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1 Introduction

The importance of auctions in modern economic theory is enormous. In this paper, we
suggest a different methodology for the analysis of auctions of the first price and all
pay auctions. This method gives provides a new way of looking at auctions in both the
symmetric and asymmetric cases. The standard approach to auctions is drawn from the
theory of Bayesian games where strategies are defined as mappings from types to actions.
In the case of auctions, this means that bidders have strategies which map values or
signals of values to bids. Following Hopkins and Kornienko (2007b), we propose that
instead that bidding functions are written not as functions of values but as functions of
the rank or quantile of the bidder’s value in the distribution from which it was drawn.1

We show that this new method can be simpler than the old, and thus allows us to
derive clearer and less ambiguous results for both first price and all pay formats. Specif-
ically, in an asymmetric setting, if one bidder has a stochastically higher distribution of
values then her rival, then her bidding function in terms of rank will always be higher
than her rival’s and this is equivalent to the distribution of her bids being stochasti-
cally higher. In a symmetric setting, we have the comparative static result that, given
a stochastically higher distribution of values, this will lead to a stochastically higher
distribution of bids. Finally, in asymmetric auctions, it is usually assumed that one
bidder has an advantage, because he has a higher average value for the object for sale.
However, we find that rank based methods can also be used to look at the case where
one bidder has more precise information about her rival’s possible valuation than her
rival has about her’s.

To be clear, suppose bidders have values drawn from some distribution G(v), then a
bidder with value v̂ has rank (also known as the quantile) r̂ = G(v̂). If, as is normally
assumed, G is strictly increasing, then there is a one-to-one relation between rank and
value. So, it seems equally valid to consider this bidder’s type as being r̂ as much as it
would be v̂.2

The advantage of this approach is threefold.

1. It deals easily with different supports. Suppose we want to compare the bidding
behaviour of two bidders {s, w} with values drawn from two different distributions
that have supports on [0,2] and [0,1] respectively. Does s bid more aggressively
than w? It is difficult to say using traditional methods as w’s bidding function
βw(v) is defined only on [0,1] and therefore cannot be compared with βs(v) on

1This method has previously been used in first price auctions as an intermediate step in proving
existence and uniqueness of equilibrium - see Lebrun (1999, p130). Recently, independently, Kirkegaard
(2006) proposed an alternative method for the analysis of first price and all pay auctions based on the
probability of winning rather than rank.

2In fact, the standard numerical method to generate a random draw from a distribution G(v) is
first to make a random draw r from [0,1] and then to find the value by setting v = G−1(r). That is,
rank is decided first and value only second.
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(1,2]. In contrast, using the rank-based methodology, we have bidding functions
bs(r) and bw(r) that are both defined on [0,1] alone and so are directly comparable.

2. It requires weaker conditions. We show that it possible to order the bidding behav-
iour of different bidders using weaker assumptions than under classical methods.
That is, simple stochastic dominance is sufficient rather than refinements such as
reverse hazard rate dominance which have been necessary up to now.

3. It gives clearer results. In several cases, standard methods give ambiguous results.
For example, in first price auctions where there is stochastic dominance but not
reverse hazard rate dominance bidding functions can cross. In asymmetric all pay
auctions, bid functions always cross even if one bidder is much stronger than the
other. In contrast, we show that, even in these situations, rank based methods
easily order different bidders’ behaviour.

I should, however, make it clear anything proven using standard techniques will
necessarily also hold when working with the rank-based approach. This is because
working in terms of rank does not change the underlying game, the set of players or
bidders, their strategy sets or payoffs. My argument is that rank indexing often allows
existing results to be seen more clearly and because of that, it also allows some new
results to be obtained very directly. In particular, while this paper’s results on first
price auctions are implicit in the analysis of Lebrun (1998, 1999) and Maskin and Riley
(2000a), the results on all pay auctions and on the effect of more precise information
are new.

