow in absolute size compared to the cross term Ucs as 
consumption rises.

Greater dispersion in rewards will lead to a steeper reward function, see for example panel 1 of Fig. 1. Consider the 
expression (8), then one can see there will be a direct and positive effect on U ′′(z) from the rise in the slope of the 
reward function S ′(z). Second, low-ranked competitors will get lower rewards (S A(z) < S B(z) for low endowment levels), 
increasing the marginal value of rewards Us . But there are further effects through the competitive response – competitors 
will put more resources into performance and both performance x(z) and its slope x′(z) will rise. Unfortunately these 
multiple changes make finding a global result very difficult as higher performance and thus lower consumption typically 
increases risk aversion, so for many the overall effect will be ambiguous. The poor will definitely become more risk loving, 
as the consumption of the poorest is tied down by the boundary condition (7) which is unchanged. Thus, it is possible 
to obtain the following result: greater inequality of rewards causes the poor to be more risk taking. This is shown both 
in terms of the sign of the second derivative U ′′(z) and in terms of the implied level of absolute risk aversion, AR(z) =
−U ′′(z)/U ′(z).

Proposition 3. Assume A1–A3 and that U ′′
B(z) ≤ 0 on (z, z + ε) for some ε > 0.

(a) Suppose that the distribution of rewards in society A is strictly more dispersed than in B, H A >d H B , and the minimum reward is 
lower sA ≤ sB . Then the poor in A are more risk loving. That is, there will be a ẑ ∈ (z, ̄z] such that U ′′

A(z) > U ′′
B(z) and AR A(z) <

AR B(z) for all z ∈ (z, ̂z).
(b) Suppose that the distribution of initial endowments in society A is strictly more dispersed than in B, G A >d G B , and the minimum 

endowment is lower zA ≤ zB . Then the poor in A are more risk averse. That is, there will be a r̂ ∈ (0, 1] such that U ′′
A(G−1

A (r)) <
U ′′

B(G−1
B (r)) and AR A(G−1

A (r)) > AR B(G−1
B (r)) for all r ∈ (0, ̂r).

7 These assumptions are principally used in obtaining comparative statics results on the level of absolute risk aversion AR(z) and were chosen for 
reasons of plausibility and to generalise Cobb–Douglas and CES preferences. Since DARA implies that low wealth individuals will be the most risk averse, 
these assumptions if anything make the results below more difficult to show.
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See Fig. 1 for an illustration of the first result. In the first panel the reward function S(z) is plotted against wealth. The 
dispersion order implies that A’s reward function S A is everywhere steeper than S B . The second panel illustrates typical 
results on how performance responds to the greater level of competition implied by greater inequality of rewards. While 
there are no such results in this paper, Hopkins and Kornienko (2010) already have shown that greater dispersion of rewards 
induce higher performance and a decrease in utility for most, and sometimes for all, individuals. See also Example 1 below. 
The third panel shows the main result of Proposition 3: higher reward inequality can change the risk attitudes of those at 
the bottom from risk averse to risk taking.

The intuition for the second result is that a greater concentration of endowments makes a tournament more competitive 
as competitors are more evenly matched. Consider, for example, a foot race with a very diverse field. There the fast runners 
will not have to exert themselves too much in order to win the race ahead of their slower rivals. Mathematically, the S ′(z)
term in the expression for risk aversion (8) is equal to g(z)/h(S(z)) so that a lower endowment density g(z) directly leads 
to lower risk taking. Lower ranked agents will also have lower wealth in the more unequal society – this will also make 
them more risk averse, given our DARA-like conditions in Assumptions A1–A3. Further, just as in the previous section, there 
are other factors to consider, because this change in inequality will also change competitive behaviour in the tournament. 
Nonetheless, as BMW supposed, greater dispersion of wealth can lower individuals’ willingness to gamble. Note that as the 
comparison is across endowment distributions with different supports, risk attitudes are compared at constant ranks – a 
method that is discussed at much greater length in Hopkins and Kornienko (2010).