2 Symmetric Auctions

In this section we will show rank based methods can aid the analysis of symmetric
auctions, first price or all pay, with independent values, with or without risk aversion.
We consider what happens when the distribution of values changes and find that a
stochastically higher distribution of values will lead to uniformly higher bidding in terms
of rank and a stochastically higher distribution of bids. This may seem unsurprising.
However, this has not been shown using existing methods, and indeed we give examples
where in the same circumstances writing bidding functions in terms of values gives
ambiguous results.

In what follows, we consider auctions with n bidders. Each player has a valuation
v drawn independently from a common distribution G(v), which is twice differentiable
with strictly positive density g(v) on its support [v, v̄]. An agent of valuation v has
utility u(v− b) is she wins with a bid of b. She has utility u(−Ib) if she loses, with I an
indicator function being 0 in first price auctions and 1 in all pay auctions. We assume
that u is strictly increasing and twice differentiable with u00 ≤ 0. We use the standard
normalisation u(0) = 0.
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The innovation is that we will consider bidding strategies as a function of each
player’s rank not her valuation. The rank r of a bidder is equal to the rank of her
valuation in the distribution of valuations, or r = G(v). Equally, we can define V (r) =
G−1(r), which gives a bidder’s valuation as a function of her rank. Conventionally
a bidding function would be β(v), a mapping from valuation to bids. Here, we will
consider equilibrium bidding strategies of the form b(r). The important point is that
as rank by definition runs from 0 to 1, the domain of the bidding function is [0, 1], that
is b(r) : [0, 1]→ IR, whatever the distribution of values.

One other important consideration is the following. There is a direct link between
the bidding function defined in terms of rank b(r) and the resulting distribution of bids
F (b).

Lemma 1 The distribution of bids F (b) generated by a strictly increasing bidding func-
tion in terms of rank b(r) is equal to the inverse of the bidding function. That is,
F (b) = b−1(b) or b(r) = F−1(r).

Proof: Let B be the random variable representing a random draw from the distribution
of bids generated by the bidding function b(r). Then, F (b) = Pr[B ≤ b] = Pr[r ≤
b−1(b)] = b−1(b).

This leads to an important corollary. A bidding function generates a stochastically
higher distribution of bids if and only if the bidding functions in terms of rank are
ordered.

Corollary 1 Let Fi(b) be the distribution of bids generated by bidding function bi(r)
for i = s, w. Then Fs(b) ≤ Fw(b) everywhere if and only if bs(r) ≥ bw(r) on [0,1].

2.1 First Price

We consider a standard n bidder first price auction. We look for a symmetric equilibrium
in which all bidders use the same strategy b(r). Suppose a bidder bids according to the
proposed equilibrium strategy then another bidder of rank r who bids as though she
had rank r̂ or b(r̂) would win with probability Pr[b(r̂) > b(r)] = Pr[r̂ > b−1(b(r))] =
Pr[r̂ > r] = r̂. Facing n− 1 other bidders who bid using the strategy b(r), that bidder
would then have expected utility

r̂n−1u(V (r)− b(r̂)) (1)

For the bidder not to want to bid b(r̂) in place of b(r), the following first order condition
must hold

(n− 1)r̂n−2u(V (r)− b(r̂))− b0(r̂)
¡
r̂n−1u0(V (r)− b(r̂))

¢
= 0 (2)
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For a symmetric equilibrium, we set r̂ equal to r. Rearranging this gives us the fol-
lowing differential equation, the solution to which constitutes a symmetric equilibrium:

b0(r) =
(n− 1)

r

u(V (r)− b)

u0(V (r)− b)
=
(n− 1)

r
ψ(V (r), b) (3)

with boundary condition b(0) = V (0).3 In the case of risk neutrality, this differential
equation has the explicit solution

b(r) = V (r)−
R r
0
tn−1 dV (t)

rn−1
(4)

How does this compare to the standard approach? Let β(v) be the equilibrium
bidding function in terms of values. Note that the two bidding functions are linked in
the following way: β(V (r)) = b(r) or equivalently β(v) = b(G(v)). That is, to convert
from values to rank, replace v with V (r); to convert from rank to values, replace r
with G(v). Furthermore, we can regain the standard differential equation in terms of
valuations through the relation β0(v) = dβ/dv = db/dr · dr/dv = b0(r)g(v). That is,

β0(v) = (n− 1) g(v)
G(v)

u(v − β)

u0(v − β)
= (n− 1) g(v)

G(v)
ψ(v, β) (5)

with boundary condition β(v) = v.

The important point is that if we compare (3) and (5) is that the density g(v)
is absent in (3) and indeed the distribution of values only enters through the function
V (r) = G−1(r). In contrast, in the traditional approach the bidding function will depend
on g(v)/G(v) which is known as the reverse hazard ratio. Thus, in order to rank bids
and to do comparative statics exercises typically one needs to use the reverse hazard rate
order which is a stronger condition than stochastic dominance (see, for example, Lebrun
(1998), Krishna (2002); Maskin and Riley (2000a) call a similar property “conditional
stochastic dominance”).

Working in terms of rank makes the analysis of changes in the distribution of valu-
ations on bidding behaviour much easier. In particular, the reverse hazard rate order is
not needed, rather simple stochastic dominance is sufficient to order bidding functions
and revenue.

Proposition 1 Let GA(v) and GB(v) be two distributions of values with differentiable
inverse functions Vi(r) = G−1i (r) for i = A,B such that VA(r) > VB(r) for all r ∈ (0, 1)
(which implies GA stochastically dominates GB). There is a unique equilibrium bidding
function bi(r) that solves the differential equation (3) under distribution Gi for i = A,B.
Furthermore, bA(r) > bB(r) for all r ∈ (0, 1) and FA(b) stochastically dominates FB(b).
Expected revenue is strictly higher under distribution A.

3Strictly speaking, the boundary condition is that limr→0 b(r) = V (0) with the bidder with the
lowest valuation being indifferent over all bids in the range [0, V (0)] as in symmetric equilibrium he
never wins. However, it simplifies the analysis to concentrate on the case where in fact b(0) = V (0)
without any great loss in generality.
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Proof: Existence and uniqueness carry over from the standard results (see, for example,
Maskin and Riley (2000b)) under value indexing as whether you consider values or
ranks, it is the same game and has the same equilibria. Then, note that as ψ(v, b) =
u(v − b)/u0(v − b),

dψ(v, b)

dv
=
(u0(·))2 − u00(·)u(·)

(u0(·))2 > 0.

Hence, if there is any point of crossing of bA(r) and bB(r) at some r̃ ∈ (0, 1), as
VA(r̃) > VB(r̃) then b0A(r̃) > b0B(r̃). Therefore, bA(r) can only cross bB(r) from be-
low and there can be only one such crossing. Now, if VA(0) > VB(0), the lowest value
under distribution A is higher than the lowest under B, then by the boundary condition
bA(0) > bB(0) and we are done. If VA(0) = VB(0) (VA(0) < VB(0) is not consis-
tent with our assumption that distribution A is stochastically higher than B) and thus
bA(0) = bB(0), given bA and bB can cross only once, then our result can only fail if
bB(r) ≥ bA(r) on the interval [0, r̃] for some r̃ > 0. But as dψ/db = −dψ/dv < 0, and
as VA(r) > VB(r) and bB(r) ≥ bA(r) on (0, r̃), we must have b0A(r) > b0B(r) on that
interval. Given bA(0) = bB(0), this would imply that bA(r) > bB(r) on (0, r̃) which
is a contradiction. We have shown that bA(r) > bB(r) on (0, 1). It then follows that
FA(b) stochastically dominates FB(b) from Lemma 1. Expected revenue is equal to the
expectation of the n-th order statistic of the distribution of bids. Stochastic dominance
implies that the order statistics of distributions FA(b) and FB(b) are also stochastically
ordered (see, for example, Krishna (2002, p266)) and the result follows.