3.2. Cobb–Douglas

In this section, for concreteness we look at Cobb–Douglas preferences, for which closed form solutions for equilibrium 
behaviour and preferences are possible. Suppose U (c, s) = cαsβ . Let γ = β/α. Then,

x′(z) = γ
S ′(z)

S(z)
(z − x) (11)

with again x(z) = 0. This differential equation has an explicit solution, so one can calculate

x(z) = z −
sγ z + ∫ z

z Sγ (t)dt

Sγ (z)
, c(z) =

sγ z + ∫ z
z Sγ (t)dt

Sγ (z)
, U (z) =

⎛
⎜⎝sγ z +

z∫
z

Sγ (t)dt

⎞
⎟⎠

α

.

Thus, with some manipulation,

U ′(z) = αcα−1(z)Sβ(z), U ′′(z) = cα−2(z)Sβ−1(z)
(
βc(z)S ′(z) − α(1 − α)S(z)

)
. (12)

When G(·) = H(·) so that S(z) = z, and given the boundary condition c(z) = z, we have risk taking at the bottom if β >

α(1 − α). That is, the parameter β just has to be not too small relative to α; for example, if α = 1/2 then β must be only 
bigger than 1/4.

Example 1. Suppose rewards are uniform on [ε, 1 − ε] and wealth is uniform on [1, 5] and α = β so that γ = 1. We have 
then

S(z) = ε + 1 − 2ε

4
(z − 1)

and

U (z) =
⎛
⎝ε +

z∫
1

ε + 1 − 2ε

4
(t − 1)dt

⎞
⎠

α

=
(

(z − 1)2 + 2ε(−1 + 6z − z2)

8

)α

Take, for example, α = 0.4. With a relatively equal distribution of rewards/status S B , for example with ε = 0.25, all agents 
are risk averse. However, rewards are more unequal in A with ε = 0.1. Then, U A(z) is convex on [1, 2.44) and is concave 
on (2.44, 5]. See Fig. 1. That is, take an individual with an endowment of about 2.5, then that individual will be risk loving 
with respect to losses and risk averse with respect to gains. Note that A’s equilibrium utility U A(z) is everywhere lower 
than U B(z) and equilibrium performance xA(z) is everywhere higher (xB = (z − 1)/2 and xA = (z2 − 1)/(2z − 1)). We can 
also verify that more dispersed wealth makes agents more risk averse. Keeping rewards dispersed with ε = 0.1 but making 
wealth also more dispersed, so for example wealth is now uniform on [0.5, 5.5], utility will return to being concave at all 
wealth levels.
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4. Reward equality and stable wealth distributions

We have seen that anticipated participation in a tournament can give individuals an incentive to take gambles. BMW, 
following Robson (1992), consider distributions of wealth that in contrast are stable in the sense that given such a distribu-
tion, no agent wishes to gamble and therefore the distribution of wealth does not change. Stable distributions can also be 
seen as clearing the market for gambling. If the initial wealth distribution was not stable, then there would be an incentive 
to gamble until the redistribution of wealth resulting from gambling made it stable.8

Note that there will generally be many wealth distributions that are stable. Thus, BMW focus on the stable wealth 
distribution (which they call the “∗ allocation”) that induces risk neutrality at all levels of wealth.9 Distributions that are 
less dispersed than the stable distribution will induce gambling (something that we formalise below). Thus, this stable 
distribution represents an upper bound on sustainable equality of wealth.10 So, let us call it the most equal stable distribution
or MESD. I start with formal definitions.

Definition 1. A stable wealth distribution is a distribution of wealth G(z) such that, for a given distribution of rewards, 
equilibrium utility U (z) is concave for all z in the support of the distribution G(z).

Definition 2. Consider the set of stable distributions for a fixed average wealth level μ. The most equal stable distribution 
MESD is a stable wealth distribution G∗(z) such that U ′′(z) = 0 for all z in its support.

The first result in this section gives an important reason it should indeed be called the most equal stable distribution. 
Any distribution that is even locally more equal is unstable. In contrast, any distribution such that U ′′(z) is strictly negative 
could be subject to an increase to equality without becoming unstable.

Proposition 4. Any distribution of wealth Ĝ(z) that is locally less dispersed than the MESD G∗(z) is not stable. That is, if ĝ(z) > g∗(z)
on an interval (z1, z2) but ĝ(z) = g∗(z) on [z, z1] then Û ′′(z) > 0 on (z1, z1 + ε) for some ε > 0.

Now, if one sets the expression for U ′′(z) in (8) to zero, this leads to the following differential equation (suppressing 
arguments)

S ′(z) = Uc Ucc

UsUcc − Uc Ucs
= φ(c(z), S(z)) (13)

with boundary condition S(z) = s.11 Using this differential equation (13) and the differential equation (6) for equilibrium 
performance, one can write a new differential equation for equilibrium consumption,

c′(z) = Uc Ucs

Uc Ucs − UsUcc
= ψ(c(z), S(z)). (14)

Given the boundary condition (7) for equilibrium performance, the boundary condition for the above equation will be 
c(z) = z. A solution of the two equations simultaneously will provide the MESD. Specifically, the MESD G∗(z) is defined as 
G∗(z) = H(S∗(z)), where S∗(z) is the solution to the equation (13).

One can draw the following comparative statics result. The MESD moves with the distribution of rewards. If rewards 
become more (less) equal, the minimum level of wealth inequality falls (rises) in the sense of second order stochastic 
dominance.

In what follows, it is assumed that there are different distributions of rewards in societies A and B , H A(s) and H B(s)
respectively. Under each distribution of rewards, we calculate S∗

i (z) for i = A, B , the associated reward function that induces 
risk neutrality at all wealth levels. I find that a greater dispersion in rewards necessitates a greater dispersion in wealth in 
order to maintain risk neutrality. An example is illustrated in Fig. 2.

Proposition 5. Assume that the distribution of rewards H A is more dispersed than H B , H A >d H B , that the minimum reward is lower 
or sA < sB , that the maximum reward is higher s̄A > s̄B , assume the mean reward and mean initial endowments are the same in A
and B, and assume A1–A3. Then, A’s MESD wealth distribution, G∗

A , is more dispersed in terms of second order stochastic dominance 
than the MESD in B, G∗

B .

8 This approach is not entirely satisfactory in that it does not provide an explicit strategic analysis of the decision to gamble. That is, it does not 
specifically analyse the game implied by all players choosing gambles, knowing others are making that choice. However, it is the approach taken in the 
literature following from Robson (1992). Further, a strategic analysis would be technically challenging, though see Cole et al. (2001) and Fang and Noe
(2016) for some work in this direction.

9 They show that marginal utility having a constant value λ, or U ′(z) = Uc(c(z), S(z)) = λ in current notation, is also a solution to the problem of a 
utilitarian social planner.
10 Another reason to focus on this particular stable distribution is given in Ray and Robson (2012) who show that in dynamic model the steady-state 

distribution of wealth will be equivalent to the most equal stable distribution.
11 Results on differentiability and uniqueness of S(z) can be found in the supplementary materials.
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Fig. 2. Illustration of Proposition 5: A’s reward function S A is steeper than S B . To maintain risk neutrality, the MESD in A, G∗
A , must be more dispersed 

than the MESD in B , G∗
B , with minimum wealth zA being lower and maximum wealth z̄A being higher than in B .

This has an important implication. If we consider a sequence of distributions of rewards each progressively more equal 
than the previous, then the corresponding distributions of wealth would also become progressively more equal. Thus, despite 
the earlier results of BMW and Ray and Robson (2012), it is thus possible to sustain an equal society, even in the presence 
of status competition, provided there is an equality in terms of status rewards in society.