This result does not hold under the traditional case of looking at bidding functions
in terms of values as the next example shows. The point is that stochastic dominance,
as opposed to reverse hazard rate dominance, is not sufficient to order bidding functions
in terms of values. Here we give an example where there is stochastic dominance but
the higher distribution gives a lower bidding function in terms of values. Of course, by
Proposition 1, by moving to ranks, we can resolve this ambiguity.

Example 1 Let GA(v) = 3v − 2v2 which has support on [0, 0.5] and GB(v) = 3v −
v2 with support on [0, 0.382] (this is drawn from Maskin and Riley (2000a)). Then
GA(v) ≤ GB(v) and so GA stochastically dominates GB. However, GA does not reverse
hazard rate dominate GB as GA(v)/GB(v) is actually decreasing on [0,0.382]. For the
risk neutral case, it can be calculated that βA(v) < βB(v) on [0, 0.382] where βi is
the bidding function corresponding to distribution Gi. That is, the higher distribution
generates lower bids for a given valuation. Of course, we can’t compare the two bidding
functions on the interval (0.382,0.5] as βB(v) is not defined there. And it is not clear
which distribution generates higher revenue.

But if we look at the same problem in terms of rank, things are much clearer. First,
by Proposition 1, bA(r) > bB(r) for all r ∈ (0, 1), the stochastically higher distribution
gives higher bids for a given rank. Second, equally by Proposition 1, the distribution
of bids is stochastically higher under GA than under GB and so revenue is definitely
higher.
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2.2 All Pay

We now consider all pay auctions and find that the contrast between rank-indexing
and traditional methods is even greater. As with first price auctions, ordering bidding
functions in terms of rank is straightforward. However, no matter what stochastic order
is used, ordering bidding functions in terms of value is not possible.

Again if all bidders but one bid according to the smooth increasing bidding function
b(r) and the other bids b(r̂), that bidder expects utility equal to

r̂n−1u(V (r)− b(r̂)) + (1− r̂n−1)u(−b(r̂)) (6)

Differentiating with respect to r̂ gives us the first order condition

(n− 1)r̂n−2 (u(V (r)− b)− u(−b))− b0(r̂)
¡
r̂n−1u0(V (r)− b) + (1− r̂n−1)u0(−b)

¢
= 0
(7)

Setting r̂ equal to r and rearranging gives us the differential equation

b0(r) =
(n− 1)rn−2 (u(V (r)− b)− u(−b))
rn−1u0(V (r)− b) + (1− rn−1)u0(−b) = (n− 1)r

n−2γ(r, V (r), b) (8)

with the boundary condition in this case b(0) = 0. Again, in the case of risk neutrality,
there is an explicit solution

b(r) = V (r)rn−1 −
Z r

0

tn−1 dV (t) (9)

We can again compare this with the corresponding differential equation in terms of
values:

β0(v) =
(n− 1)g(v)G(v)n−2 (u(v − β)− u(−β))
G(v)n−1u0(v − β) + (1−G(v)n−1)u0(−β) = (n− 1)g(v)G(v)

n−2γ(G(v), v, β)

(10)

We show again that using rank-based methods, simple stochastic dominance is suf-
ficient to order bidding behaviour.

Proposition 2 Let GA(v) and GB(v) be two distributions of values with differentiable
inverse functions Vi(r) = G−1i (r) for i = A,B such that VA(r) > VB(r) for all r ∈ (0, 1)
(which implies GA stochastically dominates GB). Then, there is a unique equilibrium
bidding function bi(r) that solves the differential equation (8) under distribution Gi

for i = A,B. Furthermore, bA(r) > bB(r) for all r ∈ (0, 1) and FA(b) stochastically
dominates FB(b). Expected revenue is strictly higher under distribution A.