Finally, one can combine Propositions 3 and 5 to arrive at the following corollary that is extremely important for under-
standing the empirical implications of these theoretical results. Define the overall wealth distribution to be any combination 
of the initial wealth distribution G(z) and its corresponding MESD G∗(z). For example, the young in society would have 
their initial endowments, whilst the distribution of wealth amongst old, those who have already gambled, is determined 
by the MESD. Then, consider two societies where there is no difference between them in terms of average endowment or 
average reward, but levels of inequality can vary.

Corollary 1.

(a) Take two societies A and B that have the same initial distribution of endowments G(z) but A’s rewards are more dispersed, 
H A >d H B . Hence, the MESD in A is more unequal in terms of second order stochastic dominance by Proposition 5 and there is 
more risk taking in A by Proposition 3. Thus, the cross-society correlation between risk taking and inequality of overall wealth is 
positive.

(b) Take two societies A and B that have the same distribution of rewards H(s) but A’s initial endowments are more dispersed, 
G A >d G B . The MESD in A and B will be the same and there is more risk taking in B by Proposition 3. Thus, the cross-society 
correlation between risk taking and inequality of overall wealth is negative.

Simply put, this suggests that if differences in reward inequality across societies are greater than differences in inequality 
in initial endowments, then risk taking can be more common in societies with greater wealth inequality. But, if this is 
reversed, so that differences in wealth inequality are bigger, then there can be a negative relationship between risk taking 
and wealth inequality across countries.

4.1. Cobb–Douglas

Assume Cobb–Douglas preferences U (c, s) = cαsβ , then the differential equations (13) and (14) become respectively

S ′(z) = α(1 − α)S(z)

βc(z)
; c′(z) = α.

This implies that performance and consumption are linear in wealth, specifically x(z) = (1 − α)(z − z) and c(z) = αz +
(1 − α)z. This in turn can be used to solve for S∗(z):

S∗(z) = A[c(z)](1−α)/β = A(αz + (1 − α)z)(1−α)/β,

where A is a constant of integration. One can check that this implies U (z) = Aβc(z) which is linear as required.

Example 2. Assume that rewards are distributed uniformly on [ε, 1 − ε]. Assume further that α = β = 1/2 (of course, this 
means that the utility function is not strictly concave, but as we will see it makes everything conveniently linear). Then, 
given mean wealth of 1/2, the unique distribution G∗(z) that solves for S∗ is

G∗(z) = (1 − ε)z − ε/2
.

1 − 2ε
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That is, it is uniform on [ε/(2(1 − ε)), (2 − 3ε)/(2(1 − ε))]. We have

S∗(z) = (1 − ε)z + ε/2, U∗(z) = ε/2 + (1 − ε)z√
2(1 − ε)

.

Clearly, a decrease in ε makes the distribution of rewards more dispersed. It will also make the equilibrium distribution 
of wealth G∗(z) more dispersed. Equally, a more equal distribution of rewards, implies a more equal stable distribution of 
wealth. Indeed, as ε approaches 1/2, then both the distribution of rewards and the distribution of wealth become entirely 
concentrated at 1/2.

5. Conclusions

This paper has reexamined the link between inequality and risk taking behaviour. While risk taking is predicted to 
be decreasing with initial wealth inequality, it is also predicted to be increasing with inequality in rewards. I also give 
conditions under which those with low initial wealth, those at the back of the field before the tournament, will be risk 
taking.

The idea that low ranked agents may have an incentive to gamble has an apparent similarity to the idea of “gambling 
for resurrection”, in which agents who are near to bankruptcy have an incentive to gamble because any downside losses 
would be truncated. See, for example, Gollier et al. (1997). However, none of the results in this paper depend on any such 
mechanism. Here agents will take fair bets, even though they will have to suffer the downside in full.12 Clearly, if limited 
liability were a possibility, then the incentive to gamble would be increased.

Should such risk taking be encouraged? This paper has no formal results on welfare. The main reason is that results in 
this direction already exist. As is well known, in tournaments like this all competitors can be made better off by a social 
planner simply imposing the rewards assortatively, which prevents wasteful competition. The implications of this policy for 
risk taking are straightforward: without the tournament there would be no additional competitive incentive to take risk, 
and risk attitudes would be determined by underlying preferences which are assumed risk averse.