Proof: Existence and uniqueness are standard (see Amann and Leininger (1996)).
It is not difficult to establish that, for the function γ(r, v, b) as given in (8), it holds
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that ∂γ(r, v, b)/∂v > 0 and that ∂γ(r, v, b)/∂b < 0. The proof then follows that of
Proposition 1.

Note that in all-pay auctions, the contrast in behaviour of bidding functions in terms
of values and rank is much greater. In particular, even using the strongest stochastic
order, it is impossible to rank bidding functions in terms of values. This is because,
in contrast with bidding functions in terms of rank, the bidding functions in terms of
values cross, as we see in this example.

Example 2 Suppose GA(v) = v2 and GB(v) = v then GA stochastically dominates
and reverse hazard rate dominates GB. However, if there are two risk neutral bidders
the bidding functions for the all pay auction in terms of values are βA(v) = 2v3/3
and βB(v) = v2/2 which cross at v = 3/4. The stochastically higher distribution
induces lower bids for a given value at low values, but higher bids at high values. But
by Proposition 2, it must be different in terms of rank. Indeed, the bidding functions
in terms of rank are bA(r) = 2r3/2/3 and bB(r) = r2/2. Thus, the bidding function
corresponding to the stochastically higher distribution is always higher, that is, bA(r) >
bB(r) on (0, 1].

We can show that the crossing behaviour in the example for bidding in terms of
values generalises. We impose the strongest known refinement of stochastic dominance,
likelihood ratio dominance, which implies both reversed hazard ratio dominance and
stochastic dominance (again, see Krishna (2002)). Yet, the bidding functions in terms
of values cross.

Proposition 3 Suppose there are two distributions of values GA(v) and GB(v) with
the same support [v, v̄] such that GA(v) likelihood ratio dominates GB(v). Then the
corresponding equilibrium bidding functions in terms of values for the all pay auction
βA(v) and βB(v) cross at least once on (v, v̄) with βB(v) > βA(v) on the interval (v, v̂)
where v̂ is the unique point in (v, v̄) such that gA(v) = gB(v).

Proof: This is Corollary 4 in Hopkins and Kornienko (2007a).

This result is illustrative. There are two simple extensions which we do not give
here. For simplicity we have assumed a common support, but similar results hold for
differing supports. Furthermore, in the case of risk neutrality, it is possible to show
that there is exactly one crossing with βA(v) > βB(v) for high values.

3 Asymmetric Auctions

In this section, we consider a two bidder first price auction, where one bidder is
“stronger” than the other. We show that again rank-based methods can be used to
rank bidding functions under weaker conditions than in traditional analysis.
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There are two bidders, strong and weak {s, w}. In this section, we assume that they
are risk neutral. The strong bidder has values distributed according to Gs(v) on [vs, v̄s]
and the weak according to Gw(v) on [vw, v̄w] with vs ≥ vw and v̄s ≥ v̄w. Let Fs(b) give
the distribution of bids by the strong bidder, Fw(b) by the weak. In equilibrium, they
have the same maximum bid b̄.4

Note that if the weak bidder bids according to a strictly increasing function bw(r)
then the probability that the strong bidder wins with a bid bs would be

Pr[bs > bw(r)] = Pr[b
−1
w (bs) > r] = b−1w (bs)

This relationship will make it more convenient to work with inverse bid functions. This
is standard in the literature. However, the difference here is that, given Lemma 1,
the inverse bidding function is equal to the distribution function of bids. That is,
b−1w (bs) = Fw(bs).