A remaining puzzle is what exactly is predicted relationship between inequality and risk taking. This paper shows that 
greater inequality in wealth reduces risk taking but also that greater reward inequality increases it. The results on stable 
wealth distributions provide a condition under which overall relationship between inequality and risk taking will be positive. 
If differences in reward inequality across societies are greater than differences in inequality in initial endowments, then risk 
taking will be greater in societies with greater wealth inequality.

There are particular grounds for hope for empirical work if reward inequality can be separately identified. The current 
model requires a distribution of rewards or status outcomes that is exogenous and independent of the distribution of wealth. 
Marriage arrangements are one example of how rewards could vary in this way. Further, while the underlying causation for 
these differing customs may be economic, such institutions change slowly and most individuals would plausibly take them 
as fixed, and thus an analyst can hope to treat them as exogenous. That is, if long run social arrangements (“culture”) cause 
risk taking that results in inequality in wealth, then there is a hope for meaningful empirical testing. This is a fascinating 
possibility which merits further investigation.

Appendix A

Proof of Proposition 1. This proof follows that of Proposition 1 of Hopkins and Kornienko (2004). A sketch is as follows. 
Given Ucs ≥ 0, best replies are (weakly) increasing in z. Given the tie breaking rule (2), a symmetric equilibrium strategy 
must in fact be strictly increasing. If the equilibrium strategy is strictly increasing then it can be shown to be continuous 
and, furthermore, differentiable. Thus, it satisfies the differential equation (6). This has a unique solution by the fundamental 
theorem of differential equations.

It is also worth emphasising that the first order condition (5) is a maximum (despite the equilibrium utility function U (z)
potentially being convex), as if all others adopt the proposed equilibrium strategy, an agent’s utility is pseudoconcave in x for 
each individual. That is, U (z−x, H−1(F (x))) is increasing in x for x less than the equilibrium choice x(z) and is decreasing in 
x for x greater than x(z). That is, utility U (z − x, H−1(F (x))) is pseudoconcave in performance x. To show this, if all agents 
adopt a strictly increasing strategy x(z) then an individual’s utility can be written as U (z − x, H−1(F (x))) and ∂U/∂x =
−Uc(z − x, H−1(F (x))) + Us(z − x, H−1(F (x))) f (x)/h(·). Then, one has ∂2U/∂x∂z = −Ucc + Ucs f (x)/h(·) > 0. Take x̆ < x(z)
and let z̆ be such that x(z̆) = x̆, so that z̆ < z. Hence, for any x̆ < x(z), dU (z− x̆, H−1(F (x̆)))/dx ≥ dU (z̆− x̆, H−1(F (x̆)))/dx = 0. 
Thus, utility is increasing in x for x below the equilibrium choice x(z). A similar argument can establish that it is decreasing 
in x for x above x(z).

Finally, the boundary condition (7) must hold as the agent with lowest wealth z in a symmetric equilibrium has status 
S(z) = s and thus chooses performance x to maximise U (z − x, s). Clearly, the optimal choice of performance for the agent 
with wealth z is zero. �
12 It is true that the reward level cannot fall below the minimum s and in that sense there is a form of limited liability. The main results here do not 

depend on this.
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Proof of Proposition 2. If G(·) = H(·) then S(z) = z and S ′(z) = 1. Consider any point ẑ such that U ′′(ẑ) = 0. Then, in 
the additively separable case, applying S ′(z) = 1 to (8), one has U ′′(ẑ) = Ucc(1 − x′(ẑ)) = 0. Thus, it holds that 1 − x′(ẑ) =
c′(ẑ) = 0. If U ′′′(ẑ) < 0, then there can only be a single crossing of the zero line by U ′′(z) and from above. One has U ′′′(ẑ) =
Uccc′′(ẑ) given c′(ẑ) = 0. Given c′(ẑ) = 0 and U ′′(ẑ) = 0, one has c′′(ẑ) = −Uss/Uc > 0 so that Uccc′′(ẑ) < 0. The result is 
established.

Turning to the Cobb–Douglas case, one can see that after some calculation that U ′′(z) = 0 if c(z)/z = α(1 − α)/β . One 
can then calculate U ′′′(ẑ), given U ′′(ẑ) = 0, as cα−2(ẑ)ẑβ−1(βc′(ẑ) − α(1 − α)). Further, if U ′′(ẑ) = 0, then c′(ẑ) = 1 − β/α ×
c(z)/z = α, so that U ′′′(ẑ) < 0 if α + β < 1, which holds by assumption because U (c, s) = cαsβ is assumed concave.

Finally, given the initial condition that x(z) = 0, then one has

U ′′(z+) = Ucc(z, z)

(
1 − Us(z, z)

Uc(z, z)

)
+ Ucs(z, z) = Ucs(z, z) > 0,

with the last step following from the symmetry assumption. �
Proof of Proposition 3. One has from (7) that c(z) = z, so that from (8) it follows that the right derivative of U ′′(z) at z is

U ′′(z+) = Ucc(z, s)(1 − x′(z+)) + Ucs(z, s)S ′(z+) (15)

and from (6) that the right derivative of x(z) at z is

x′(z+) = Us(z, s)S ′(z)

Uc(z, s)
. (16)

It can be calculated that

∂x′(z+)

∂s
= UssUc − UcsUs

U 2
c

S ′(z+) < 0. (17)

This implies that x′(z+) is monotone in s.
(a) First, consider the difference in dispersion of rewards. The second derivative (from the right) of the utility function 

for the poorest agent is U ′′(z+) = Ucc(z, s)(1 − x′(z+)) + Ucs(z, s)S ′(z+) and the first is U ′(z+) = Uc(z, s). Because c(z) = z
and for the moment holding S(z) = s constant, the only way that either U ′′(z+) or AR(z+), i.e. AR(z) evaluated at z using 
right derivatives, can change is in terms of S ′ and x′ . The dispersive order, by its definition (10), implies that hA(H−1

A (r)) <
hB(H−1

B (r)) for r ∈ [0, 1]. Now, S ′(z) = g(z)/h(S(z)) = g(z)/h(H−1(r)). Thus, given g(z) is the same, the dispersive order 
implies that S ′

A(z) > S ′
B(z) for all z ∈ [z, ̄z]. It is easy to verify that if S ′(z+) is higher then so will x′(z+) as given in (16). 

Thus, both S ′(z+) and (z+) are also higher leading to an increase in U ′′(z+) and a decrease in AR(z+), holding s constant.
Second, consider the difference in s. One has, keeping S ′(z+) constant,

∂U ′′(z+)

∂s
= Uccs(1 − x′(z+)) + Ucss S ′(z+) − ∂x′(z+)

∂s
Ucc,

which, given A1, is certainly negative where x′(z+) < 1. From (17), x′(z+) is monotone in s. Thus, as noted, there must be a 
value s0 such that if s = s0 then x′(z+) = 1. If, as assumed, sB is such that U ′′(z+) ≤ 0, then sB > s0 and x′(z+) ≤ 1. If also 
sA > s0, then it follows that in A U ′′(z+) will be greater than in B , as U ′′(z+) is monotone in s on (s0, sB). If sA ≤ s0, then 
U ′′(z+) is greater in A. Turning to AR(z), one has suppressing arguments,

∂ AR(z+)

∂s
= −

(
(1 − x′)Uccs + Uccs S ′ − Ucc∂x′/∂s

)
Uc − Ucc

(
Ucc(1 − x′) + Ucs S ′)

U 2
c

, (18)

which is positive given assumption that U ′′(z+) < 0 so that x′ ≤ 1, the earlier finding that ∂x′/∂s < 0, and A1. Thus, the 
effect on U ′′(z+) and AR(z+) of a decrease in s is positive and negative respectively.