3.1 First Price

First, consider the first price auction. If the strong bidder bids bs when the weak bidder
bids according to the strategy bw(r), the strong bidder has expected utility

b−1w (bs)(Vs(r)− bs) = Fw(bs)(Vs(r)− bs) (11)

Differentiating with respect to bs, one obtains a first order condition

F 0
w(bs)(Vs(r)− bs))− Fw(bs) = 0

If we look at the weak bidder’s problem, we can obtain a similar differential equation
from her first order condition. Putting them together we have these simultaneous
differential equations in b

F 0
s(b) =

Fs(b)

Vw(Fw(b))− b
; F 0

w(b) =
Fw(b)

Vs(Fs(b))− b
(12)

The boundary conditions if vw = vs are Fs(b) = Fw(b) = 0 with b = vw. If vw < vs,
then Fw(b) = Gw(b) and b = max argmaxb(vs − b)Fw(b). That is, in the second case,
the support of winning bids is [b, b̄]. The weaker bidder bids her value when she has a
value in [vw, b] but never wins. The value of b is set by the strong bidder’s best response
conditional on having the value vs and given the weak bidder’s behaviour (see Maskin
and Riley (2000a)).

We can show that if the strong bidder has a stochastically higher distribution of
values then her bidding function in terms of rank is always higher than that of the weak
bidder. This implies that her distribution of bids is stochastically higher. Note that the

4See Maskin and Riley (2000a).
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result that stochastically higher distribution of values implies a stochastically higher
distribution of bids has already been established by Lebrun (1998, 1999) and Maskin
and Riley (2000a). However, to order bidding functions in terms of values, this previous
work needs to use the stronger assumption of reverse hazard rate dominance.

Proposition 4 Suppose Vs(r) > Vw(r) on (0, 1), equivalently Gs(v) < Gw(v) on (vw, v̄s)
and so Gs stochastically dominates Gw. Then bs(r) > bw(r) on (0,1) and Fs(b) < Fw(b)
on (b, b̄) so that Fs(b) stochastically dominates Fw(b).

Proof: Since it is easier to work with the inverse bidding functions, we show that
Fs(b) < Fw(b) on (b, b̄). Suppose there is a point r̂ ∈ (0, 1) such that the two bidding
functions cross, that is, bs(r̂) = bw(r̂) = b̂. This implies also that Fs(b̂) = Fw(b̂) = r̂.
At such a point, from (12) we have

F 0
s(b̂) =

r̂

Vw(r̂)− b̂
>

r̂

Vs(r̂)− b̂
= F 0

w(b̂) (13)

That is, at any crossing point of the inverse bidding functions (equivalently the distri-
bution functions of bids) Fs(b) is steeper. Hence, there can only be one such crossing.
Thus, our claim fails if there is such a crossing or if Fs(b) ≥ Fw(b) everywhere. In
either case, it must be that Fs(b) > Fw(b) on some interval (b̃, b̄) for some b̃ ≥ b (given
F 0
s > F 0

w at any point of crossing, we can rule out equality between Fs and Fw). So it
must be that Vs(Fs(b)) > Vw(Fw(b)) on that interval. It follows from (12) that we have
F 0
s(b) > F 0

w(b) on [b̃, b̄]. Given Fs(b̃) = Fw(b̃), this would imply Fs(b̄) > Fw(b̄), which is
not possible.

Note that this apparently completely reverses the results obtained using value-based
methods. Here, we have the stronger bidder bidding more than the weaker bidder at
each rank. However, under the traditional approach and under the stronger assumption
of the reverse hazard rate order, the weaker bidder bids more for a given value. Let us
see a concrete example of this.

Example 3 This example is from Krishna (2002, pp49-51). The strong bidder’s value
is distributed uniformly on [0, 4/3], the weak’s uniformly on [0, 4/5]. The equilibrium
bidding functions in terms of values are βs(v) = (−1 +

√
1 + v2)/v and βw(v) = (1 −√

1− v2)/v and βw(v) > βs(v) on the intersection of their support, that is (0, 4/5].
That is, in terms of values, the weaker bidder will bid more than the strong bidder.

However, when we move to ranks, we see a different picture. We have bs(r) =
(−3+

√
9 + 16r2)/(4r) and bw(r) = (5−

√
25− 16r2)/(4r) and bs(r) > bw(r) on (0, 1).

That is, for a given rank in each’s distribution, the strong bidder bids more. This is
illustrated in Figure 1.

Note, however, that in both cases we are talking about the same, unique equilibrium.
The use of rank-based methods is way of looking at existing models in a new light.
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rank r

bidbid

values v 0 1

bs(r)

bw(r)βs(v)

βw(v)

Figure 1: Which bidder is the more aggressive? In terms of values, the bidding function
of the strong bidder βs(v) is less than the bidding function of the weak bidder βw(v). But
this relation is reversed when we look at bidding in terms of ranks where bs(r) > bw(r).

Finally, rank based methods again give clear answers where value-based results are
ambiguous.

Example 4 Let us take the two distributions from Example 1, so that Gs(v) = 3v−2v2
which has support on [0, 0.5] and Gw(v) = 3v−v2 with support on [0, 0.382]. As Maskin
and Riley (2000a) point out, Gs stochastically dominates Gw, but Gs does not reverse
hazard rate dominate Gw and the corresponding bidding functions in terms of values
βs(v) and βw(v) will cross. However, by Proposition 4, the bidding functions in terms
of rank are clearly ordered so that bs(r) > bw(r) on (0, 1).

3.2 All Pay

In the all pay auction, if the strong bidder bids bs when the weak bidder bids according
to the strategy bw(r), the strong bidder has expected utility

b−1w (bs)Vs(r)− bs = Fw(bs)Vs(r)− bs (14)

Differentiating with respect to bs, one obtains a first order condition

F 0
w(bs)Vs(r)− 1 = 0
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If we look at the weak bidder’s problem, we can obtain a similar differential equation
from her first order condition. Putting them together we have these simultaneous
differential equations in b

F 0
s(b) =

1

Vw(Fw(b))
; F 0

w(b) =
1

Vs(Fs(b))
(15)

The boundary conditions in this case are Fs(0) = 0, Fw(0) = k ≥ 0. That is, the weaker
bidder may have a mass point at 0 and bid zero with positive probability (Amann and
Leininger (1996)).

Proposition 5 Suppose Vs(r) > Vw(r) on (0, 1), equivalently Gs(v) < Gw(v) on (vw, v̄s)
and so Gs stochastically dominates Gw. Then in the all pay auction there is a unique
equilibrium where bs(r) > bw(r) on (0,1) and Fs(b) < Fw(b) on (b, b̄) so that Fs(b)
stochastically dominates Fw(b).

Proof: Existence and uniqueness is proven in Amann and Leininger (1996). From the
differential equations (12) and the assumption that Vs(r) > Vw(r) on (0, 1), it is clear
that there can be only one crossing of Fs(b) and Fw(b) on (0, 1) and Fs(b) must be
steeper at such a point. The proof then follows that of Proposition 4.

In contrast, one can show that, in a similar way to Proposition 3, the bidding
functions in terms of ranks must cross in the all pay auction. We give an example.

Example 5 This is from Amann and Leininger (1996). The strong distribution is
Gs(v) = v5 and the weak Gw(v) = v2 both on [0,1]. It is easy to check that Gs likelihood
ratio, reverse hazard rate and stochastically dominates Gw. The strong bidder bids
βs(v) = (27v

5 + 25v9)/72 which is very flat and low until near 1. The weak bidder bids
nothing for values on [0,0.375] but then her bidding function rises steeply and almost
immediately crosses the strong bidder at v = 0.389 and then remains higher until v = 1.
What this hides is that given Gs(v) = v5, there is almost no probability mass on low
values of v. That is, the low values of βs(v) for low values of v are almost irrelevant as
the strong bidder almost never has a low valuation. Putting the bid functions in terms
of rank, in effect weights the bidding functions in terms of probability and we know
from Proposition 5 that bs(r) will always be higher than bw(r), even though the bidding
functions in terms of values do cross.

4 Better Information

Up to now, we have looked at asymmetric auctions where bidders are ordered in terms
of valuations. We now look at a first price auction where one bidder has better informa-
tion. The possibility of comparative statics using conditions weaker than (first order)
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stochastic dominance has not received much attention, exceptions being Hopkins and
Kornienko (2007a) and Kirkegaard (2006).