(b) We again consider U ′′(z+) as given in (15) and show that U ′′(z+
A ) < U ′′(z+

B ). First, by the dispersive order we have 
g A(zA) = g A(G−1

A (0)) < gB(G−1
B (0)) and so S ′(z+

A ) = g A(zA)/h(s) < gB(zB)/h(s) = S ′(z+
B ) and thus the greater dispersion in 

itself decreases U ′′(z+). Second, we have to consider the effect of the change in wealth as by assumption z A ≤ zB . The effect 
from wealth will also be negative if the following holds

Uccc(1 − x′(z+)) + Uccs S ′(z+) − ∂x′(z+)

∂z
Ucc > 0 (19)

From (16) it can be calculated that, holding S ′(z+) constant,

∂x′(z+)

∂z
= UscUc − UccUs

2
S ′(z+) > 0. (20)
Uc
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However, the possibility that Uccs < 0 means that the inequality (19) may not hold. But if U ′′(z+) ≤ 0 then x′(z+) < 1 and 
S ′(z+) ≤ −(1 − x′(z+))Ucc/Ucs . Thus, the left hand side of (19) is greater or equal than

(1 − x′(z+))(Uccc − Uccs
Ucc

Ucs
) − ∂x′(z+)

∂z
Ucc .

Given A3, it follows that Uccc − UccsUcc/Ucs ≥ 0 and the inequality (19) holds. Thus, both the effect from lower wealth and 
higher dispersion lead U ′′(z+) to decrease. U ′′

A(G−1
A (r)) will be lower on an interval (0, ̂r) by continuity. Turning to AR(z), 

we have suppressing arguments

∂ AR(z+)

∂z
= (x′ − 1)(Uccc Uc − U 2

cc) + UcUcc∂x′/∂z + S ′(Ucc Ucs − UccsUc)

U 2
c

, (21)

which is negative given (20), and A2. Thus, the decrease in z raises AR(z+). �
Proof of Proposition 4. Second, start with a distribution of wealth G∗(z) such that U ′′(z) = 0 on its support [z, ̄z]. Then 
suppose there is a local decrease in dispersion of wealth so that ĝ(z) > g∗(z) on an interval (z1, z2) but ĝ(z) = g∗(z) on 
[z, z1]. Thus because g∗(z) is unchanged on [z, z1] we have x̂(z1) = x(z1) and Û ′′(z1) = U ′′(z1) = 0. However, the increase 
in ĝ on (z1, z2) requires (generically) that ĝ′(z1) = Ĝ ′′(z1) > G∗′′(z1). Since by definition S(z) = H−1(G(z)), and H(s) is 
unchanged, we have Ŝ ′′(z1) > S ′′(z1). Differentiating x′(z) as given in (6), one obtains that x′′(z) is increasing in S ′′(z) (but 
its other arguments x′(z1), S ′(z1), S(z1) and x(z1) are unchanged). Thus, x̂′′(z1) > x′′(z1). Differentiating U ′′(z) a further 
time, it is easy to verify that U ′′′(z) is increasing in both x′′(z) and S ′′(z) – again its other arguments are unchanged. So we 
have Û ′′′(z1) > U ′′′(z1) = 0. So Û ′′(z) > 0 on (z1, z1 + ε) for some ε > 0. So, as claimed, the wealth distribution Ĝ(z) is not 
stable. �
Proof of Proposition 5. By the dispersive order we have hA(H−1

A (r)) < hB(H−1
B (r)). Together with our other assumptions on 

minimum and maximum rewards, it implies that H A(s) and H B(s) are single crossing, with a unique reward ŝ such that 
H A(ŝ) = H B(ŝ) = r̂.