Let us take the interpretation that Gs(v) is the weak bidder’s prior about the strong
bidder’s type and Gw(v) is prior of the strong bidder about the weak. Then we assume
that strong bidder has a prior that is less dispersed than the prior of weak bidder, so
that Gs(v) is more dispersed than Gw(v). That is, the strong bidder has more precise
information about the possible valuation of his rival. We find that in this case the
strong bidder bids more than the weak for most ranks, with the strong bidder bidding
more only at very low ranks. The intuition is that as as one’s prior becomes more
compressed, the gain in the probability of winning the auction by raising one’s bid by a
penny increases. As the possible types of one’s opponent become more closely packed,
the easier it is to surpass him, and thus one should bid more.

To show this, we will use a version of the dispersion order (see Shaked and Shan-
thikumar (1994)). Two continuously differentiable distributions Gs and Gw can be
ordered in terms of dispersion in the following way

Gs ≥d Gw if and only if gs(G−1s (r)) ≤ gw(G
−1
w (r))⇔ V 0

s (r) ≥ V 0
w(r) for all r ∈ (0, 1)

(16)
That is, for a fixed rank, the more dispersed distribution is less dense than the less
dispersed one. A simple example of this is two uniform distributions with one with
strictly smaller support than the other. Note that because the condition is expressed
in terms of ranks, there is no problem in comparing distributions with different, even
disjoint, supports.

Here we combine the density condition (16) with a single crossing condition on
the distribution functions. A simple example that fits this pattern would be Gs being
uniform on [0, 1] and Gw being uniform on [0.25, 0.75]. We show that this implies that
the bidding functions are also single crossing with the stronger bidding more at low
rank.

Proposition 6 Suppose V 0
s (r) > V 0

w(r) on [0, 1] and that there is one point r̃ ∈ (0, 1)
such that Vw(r̃) = Vs(r̃). This implies that the distribution Gs is more dispersed than
Gw in terms of the dispersion order. Then bs(r) < bw(r) on [0, r0) and bs(r) > bw(r)
on (r0, 1) where r0 < r̃.

Proof: Again we use inverse bid functions (equivalently the distribution functions of
bids). First, given that V 0

s (r) > V 0
w(r) and Vs and Vw are single crossing, this implies

vs = Vs(0) < Vw(0) = vw. Then, by the boundary conditions for the differential
equation (12), we have b > vs and Fs(b) > Fw(b) = 0. As Vs(r) < Vw(r) on [0, r̃), by
the relation (13), at any crossing point of r0 = Fs(b) = Fw(b) where r0 ∈ (0, r̃), it must
be that F 0

s < F 0
w. Thus, there can be at most one crossing r0 in (0, r̃).

Turning to possible points of crossing in (r̃, 1), as Vs(r) < Vw(r) on (r̃, 1], at any
such crossing point it must be that F 0

s > F 0
w. Hence if there is no crossing on (0, tilder)
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then it must be that Fs(b) > Fw(b) on (b, b̄) (given F 0
s > F 0

w at any point of crossing, we
can rule out equality between Fs and Fw). So it must be that Vs(Fs(b)) > Vw(Fw(b)) on
an interval [b̃, b̄] where b̃ is chosen so that Fw(b̃) > r̃. It follows from (12) that we have
F 0
s(b) > F 0

w(b) on [b̃, b̄]. Given Fs(b̃) > Fw(b̃), this would imply Fs(b̄) > Fw(b̄), which is
not possible. So there must be a crossing on (0, r̃) and bs(r̃) > bw(r̃).

Finally, for r > r̃, Vw(r) < Vs(r), so there can only be one crossing on [b̃, b̄] and
Fs(b) can only cross Fw(b) from below and therefore it must happen only at b̄. Thus,
there is no crossing on (r̃, 1).
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