I first establish that z A < zB , the minimum MESD wealth level is lower in A. Suppose not so that zA ≥ zB . Then as 
solutions (c(z), S(z)) to the differential equation system cannot cross on the (c, S) plane, given our initial conditions that 
c A(zA) = zA ≥ zB = cB(zB) we have c A > cB for a fixed level of S . Thus, given ∂φ(c, s)/∂c < 0, as shown in (22), we would 
have S ′

A(z) < S ′
B(z) at any potential point of crossing of S A(z) and S B(z) (graphed alone as a function of z). Since we have 

S A(zA) = sA < sB = S B(zB), S A would never in fact cross S B so that S A(z) < S B(z) everywhere.
If indeed S A(z) < S B(z) everywhere, I show that the implied wealth distributions, G∗

A(z) = H A(S A(z)) and G∗
B(z) =

H B(S B(z)) do not have the same mean, which is a contradiction. We look at the inverse distribution functions G−1
i (r) on 

(0, ̂r). Since we have G−1
A (0) = zA ≥ zB = G−1

B (0), at the first crossing G−1
A (r) must cross G−1

B (z) from above, but, because 
S ′(z) = g(z)/h(S(z)), setting z = G−1(r), we have from (13),

gi(G−1
i (r)) = hi(H−1

i (r))φ(c(G−1
i (r)), H−1

i (r))

for i = {a, p}. Now, hA(·) < hB(·) by the dispersive order. Further,

∂φ(c, s)

∂c
= −Uc UcsU 2

cc + U 3
ccUs − U 2

c (Uccc Ucs − Ucc Uccs)

(UsUcc − UcUcs)2
< 0, (22)

(this follows from the assumptions A1 and A3) but also we have from A1,

∂φ(c, s)

∂s
= U 2

c (UcssUcc − UccsUcs) + U 2
cc(UsUcs − Uc Uss)

(UsUcc − UcUcs)2
> 0.

Now, because we have c A > cN and for r ∈ (0, ̂r), H−1
A (r) < H−1

B (r), it follows that g A(G−1
A (r)) < gB(G−1

B (r)). But the slope of 
G−1

i (r) is 1/gi(G−1
i (r)). So a G−1

A (r) crossing G−1
B (z) from above is not possible. Finally, for r ≥ r̂ we have, H A(s) < H B(s), so 

that given S A(z) < S B(z) we have H A(S A(z)) = G∗
A(z) < G∗

B(z) = H B(S B(z)). So, if S A(z) < S B(z) everywhere, then G−1
A (r) >

G−1
B (r) and G∗

A(z) < G∗
B(z) everywhere, and the two distributions cannot have the same mean.

So, we have zA < zB , the minimum MESD wealth level is lower in A. Given that solutions (c(z), S(z)) to the differential 
equation system cannot cross on the (c, S) plane, given our initial conditions c A(zA) = zA , S A(zA) = sA and cB(zB) = zB , 
S B(zB) = sB respectively, one has either c A < cB for a given level of S or c A > cB . If the latter, then by the above argu-
ment S A(z) and S B(z) would never cross, so it must be that c A < cB at a fixed level of s. Turning to solutions S A(z) and 
S B(z) graphed as a function of z alone, points of crossing of S A(z) and S B(z) are possible. However, because cB > c A and 
φ(c, s)/∂c < 0 (as shown previously), then S ′

A(z) > S ′
B(z) at any such crossing. Thus, there is at most one crossing where 

S A(z) = S B(z). There must be a crossing by the above argument that if S A(z) < S B(z) everywhere, the implied wealth 
distributions cannot have the same mean. Hence there is a unique crossing.
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But this also implies that the inverses of S A(z) and S B(z) are also single crossing. That is, the two functions 
G−1

A (H A(s)) = S−1
A (s) and G−1

B (H B(s)) = S−1
B (s) are single crossing, with G−1

A (H A(ŝ)) = ẑ = G−1
B (H B(ŝ)). But if the inverse of 

the distribution functions are single-crossing then so are distribution functions G∗
A(z) and G∗

B(z) with clearly G∗
A(z) > G∗

B(z)
on (zA, ̂z) and G∗

A(z) < G∗
B(z) on (ẑ, ̄zA). Single crossing of this form with an equal mean implies second order stochastic 

dominance (Wolfstetter, 1999, Proposition 4.6). �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.geb.2017.11.007.
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